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Appendix

A Variation in performance and reaction time across human observers1

In this section, we look at variation in accuracy and reaction time across all human observers in our 32

experiments that measured behavior under grayscale, noisy and blurry image perturbation conditions.3

Each block of trials in our experiments required participants to respond at a fixed reaction time chosen4

of 200, 400, 600, 800 or 1000 ms. Naturally, despite receiving training, observers showed some5

variance in their actual reaction time. Figure 1 plots mean and standard deviation of both accuracy6

and reaction time for each block of trials, separately for different image perturbations.7
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Figure 1: Scatter plots showing mean and standard deviation of accuracy and reaction time across
participants for different image perturbations. Each point corresponds to a block of trials which
required participants to respond within a specific duration in ms ∈ {200, 400, 600, 800, 1000}. 5
blocks of trials were run, and hence 5 points in each subplot.

We observe that participants in all experiments were highly accurate in their reaction times, showing8

means very close to the desired response time value and small variances ( 100 ms). Accuracies also9

showed the desired increasing trend, with small variance for short reaction times (200-600 ms) and10

large variance for longer reaction times(600-1000 ms).11

B Correlations as a function of perturbation parameters12

We report additional analysis of human and network (MSDNet [1], SCAN [2], ConvRNN [3]) results.13

In Table 1, we report the Pearson’s r correlation coefficients of the human and network data at14

different levels of noise. As expected, human observers achieve the highest correlation to the average15

human results, followed closely by the MSDNet network.16
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Table 1: Correlation (Pearson’s r coefficient, ↑) of humans and each network with average human
performance, evaluated across three noise (0.0, 0.04, 0.16). Each condition corresponds to a noise
value used for human evaluation. For each network, noise value that shows the highest correlation
with humans is found and shown. For each condition, the highest correlation is in bold, the second
highest is underlined.

Observer Noise
0 0.04 0.16

Human 0.94 0.84 0.75
MSDNet 0.93 0.84 0.74
ConvRNN 0.89 0.81 0.65
SCAN 0.74 0.66 0.51

We conduct a similar experiment with blur perturbations in Table 2. Interestingly, we find that there17

is a stronger correlation of human observers to the average human performance with blur than with18

noise. Similar to the previous result, humans have the highest correlation to humans, followed by19

MSDNet. For high blur values, MSDNet achieved a higher correlation to average human results than20

human-human correlation.

Table 2: Correlation (Pearson’s r coefficient, ↑) of humans and each network with average human
performance, evaluated across three blur (0.0, 0.04, 0.16) conditions. Each condition corresponds
to the blur value used for human evaluation. For each network, the blur value that shows highest
correlation with humans is found and shown. For each condition, the highest correlation is in bold,
the second highest is underlined.

Observer Blur
0 1.0 3.0

Human 1.00 0.97 0.70
MSDNet 0.96 0.95 0.72
ConvRNN 0.93 0.92 0.68
SCAN 0.94 0.92 0.68

21

C Performance range analysis22

We additionally report performance ranges, i.e., the differences between the maximum and minimum23

accuracies, for human and neural networks. Table 3a reports results for noise and Table 3b reports24

results for blur. We find that the performance ranges for humans decrease as higher levels of either25

noise or blur is added. For networks the same phenomenon mostly holds for noise. For blur, we see26

that performance ranges actually increase for the SCAN and ConvRNN networks.27

D Variation of performance range with training perturbations28

In Figure 2, we study how the amount of training perturbation affects performance of networks when29

evaluated on perturbation-free images. We find that the performance ranges increase for all networks.30

For MSDNet, range increases from 13.87% to 19.24%; SCAN, from 4.34% to 6.58%; and ConvRNN31

from 9.03% to 14.18%.32

E Network variants and parameter summary33

MSDNet-L is the original MSDNet architecture, with FLOPs range from 15.13 MFLOPs to 75.8634

MFLOPs. MSDNet-M refers to a model where we change filter dimensions in the classifiers from35

128 to 32. MSDNet-M has fewer parameters and is 30% of the size of MSDNet-L. MSDNet-S is36

smaller in size and has early exits from 3.56 MFLOPs to 12.21 MFLOPs. It is 3.35% of the size37

of the MSDNet-L. It utilizes 1-1-1 setting for the bottleneck factor as compared to 1-2-4 setting in38

the original MSDNet. This is to add constraints to the original network and inhibit the ability of the39

initial layers to reach higher accuracy. The first early classifier is placed after 3 layers and the rest40
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Table 3: Performance range (max accuracy minus min accuracy) of networks and human average
reported evaluated across different noise/blur values. For noise experiments, networks were trained
with Gaussian noise with 0 mean and random batch standard deviation ∈ [0.0, 0.05]. For blur
experiments, networks were trained with Gaussian blur with 0 mean and random batch standard
deviation ∈ [0.0, 0.9]. The No Perturbation column reports the corresponding result with no noise
used for training or testing, as a reference.

Observer No Perturbation Testing Noise
No Train/Test Noise 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.16

Human 44.22 - - - - 35.26 - - - - - - 13.54
MSDNet 13.87 19.24 15.22 10.87 8.48 7.06 5.31 3.88 2.81 1.74 1.11 0.99 -
ConvRNN 9.03 14.18 5.63 3.89 2.90 2.89 4.04 6.38 6.56 5.03 3.02 - -
SCAN 4.34 6.58 7.63 8.24 8.57 8.85 8.00 6.07 3.63 2.56 1.64 1.51 -

(a) Experiments with noise.

Observer No Perturbation Testing Blur
No Train/Test Noise 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 3

Human 44.22 - - - - 42.67 - - - - 15.86
MSDNet 13.87 18.27 18.29 22.08 5.16 7.65 7.69 7.06 6.52 6.13 -
ConvRNN 9.03 8.06 - - - 9.15 9.55 9.42 9.90 10.08 -
SCAN 4.34 4.28 - - - 5.37 16.90 17.26 6.00 4.20 -

(b) Experiments with blur.
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Figure 2: Comparison between performance range of humans, and networks trained with different
image perturbations and evaluated on grayscale CIFAR-10 images. Training conditions considered
are a. no perturbation (grayscale), b. Gaussian noise (0 mean, random batch standard deviation ∈
[0.0, 0.05]), c. Gaussian blur (0 mean, random batch standard deviation ∈ [0.0, 0.9])

of classifiers are placed after every 2 layers. The first block contains scales of 8, 14 and 16 which41

sets up representations for the layers in the next blocks. We also change the filter dimensions in the42

classifiers from 128 to 32. Table 4 shows the comparison of MSDNet variants over the number of43

parameters and FLOPs range.44

In Table 4, we summarize the number of parameters and FLOPs used by each network evaluated45

in the paper. Our experiments indicate that correlation to human performance does not necessarily46

increase with additional parameters.47

F Additional image visualizations48

We report visualizations of images with contrast adjustment and perturbations used for neural network49

experiments in Figure 3.50

3



Table 4: Number of parameters and range of MFLOPs for each network. Correlation to human
performance does not necessarily increase with additional parameters.

Observer # Params (×106) MFLOPs
Min. Max.

MSDNet-S 0.10 3.56 12.21
MSDNet-M 0.90 12.36 54.21
MSDNet-L 2.98 15.13 75.86
ConvRNN 26.91 - 167060.12
SCAN-R9 8.71 76.76 173.14

SCAN-R18 14.98 190.86 627.72
SCAN-R34 25.09 266.94 1233.54
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Figure 3: Example images from the CIFAR-10 dataset [4] along with visualizations of image
perturbations considered for neural network experiments. Numbers in parentheses correspond to
standard deviations for 0-mean Gaussian distributions in pixel units.

G Compute resources51

In order to train and test models for all our experiments, we used resources from an internal cluster at52

New York University. All networks were trained using a single NVIDIA Tesla V100 GPU requiring53

< 32 GB of memory. Training time for all networks was under 8 hours. For each run of inference,54

we used a single NVIDIA GeForce GTX 1080 Ti GPU.55
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