
Published as a conference paper at ICLR 2024

A PRELIMINARIES

A.1 SETUP AND ASSUMPTIONS

The environment is described by a set of random variables C = {C1, C2, . . . , CN}, which in
combination with the decision D and utility nodes U define the state space for the CID V =
C [{D,U}. In out notation individual variables Ci 2 C are given indexes, whereas set of variables
are indexless and bold, and we use V = v as short hand for the joint state of the variables in a set
C. The joint probability distribution P (C = c, D = d, U = u) describes the statistical relations
between environment variables. Bayesian networks factorise joint probability distributions according
to a graph G (Pearl, 2009).
Definition 1 (Bayesian networks). A Bayesian network M = (G,P) over a set of variables V =
{V1, . . . , Vn} is a joint probability distribution P (V) that factors according to a directed acyclic

graph (DAG) G, i.e. P (V1, . . . , Vn) =
Qn

i=1 P (Vi | PaVi), where PaVi are the parents of Vi in G.

The distributions and statistical relationships between variables may change as a result of external
interventions applied to a system. Hard interventions set a subset C 0

✓ C of the variables to
particular values c0, denoted do(C 0 = c0) or do(c0). Naively, one joint probability distribution
Pdo(c0) would be needed to describe the updated relationship under each possible intervention do(c0).
Fortunately, all interventional distributions can be derived from a single Bayesian network, if G
matches the causal structure of the environment (i.e. has an edge Vi ! Vj whenever an intervention
on Vi directly influences the value of another variable Y , and lacks unmodeled confounders; Spirtes
et al., 2000; Pearl, 2009). When this holds, we call the Bayesian network causal and G a causal

graph. With respect to the causal graph G we denote the direct causes (parents) of Vi as Pai, the set of
all causes (ancestors) Anci, and the variables that Vi directly causes (children) Chi and descendants
Desci as the set of all downstream variables. Note in particular that Anci and Desci refer to proper

ancestors and descendants, i.e. Vi 62 Anci and Vi 62 Desci. We denote a causal Bayesian network
(CBN) as M = (P,G) where P is the joint and G is the directed acyclic graph (DAG) describing the
causal structure of the environment. Further, the interventional distribution Pdo(v0) is given by the
truncated factorisation

Pdo(v0)(v) =

(Q
i:vi 62v0 P (vi | pavi) if v consistent with v0

0 otherwise.

Equivalently, the effect of interventions can be computed by adding an extra node X̂ and edge
V̂i ! Vi for each node Vi 2 V (Correa & Bareinboim, 2020; Dawid, 2002). Intervening on Vi

then corresponds to conditioning on V̂i in the extended graph. More general, soft interventions
� = P 0(Vi | Pa⇤

i) replace the conditional probability distribution for Vi with a new one, possibly
using a new parent set Pa⇤

o as long as no cycles are introduced in the graph (Correa & Bareinboim,
2020). The modified environment is denoted M(�).

General soft interventions cannot be defined without prior knowledge of the causal graph G. For
example, the soft intervention �Y = P 0(y | x) is incompatible with the causal structure Y ! X as it
would introduce a causal cycle, and so an agent’s policy may not be well defined with respect to this
intervention. We therefore focus our theoretical analysis on a subset of the soft interventions, local

interventions, that can be implemented without assuming knowledge of G.
Definition 2 (Local interventions). Local intervention � on Vi 2 V involves applying a map to

the states of Vi that is not conditional on any other endogenous variables, vi 7! f(vi). We use

the notation � = do(Vi = f(vi)) (variable Vi is assigned the state f(vi)). Formally, this is a soft

intervention on Vi that transforms the conditional probability distribution as,

P (vi | pai;�) =
X

v0
i:f(v

0
i)=vi

P (v0i | pai) (1)

Example: Fixing the value of a variable (hard intervention) is a local intervention as do(Vi = v0i) =
do(Vi = f(vi)) where f(vi) = v0i.

Example: Translations are local interventions as do(Vi = vi + k) = do(Vi = f(vi)) where
f(vi) = vi + k. This includes changing the position of objects in RL environments (Shah et al.,
2022).

14

Published as a conference paper at ICLR 2024

Example: Logical NOT operation X ! ¬X for Boolean X

We also consider mixtures of interventions, which can also be described without knowledge of G.
Definition 3 (Mixtures of interventions). A mixed intervention �⇤ =

P
i pi�i for

P
pi = 1 performs

intervention �i with probability pi. Formally, P (v | �⇤) =
P

i piP (v | �i).

Example: Adding Gaussian noise is a mixture over local operations (translations) �✏ = do(X =
X + ✏) where ✏ ⇠ N (0, 1).

In common to most decision making tasks such as prediction, classification, and reinforcement
learning, is that a decision should be outputted based on some information to optimise some objective.
The exact terms vary: decisions are sometimes called outputs, actions, predictions, or classifications;
information is sometimes called features, context, or state; and objectives are sometimes called
utility functions or loss functions. However, all of these setups can be described within the causal
influence diagram (CID) framework (Howard & Matheson, 2005; Everitt et al., 2021). CIDs are
causal Bayesian networks where the variables are divided into decision D, utility U , and chance
variables V , and no conditional probability distribution is specified for the decision variables. The
task of the agent is to select the distribution ⇡ = P (D = d | PaD = paD), also known as the policy
or decision rule. An optimal policy ⇡⇤ is defined as a policy ⇡⇤ that maximizes the expected value of
the utility E⇡⇤ [U].
Definition 4 (Causal influence diagram). A (single-decision, single-utility) causal influence diagram
(CID) is a CBN M = (G,P) where the variables V are partitioned into decision, utility, and chance

variables, V = ({D}, {U},C). The utility variable is a real-valued function of its parents, U(paU).

By convention, decision nodes are drawn square, utility nodes diamond, and chance nodes round. The
parents of D, PaD, can be interpreted as the information the decision is allowed to depend on, and
are depicted as dashed lines. See Figure 5 for an example. In the following we restrict our attention
to a class of CIDs we refer to as ‘unmediated decision tasks’, where where the agent’s decision does
not causally influence any chance variables that go on to influence the utility. This simplifies our
theoretical analysis, although it is likely that our results extend to the general case.
Assumption 1 (Unmediated decision task). DescD \ AncU = ;.

Examples of unmediated decision tasks include all standard classification and regression tasks, and
generative AI tasks where the output is not included in the training set. For example, in classification
typically the choice of label does not influence the data generating process. Problems that are
mediated rather than unmediated decision tasks includes most control and reinforcement learning
tasks, where the agent’s decision is an action that influences the state of the environment. Furthermore,
we will focus on non-trivial unmediated decision tasks i.e. where U 2 ChD, as the case ChD = ;
describes trivial decision tasks (the agent’s action does not influence the utility). Figure 5 is an
example of a non-trivial unmediated decision task.

In transfer learning we are typically interested in problems where generalising from the source
to target domain(s) is non-trivial, and in the trivial case we cannot expect agents to have to learn
anything about their environments in order to generalise. If this is not the case, then generalising
under distributional shifts is trivial. Therefore we restrict our attention to decision tasks where the
distribution of the environment is relevant to the agent when determining its policy. Specifically, we
say that a decision task is domain independent if there exists a single policy that is optimal for all
choices of environment distribution P (C = c).
Assumption 2 (Domain dependence). There exists P (C = c) and P 0(C = c) compatible with M
such that ⇡⇤ = argmax⇡ E⇡

P [U] implies ⇡⇤
6= argmax⇡ E⇡

P 0 [U].

Lemma 1. Domain dependence implies that;

i) There exists no d 2 dom(D) such that d 2 argmaxd U(d, c) 8c 2 dom(C).

ii) PaD (AncU

iii) D 2 PaU

Proof. i) For any P 0 we have EP 0 [U | do(D = d), paD] =
P

c P
0(Cd = c | paD)U(d, c)

=
P

c P
0(C = c | paD)U(d, c) where we have used DescD \ AncU = ;. Therefore if 9 d⇤

15

Published as a conference paper at ICLR 2024

C1

C2

C3C4

C5 C6

D U

Figure 5: The CID for an unmediated decision task, where D has no causal influence on the
environment state C. Our main theorem implies that an agent that is robust to distributional shifts
on C must learn the CBN over AncU = {C1, C2, C3, C4, C6}, noting that C5 62 AncU . C4 is an
example of a variable that is only an ancestor of U via D and so has no direct causal effect on the
utility, but is still relevant to the decision task as it is a proxy for C1 which is a cause of U . C6 is
a cause of U but not of D, and naively one might assume that distributional shifts on C6 cannot
influence the agent’s decision. However, the optimal policy can change under distributional shifts on
C6 as these effect the utility, and hence the agent will have to learn a CBN including C6 if it is to be
robust to shifts on C6.

s.t. d⇤ = argmaxd U(d, c) 8 C = c then EP 0 [U | do(D = d⇤), paD] �
P

c P
0(C = c |

paD)U(d0, c)EP 0 [U | do(D = d), paD] 8 d 6= d⇤, and so D = d⇤ is optimal for all P 0(C = c) and
we violate domain dependence.

ii) As D 2 PaU (iii), then PaU ✓ AncU . If AncU = PaD then EP [u | d, paD] = U(d, paD) which
is independent of P (C = c), and hence there is a single optimal policy for all P and we violate
domain dependence.

iii) If D 62 AncU then the CID is trivial, in the sense that E[U | do(D = d)] = E[U], and hence all
decisions are optimal for all distributions P (C), which violates domain dependence (Assumption 2).
Therefore D 2 AncU which with DescD \ AncU = ; implies D 2 PaU .

A.2 PARAMETERISATION OF CIDS

The joint distribution P is defined for all environment variables C, and the CID is defined by the
parameters for P (C) and U(PaU). We restrict our attention to C that are categorical, and without loss
of generality we label states ci = 0, 1, . . . , dimi�1 where dimi is the dimension of variable Ci. Firstly,
the joint P (C) is parameterised by the conditional probability distributions (CPDs) in the Markov
factorization with respect to G, ✓P = {P (ci | pai) 8 ci 2 {0, . . . , dimi � 2}, pai 2 Pai, Ci 2 C.
Note that the CPDs p(Ci = dimi � 1 | pai) are not included in ✓P as they are fully constrained by
normalization P (Ci = dimi � 1 | pai) = 1�

Pdimi�1
j=0 P (ci | pai). Secondly, the utility function is

simply parameterised by its value given the state of its parents ✓U = {U(paU) 8PaU = paU}. For
simplicity we work with the normalized utility function,

U(paU)!
U(paU)�minpa0U U(PaU = pa0U)

maxpa0U U(PaU = pa0
U)�minpa0U U(PaU = pa0U)

(2)

with values between 0 and 1. Noting that as this is a positive affine transformation of the utility
function the set of optimal policies invariant, and we can re-scale regret bounds accordingly. Let ✓M
denote the set of all parameters for the CID, ✓M = ✓P [✓U , and note that the elements of ✓M in the
[0, 1] interval and are logically independent, i.e. we can independently choose any [0, 1] value for
each parameter and this defines a valid parameterization of the CID for the baseline environment. In
the following when we refer to ‘the parameters P,U ’ we are referring to ✓M .

We follow the method outlined in (Meek, 2013) to prove that certain constraints on P,U hold ‘for
almost all P,U ’ and hence for almost all decision tasks. This involves converting a given constraint
into polynomial equations over ✓M and applying the following Lemma,
Lemma 2 (Okamoto, 1973). The solutions to a (nontrivial) polynomial are Lebesgue measure zero

over the space of the parameters of the polynomial.

16

Published as a conference paper at ICLR 2024

A polynomial in n variables is non-trivial (not an identity) if not all instantiations of the n variables
are solutions of the polynomial. For example, the equation poly(✓M) = 0 is trivial if and only if all
coefficients of the polynomial expression poly(✓M) are zero. Therefore, any constraint on P,U that
can be converted into a polynomial equation over ✓M must either hold for all ✓M or for a Lebesgue
measure zero subset of instantiations of ✓M .

Operationally, this means that if we have any smooth distribution over the parameter space (for
example, describing the distribution of environments we expect to encounter), the probability of
drawing an environment from this distribution for which the condition does not hold is 0.

A.3 DISTRIBUTIONAL SHIFTS & POLICY ORACLES

In the derivation of our results we restrict out attention to distributional shifts that can be modelled
as (soft) interventions on the data generating process. We note that by Reichenbach’s principle
(Reichenbach, 1956), which states that all statistical associations are due to underlying causal
structures, we can assume the existence of a causal data generating process that can be described
in terms of a CBN M = (P,G). Therefore there is a causal factorization of the joint P (C =
c) =

Q
i P (ci | Pai). By allowing for mixtures of interventions, we can reach any distribution over

C, which can be seen trivially by noting that we can perform a soft intervention to achieve any
deterministic distribution P (C = c) = �(C = c0), and then take a mixture over these deterministic
distributions to achieve an arbitrary distribution over C. The set of distributions that cannot be
generated by interventions include those that change the set of variables V including the decision and
utility variables, and introducing selection biases (which are causally represented with the introduction
of additional nodes that are conditioned on Bareinboim & Pearl, 2012a). For further discussions on
the relation between distributional shifts and interventions see Schölkopf et al. (2021); Meinshausen
(2018).

In the following proofs we use policy oracles to formalise knowledge of regret-bounded behaviour
under distributional shifts.

Definition 5 (Policy oracle). A policy oracle for a set of interventions ⌃ is a map ⇧�
⌃ : � 7! ⇡�(d |

paD) 8 � 2 ⌃ where ⌃ is a set of domains. It is �-optimal if ⇡�(d | paD) achieves an expected utility

E⇡� [U] � E⇡⇤
[U]� � in the CID M(�) where � � 0.

Here � is the regret upper bound, which is satisfied under all distributional shifts � 2 ⌃. We refer
to �-optimal policy oracles for � = 0 as optimal policy oracles. For the proof of our main result
we restrict our attention to policy oracles with ⌃ that includes mixtures over all local interventions
(def. 2).

Note that the policy oracle specifies only what policy the agent returns in a distributionally shifted
environment M(�). It does not specify how this policy is generated, which will depend on the
specific setup. For example, in domain generalisation that agent typically receives no additional data
from the target domains, and is expected to produce a policy (decision boundary) that achieves a low
regret across all target domains. On the other hand in domain adaptation and few shot learning, the
agent is provided with some new data from each target domain with which to adjust its policy. As we
hope to accommodate all of these perspectives we specify only the agent’s policy, not the data used
to generate it. This is discussed further in Section 3.2.

What distributional shifts do we consider? In our proofs, we assume the agent is robust to any
domain shifts that can be described as a mixture of local interventions on the environment variables
C. We do not consider interventions that change the utility U or the agent’s decision D, though we
do include dropping inputs to the policy (masking) PaD ! Pa0

D ✓ PaD as local interventions.

B APPENDIX: SIMPLIFIED PROOF

In this section we outline the proof of Theorem 1 for a simple binary decision task with binary
latent variables. As mentioned in Section 4, the method used to identify the CBN in Theorem 1 can
be viewed as an algorithm for learning the CBN over latent variables by observing the policy of a
regret-bounded agent under various distributional shifts. To demonstrate this, in Appendix F we use
an implementation of the algorithm on randomly generated CIDs, showing empirically that we can

17

Published as a conference paper at ICLR 2024

learn the underlying CBN in this way, and explore how the agent’s regret bound affects the accuracy
of the learned CBN.

Consider the CID in Figure 6, describing a binary decision task D 2 {0, 1} with two binary latent
variables X,Y 2 PaU .

U

X Y

D

Figure 6: Example CID describing a context-free mutli-armed bandit with binary latent variables
X,Y .

Consider an agent that selects a policy ⇡D such that it maximises the expected utility. That is, the
CID describes a context-free bandit problem, where X,Y are latent variables that influence the arm
values E[u | d] =

P
x,y P (x, y)U(x, y, d).

Our aim is to learn this CID given only knowledge of the agent’s policy under distributional shifts,
and knowledge that it satisfies a regret bound. We assume knowledge of i) the set of chance variables
C = {X,Y }, ii) the utility function U(d, x, y), and iii) the policy ⇡D(�) under distributional shifts
� (other variables (U,X, Y) are unobserved). To learn the CID the aim is therefore to learn the
parameters of the joint distribution over latents P (x, y) and the unknown causal structure. As we know
the utility function we know D,X, Y 2 PaU , and by assuming the CID is unmediated (Assumption 1)
we know X,Y 62 DescD. Likewise the decision task is context free hence D 62 DescX [DescY .
Hence the only unknown causal structure is the DAG over the latent variables C = {X,Y }.

The expected utility difference between D = 0 and D = 1 following a hard intervention on X is
given by

E[u | D = 0; do(X = 0)]� E[u | D = 1; do(X = 0)] =
X

y

P (YX=0 = y)[U(0, 0, y)� U(1, 0, y)]

(3)
= P (YX=0 = 0)[U(0, 0, Y = 0)� U(1, 0, 0)] + (1� P (YX=0 = 0))[U(0, 0, 1)� U(1, 0, 1)]

(4)

As we know U(d, x, y) we can therefore identify P (YX=0 = 0) if we can identify this expected
utility difference. We do this using the agent’s policy under distributional shifts, and in this simple
case we can restrict our attention to hard interventions. Following the steps outlined in Lemma 4,
domain dependence insures that we can identify a hard intervention �2 = do(X = x0, Y = y0) that
results in a different optimal policy to the optimal policy under �1 = do(X = 0). For a mixture
of these two interventions �3 = q�1 + (1 � q)�2 the expected utility is E[u | d,�3] = qE[u |

d,�1] + (1 � q)E[u | d,�2]. This is a linear function with respect to q, and for q = 1 the optimal
decision (d1) is different than for q = 0 (d2 6= d1). Therefore, there is a single indifference point qcrit
for which both decisions are optimal. It is simple to show that this indifference point is given by,

qcrit =

✓
1�

E[u | D = d1; do(X = 0)]� E[u | D = d2; do(X = 0)]

U(d1, x0, y0)� U(d2, x0, y0)

◆�1

(5)

D = d1 is optimal for q qcrit and D = d2 is optimal for q � qcrit. We can estimate qcrit by randomly
sampling values of q uniformly over [0, 1] and observing the optimal decision under the resulting
mixed intervention (Algorithm 1). That is, qcrit is the probability that D = d1 is returned by the
policy oracle for a randomly sampled q. In this way we learn qcrit and as we know U(d, x, y) we can
identify the expected utility difference under do(X = 0) in the numerator of Equation (5) and so
identify P (YX=0 = 0).

Similarly we identify P (YX=1 = 0), P (XY=0 = 0) and P (XY=1 = 0), which encode both
the causal relation between X and Y (e.g. there is a directed path from X to Y if and only if
P (YX=0) 6= P (YX=1) for almost all CBNs), and determine the parameters of the CBN as P (Ci =
ci | do(C \ Ci)) = P (Ci = ci | Pai = pai).

18

Published as a conference paper at ICLR 2024

C PROOF OF THEOREM 1

In this appendix we prove Theorem 1. For an informal overview of the proof see Appendix B.

First, we show that for a given distributional shift �, for almost all P,U there is a single optimal
decision. While this is not necessary for our proof, it simplifies our analysis. And as our main
theorem holds for almost all P,U , we can include any finite number of independent conditions that
hold for almost all P,U without strengthening this condition, as the union of Lebesgue measure zero
sets is Lebesgue measure zero.
Lemma 3. For any given local intervention � there is a single deterministic optimal policy for almost

all P,U .

Proof. Following intervention � two decisions d, d0 are simultaneously optimal in context paD if,

E[u | paD, do(D = d);�] = E[u | paD, do(D = d0);�] (6)

Let Z = [AncU \ PaD] and X = PaU \ {D}. Noting that

E[u | paD, do(D = d);�] =
X

z

U(d,x)P (z, paD | do(D = d);�)/P (paD | do(D = d);�) (7)

and that P (paD | do(D = d);�) = P (paD;�) and P (z, paD | do(D = d);�) = P (z, paD;�)
which follows from DescD \ AncU = ;, we can multiple both sides of equation 6 with P (paD;�)
giving, X

z

U(d,x)P (z, paD;�) =
X

z

U(d0,x)P (z, paD;�) (8)

and X

z

[U(d,x)� U(d0,x)]P (z, paD;�) = 0 (9)

Let � = do(v1 = f1(v1), . . . , vN = fN (vN)). The joint P (z, paD;�) =
Q

i P (ci | pai;�)
is polynomial, and the local interventions P (ci | pai;�) =

P
c0i:fi(c

0
i)=ci

P (c0i | pai) keep it
polynomial. Therefore equation 9 is a polynomial equation over the model parameters, and is certain
to be non-trivial as d 6= d0. Therefore by Lemma 2 for almost all P,U equation 9 is not satisfied, and
as there are a finite number of decisions this implies that for almost all P,U there is a single optimal
decision for a given �, paD and hence a single optimal policy.

Next, we detail how a policy oracle can be used to identify a specific causal query in the shifted
environment M(�), that we will later use to identify the model parameters.
Lemma 4. Using an optimal policy oracle ⇧⇤

⌃ where ⌃ includes all mixtures of local interventions on

C including masking inputs Pa0
D ✓ PaD, then for any given Pa0

D = pa0D such that Pa0
D \ PaU = ;

we can identify
P

z P (C = c;�)[U(d, c)�U(d0, c)], for d and d0 where d 6= d0 and Z = C \ Pa0
D.

Proof. By Lemma 3 for almost all P,U there is a single optimal decision following the shift �. Let
d1 = argmaxd E[u | do(D = d), pa0D;�] where d1 = ⇡⇤(�). We can identify d1 by querying the
policy oracle with �.

Consider a hard intervention on all Ci 2 C, �0 := do(c01, c02, . . . , c0N) where for all Ci 2 Pa0
D we

set Ci = ci to be the same state as in observation Pa0
D = pa0

D. The expected utility under this
intervention is E[u | do(D = d), pa0

D;�0] = U(d,x0) where X = PaU \ {D} (and we have that
D 2 PaU from Lemma 1 iii)).

Next we show that there is a choice of hard intervention �0 such that the policy oracle must return
different optimal decisions in the context Pa0

D = pa0
D for �0 and �. As Pa0D \ PaU = ; then we are

free to choose any X = x0 and the resulting �0 will be compatible with the evidence Pa0
D = pa0D.

Note that by Lemma 1 i) 9 X = x0 s.t. d1 6= argmaxd U(d, x0), else D = d1 is optimal for all
X = x which violates domain dependence. We can determine this X = x0 given the utility function
and d1. Let d2 = argmaxd U(d,x0) and �0 = do(c01, c02, . . . , c0N) be the hard intervention for which
X = x0 and Pa0

D = pa0D.

19

Published as a conference paper at ICLR 2024

Consider the joint distribution over C under the mixed local intervention �̃(q) = q� + (1� q)�0,

P (C = c | do(D = d); �̃(q)) = P (C = c; �̃(q)) (10)
= qP (C = c;�) + (1� q)P (C = c;�0) (11)

where in the first line we have used ChD = {U} to drop the intervention. Note that Z = C\PaD 6= ;
by Lemma 1 i). The expected utility is given by,

E[u | paD, do(D = d); �̃(q)] =
X

z

P (Z = z | paD, do(D = d); �̃(q))U(d,x) (12)

=
X

z

P (C = c | do(D = d); �̃(q))

P (paD | do(D = d); �̃(q))
U(d,x) (13)

=
1

P (paD; �̃(q))

X

z

P (C = c; �̃(q))U(d,x) (14)

=
1

P (paD; �̃(q))

X

z

qP (C = c;�)U(d,x) + (1� q)P (C = c;�0)U(d,x0) (15)

Note that for q = 1 the optimal decision is d1 and for q = 0 the optimal decision returned by the policy
oracle belongs to the set {d s.t. d = argmaxd U(d,x0)} which does not contain d1. Furthermore,
the argmax of equation 15 with respect to d is a piecewise linear function with domain q 2 [0, 1].
Therefore there must be some q = qcrit that is the smallest value of q such that for q < qcrit the policy
oracle returns an optimal decision in the set {d s.t. d = argmaxd U(d,x0)} and for q � qcrit the
optimal decision is not in this set. The value of qcrit is given by E[u | paD, do(D = d); �̃(qcrit)] = 0,
which by equation 15 is,

qcrit
X

z

P (C = c;�)[U(d2,x)� U(d3,x)] + (1� qcrit)[U(d2,x
0)� U(d3,x

0)] = 0 (16)

where d2 2 {d s.t. d = argmaxd U(d,x0)} and d3 62 {d s.t. d = argmaxd U(d,x0)}. This yields
the following expression for qcrit,

qcrit =

0

@1�

P
z
P (C = c;�)[U(d2,x)� U(d3,x)]

U(d2,x0)� U(d3,x0)

1

A
�1

(17)

where we have used
P
z
P (C = c;�0)[U(d2, c) � U(d3, c)] = U(d2,x0) � U(d3,x0). We can

determine
P

z P (C = c;�)[U(d2,x)� U(d3,x)] given qcrit and the utility function U(d,x).

Finally, we describe a Algorithm 1 (below) that uses a policy oracle for the Monte Carlo estimation
of qcrit, which can be used to determine

P
z P (C = c;�)[U(d2, c)� U(d3, c)]) in the asymptotic

limit N !1 as well as identifying d2, d3.

We are now ready to derive Theorem 1.
Theorem 1. For almost all CIDs M = (G,P) satisfying Assumptions 1 and 2, we can identify

the directed acyclic graph G and joint distribution P over all ancestors of the utility AncU given

{⇡⇤
�(d | paD)}�2⌃ where ⇡⇤

�(d | paD) is an optimal policy in the domain � and ⌃ is the set of all

mixtures of local interventions. Proof in Appendix C.

Proof. We learn the graph G and parameters P (ci | pai) by learning ‘leave-one-out’ interventional
distributions P (ci | do(c1, . . . , ci�1, ci+1, . . . , cN)). Note that under this intervention Ci depends
only on its parent set and hence P (ci | do(c1, . . . , ci�1, ci+1, . . . , cN) = P (ci | pai) where Pai =
pai denotes the state of Pai under the leave-one-out intervention. Almost all P are causally faithful
(Meek, 2013). Hence, for almost all P , these interventional distributions can be used to determine
Pai as in the interventional distribution Ci 6? Cj if and only if Cj 2 Pai. Explicitly, for almost all
environments, Cj 2 Pai if and only if there are two leave-one-out interventions that differ only on

20

Published as a conference paper at ICLR 2024

Algorithm 1 Identify qcrit, d2, d3 using policy oracle. Input: (U,⇧⇤
⌃, N,�)

d1 ⇧⇤
⌃(�)

�0, d2 any hard intervention on C s.t. d2 = argmaxd U(d,x) 6= d1
D(q = 1) {d s.t. d = argmaxd U(d,x0)}
✓ = 0
for i 1 to N do

q ⇠ Uniform(0, 1)
⇡⇤(d | paD) ⇧⇤

⌃(�3(q))
if d 2 D(q = 1) 8 ⇡⇤(d | paD) > 0 then

✓ ✓ + 1
end if

end for
qcrit = ✓/N
D(qcrit) ⇧⇤

⌃(qcrit� + (1� qcrit)�0)
d3 2 D(qcrit), d3 6= d2
return qcrit, d2, d3

Cj with Cj = cj and Cj = c0j such that P (ci | do(c1, . . . , cj , . . . , ci�1, ci+1, . . . , cN)) 6= P (ci |
do(c1, . . . , c0j , . . . , ci�1, ci+1, . . . , cN)). For ease of notation we will use P (ci | pai) interchangeably
with P (ci | do(c1, . . . , cj , . . . , ci�1, ci+1, . . . , cN)).

First we learn the parameters for chance variables that have a directed path to U that does not include
D, i.e. are ancestors of U in the graph GD̂ where we intervene on D.

Case 1: learning parameters for Ci 2 AncU (GD̂).
Consider a directed path Ck ! . . .! C1 where C1 2 PaU and all variables are chance nodes (the
path does not include D). Assume we know Pak�1, . . . ,Pa1 and the parameters P (Ci | pai) for
i = k � 1, . . . , 1. We show that given these parameters we can identify the unknown parameters
P (ck | pak) (and hence Pak). Define Y = C \ {Ck, . . . , C1} and consider the local intervention
� = do(y1, . . . , yN�k, ck = f(ck)) where do(ck = f(ck)) is a local intervention on Ck such that,

f(Ck) =

⇢
c0k , Ck = c0k
c00k otherwise

(18)

I.e. f(Ck) maps Ck to a 2 dimensional subspace where the image of Ck = c0k is Ck = c0k and all
other states being mapped to Ck = c00k , where c0k, c

00
k 6= c0k are arbitrary states of Ck. In the following

we mask all inputs to the policy Pa0
D = ;.

By Lemma 4 we can identify,
X

c

P (C = c;�)[U(d, c)� U(d0, c)]

=
X

ck

. . .
X

c1

P (ck | pak;�) . . . P (c1 | pa1;�)[U(d, c)� U(d0, c)]

=
X

ck

P (ck | pak;�)�(ck) (19)

where

�(ck) :=
X

ck�1

. . .
X

c1

P (ck�1 | pak�1;�) . . . P (c1 | pa1;�)[U(d, c)� U(d0, c)] (20)

and �(c1) := [U(d, c) � U(d0, c)]. Note that in equation 19 �(ck) is determined by the known
parameters P (ck�1 | pak�1), . . . , P (c1 | pa1) and U(paU), and �(ck) are non-zero for almost all
P,U as �(ck) = 0 is a polynomial equation in these parameters it is not satisfied for almost all P,U .

Using the definition of the local intervention in equation 18 we have P (Ck = c0k | pak;�) =
P (Ck = c0k | pak), and P (Ck = c00k | pak;�) = 1�P (Ci = c0k | pak;�) = 1�P (Ck = c0k | pak).
Therefore the right hand side of equation 19 has a single undetermined parameter P (Ck = c0k | pak)

21

Published as a conference paper at ICLR 2024

and the left hand side can be determined using the policy oracle (Lemma 4), and we can solve
for P (Ck = c0k | pak). By repeating this procedure with different interventions, varying the hard
intervention do(Y = y) and the choices of c0k, c

00
k , we can identify P (ck | pak) for all ck, pak and

hence Pak.

We now learn the parameters for all Ci 2 AncU (GD̂). We know the set PaU as this is the domain of
the utility function U(PaU) which is known by assumption. We can then proceed iteratively, first
learning the parameters of P,G that are P (c1 | pa1) and Pa1 for some C1 2 PaU . We can do this as
�(c1) = U(d,x)�U(d0,x) with d, d0x returned by Algorithm 1 in Lemma 4 and U(PaU) is known.
We can then determine the parameters for all Cj 2 Pa1, and so on until we have traversed Anc1. We
repeat this for all Ci 2 PaU until we have covered all AncU (GD̂).

Case 2: learning parameters for Ci 2 AncD, Ci 62 AncU (GD̂).
Consider Ck 2 AncU for which all directed paths to U are via D, Ck ! Ck�1 ! . . . ! C1

where C1 2 P̃ aD. As before, assume we know Pak�1, . . . ,Pa1 and the parameters P (Ci | pai) for
i = k � 1, . . . , 1. We now show that given these parameters we can identify the unknown parameters
P (ck | pak) (and hence Pak). Define Y = C \ {Ck, . . . , C1} and let � = do(y1, . . . , yN�k, ck =
f(ck)) where do(ck = f(ck)) is a local intervention defined in equation 18. We now mask all
evidence except C1, i.e. Pa0D = {C1}. Note that as C1 62 PaU we can apply Lemma 4, giving (for
k � 2)

X

z

P (C = c;�)[U(d, c)� U(d0, c)]

=
X

ck

. . .
X

c2

P (ck | pak;�) . . . P (c1 | pa1)[U(d, c)� U(d0, c)] (21)

=
X

ck

P (ck | pak)↵(ck) (22)

where Z = C \ {C1} and,

↵(ck) :=
X

ck�1

. . .
X

c2

P (ck�1 | pak�1) . . . P (c1 | pa1)[U(d, c)� U(d0, c)] (23)

and for k = 1 we have,
X

z

P (C = c;�)[U(d, c)� U(d0, c)] = P (C1 = c1 | pa1;�)↵(1) (24)

where ↵(1) := [U(d,x) � U(d0,x)]. We can determine ↵(ck) as we know the parameters for
Ck�1, . . . , C1 by assumption, and ↵(ck) 6= 0 for almost all P,U as the equation ↵(ck) = 0 is a
polynomial in the model parameters by Lemma 2 it is not satisfied for almost all P,U . Using the
definition of the local intervention equation 18 we have P (Ck = c0k | pak;�) = P (Ck = c0k | pak),
and P (Ck = c00k | pak;�) = 1 � P (Ci = c0k | pak;�) = 1 � P (Ck = c0k | pak). Therefore the
right hand side of equation 19 has a single undetermined parameter P (Ck = c0k | pak) and the left
hand side can be determined using the policy oracle (using Lemma 4, noting Pa0

D = {C1} and
{C1} \ PaU = ;), and we can solve for P (Ck = c0k | pak). By repeating this procedure with
different interventions, varying the hard intervention do(Y = y) and the choices of c0k, c

00
k , we can

identify P (ck | pak) for all ck, pak and hence Pak.

We now learn the parameters for all Ci 2 AncD \ AncU (GD̂). We know PaD from the domain of
the policy returned by the policy oracle. If the parameters for all variables in PaD have be learned
in the previous set, we are finished. Otherwise, there are variables that are in AncU for which all
directed paths to U are via D. Let this set of variables by P̃aD ✓ PaD. For any C1 2 P̃aD we can
determine ↵(c1) = U(d,x) � U(d0,x) with d, d0,x returned by Algorithm 1 in Lemma 4, noting
that C1 62 PaU . We can then determine the parameters for all Cj 2 Pa1, and so on until we have
traversed Anc1, and repeat until we have learned the parameters for all Ci 2 AncD \ AncU (GD̂).

22

Published as a conference paper at ICLR 2024

D PROOF OF THEOREM 2

In this section we derive a version of Lemma 4 using a �-optimal policy oracle for � > 0. The
reason we consider this case is that Theorem 1 assumes optimality, which is a strong assumption that
won’t be satisfied by realistic systems. It is therefore important to determine if our main results are
contingent on this assumption. For example, it may be that we can only identify a causal model from
the agent’s policy for � = 0, and for � > 0 no causal model can be learned. Instead, what we find is
that realistic agents with � > 0 have to learn approximate causal models, with the fidelity of these
approximations increasing in a reasonable way as � ! 0.

Low-regret analysis. What is a reasonable way for the approximation errors to change with �?
Clearly, if an agent has an arbitrarily large regret bound we cannot expect to learn anything about the
environment from its policy. For example, a completely random policy can satisfy a large enough
regret bound, and an agent does not need to learn anything about the environment to learn this policy.
Therefore we must still constrain the regret to be small in our analysis, and the standard way to do
this by an order analysis.

We define ‘small regret’ as � ⌧ E⇡⇤
[U]. As we work with the normalised utility function (see

Appendix A.1), we have E⇡⇤
[U] 1 and so we can define the small regret regime as � ⌧ 1. What

we find is that for small � the order of the error in our estimation of the model parameters grows
linearly with the order of increase in the regret for agents that incur only a small regret. Therefore we
get a linear trade-off between regret and accuracy for small �.

First we show that Algorithm 1 allows us to estimate the value of Q =
P

z P (C = c;�)[U(d, c)�
U(d0, c)] with an approximate value Q̃, and estimate bounds Q̃± such that the true value of Q is
guaranteed to satisfy Q̃�

 Q Q̃+.
Lemma 5. Using a �-optimal policy oracle ⇧�

⌃ where ⌃ includes all mixtures of local interventions,

including masking inputs Pa0
D ✓ PaD, then for any given Pa0

D = pa0D such that Pa0
D \ PaU = ;,

we can determine d, d0,x0
where d 6= d0 and a point estimate Q̃ for Q(paD, d, d0) :=

P
z P (C =

c;�)[U(d,x)� U(d0,x)] < 0 and bounds Q 2 [Q̃�, Q̃+] where Z = C \ PaD, X = PaU \ {D}

and,

1

1� ⇠
(Q� �) Q̃

1

1 + ⇠
(Q+ �) (25)

where

⇠ := �/(U(d,x0)� U(d0,x0)) > 0 (26)

and in the worst case these bounds scale with � as

Q̃+

✓
1� ⇠

1 + ⇠

◆
Q+

2�

1 + ⇠
(27)

Q̃�
�

✓
1 + ⇠

1� ⇠

◆
Q�

2�

1� ⇠
(28)

Proof. By Lemma 3 for almost all P,U there is a single optimal decision following the shift �. Let
d1 be the optimal decision returned by the policy oracle in the context Pa0

D = pa0D, which must
satisfy the bound E[u | d, paD;�] maxd E[u | d, paD;�]� �.

Consider a hard intervention on all Ci 2 C, �0 := do(c01, c02, . . . , c0N) where for all Ci 2 Pa0
D we

set Ci = ci to be the same state as in observation Pa0
D = pa0

D. The expected utility under this
intervention is E[u | do(D = d), pa0

D;�0] = U(d,x0) where X = PaU \ {D} (and we have that
D 2 PaU from Lemma 1 iii)).

Next we show that there is a choice of hard intervention �0 such that the policy oracle must return
different optimal decisions in the context Pa0

D = pa0
D for �0 and �. As Pa0D \ PaU = ; then we are

free to choose any X = x0 and the resulting �0 will be compatible with the evidence Pa0
D = pa0D.

Note that by Lemma 1 i) 9 X = x0 s.t. d1 6= argmaxd U(d, x0), else D = d1 is optimal for all
X = x which violates domain dependence. We can determine this X = x0 given the utility function
and d1. Let d2 = argmaxd U(d,x0) and �0 = do(c01, c02, . . . , c0N) be the hard intervention for which
X = x0 and Pa0

D = pa0D. Note, we do not use the policy oracle to determine d2 which can be

23

Published as a conference paper at ICLR 2024

determined from U(PaU) alone, and hence there is no uncertainty if d2 is in fact optimal under �0 for
any regret bound, nor that d1 is not optimal under �0.

Consider the joint distribution over C under the mixed local intervention �̃(q) = q� + (1� q)�0,
P (C = c | do(D = d); �̃(q)) = P (C = c; �̃(q)) (29)

= qP (C = c;�) + (1� q)P (C = c;�0) (30)
where in the first line we have used ChD = {U} to drop the intervention. Note that Z = C\PaD 6= ;
by Lemma 1 i). The expected utility is given by,

E[u | paD, do(D = d); �̃(q)] =
X

z

P (Z = z | paD, do(D = d); �̃(q))U(d,x) (31)

=
X

z

P (C = c | do(D = d); �̃(q))

P (paD | do(D = d); �̃(q))
U(d,x) (32)

=
1

P (paD; �̃(q))

X

z

P (C = c; �̃(q))U(d,x) (33)

=
1

P (paD; �̃(q))

X

z

qP (C = c;�)U(d,x) + (1� q)P (C = c;�0)U(d,x0) (34)

Note that for q = 1 the optimal decision is d1 and for q = 0 the optimal decision returned by the policy
oracle belongs to the set {d s.t. d = argmaxd U(d,x0)} which does not contain d1. Furthermore,
the argmax of equation 34 with respect to d is a piecewise linear function with domain q 2 [0, 1].
Therefore there must be some q = qcrit that is the smallest value of q such that for q < qcrit the policy
oracle returns an optimal decision in the set {d s.t. d = argmaxd U(d,x0)} and for q � qcrit the
optimal decision is not in this set. The value of qcrit is given by E[u | paD, do(D = d); �̃(qcrit)] = 0,
which by equation 34 is,

qcrit
X

z

P (C = c;�)[U(d2,x)� U(d3,x)] + (1� qcrit)[U(d2,x
0)� U(d3,x

0)] = 0 (35)

where d2 2 {d s.t. d = argmaxd U(d,x0)} and d3 62 {d s.t. d = argmaxd U(d,x0)}. This yields
the following expression for qcrit,

qcrit =

0

@1�

P
z
P (C = c;�)[U(d2,x)� U(d3,x)]

U(d2,x0)� U(d3,x0)

1

A
�1

(36)

where we have used
P
z
P (C = c;�0)[U(d2, c)� U(d3, c)] = U(d2,x0)� U(d3,x0).

While Algorithm 1 identifies the smallest value of q such that the optimal policy changes, as we
no longer have an optimal policy oracle, the probability q̃ returned by Algorithm 1 is no longer
necessarily equal to qcrit. Instead, there are minimal and maximal value of q̃ that Algorithm 1 can
return, which are determined by the regret bound (see Figure 7).

Our first aim is to bound qcrit using q̃ returned by the policy oracle. The maximal (minimal) values q̃
can take while satisfying the regret bound are q±, which are the solutions to the equations

� � E[u | paD, do(D = d2); �̃(q
+)]� E[u | paD, do(D = d3); �̃(q

+)] (37)
�� E[u | paD, do(D = d2); �̃(q

�)]� E[u | paD, do(D = d3); �̃(q
�)] (38)

Using equation 34 these simplify to

�P (paD;�(q+)) � q+
X

z

P (C = c;�)[U(d2,x)� U(d3,x)] + (1� q+)[U(d2,x
0)� U(d3,x

0)]

(39)

�P (paD;�(q�)) q�
X

z

P (C = c;�)[U(d2,x)� U(d3,x)] + (1� q�)[U(d2,x
0)� U(d3,x

0)]

(40)

24

Published as a conference paper at ICLR 2024

We can relax and simplify these bounds by taking the maximum possible values for the unknown
quantity P (paD;�(q̃))! 1 giving,

� � q+
X

z

P (C = c;�)[U(d2,x)� U(d3,x)] + (1� q+)[U(d2,x
0)� U(d3,x

0)] (41)

� q�
X

z

P (C = c;�)[U(d2,x)� U(d3,x)] + (1� q�)[U(d2,x
0)� U(d3,x

0)] (42)

Let �1 := E[u | paD, do(D = d2);�] � E[u | paD, do(D = d3);�] and �0 := U(d2,x0) �
U(d3,x0). Note that �0 > 0 as d2 is optimal under �0, and �1 < 0 as by linearity we have
E[u | paD, do(D = d3); �̃(q)] > E[u | paD, do(D = d2); �̃(q)] for q > qcrit and qcrit < 1 therefore
E[u | paD, do(D = d3); �̃(1)] > E[u | paD, do(D = d2); �̃(1)]. We now define q± w.r.t the
(relaxed) bounds equation 41 and equation 42, and simplifying these inequalities using equation 36
gives

q̃ q+ = min{1, qcrit(1 + ⇠)} (43)
q̃ � q� = max{0, qcrit(1� ⇠)} (44)

where
⇠ := �/�0 > 0 (45)

We therefore generate bounds on qcrit using equation 44 and equation 43, i.e.

qcrit q̃/(1� ⇠) (46)
qcrit � q̃/(1 + ⇠) (47)

We use q̃ in place of qcrit in equation 36, giving an estimate Q̃ for Q =
P

z P (C = c;�)[U(d2,x)�
U(d3,x)], yielding,

Q̃ = �0 (1� 1/q̃) (48)

Finally, applying bounds equation 46 and equation 47 gives,

1

1� ⇠
(�0 � �) Q̃

1

1 + ⇠
(�0 + �) (49)

Next, we determine upper and lower bounds Q±(q̃) using Q = �0(1� 1/qcrit) and equation 46 and
equation 47 giving,

Q Q̃+(q̃) = �0

✓
1�

1� ⇠

q̃

◆
(50)

Q � Q̃�(q̃) = �0

✓
1�

1 + ⇠

q̃

◆
(51)

noting that as equation 48 is monotonic in q that the true value of Q is guaranteed to fall between
these bounds. Finally, we derive expressions for the worst-case bounds in terms of the true value of Q,
which are given by determining Q̃± for the max and min values of q̃ which are given by equation 47
and equation 46,

Q+ = max
q̃

Q̃+(q̃) = �0

✓
1�

1� ⇠

1 + ⇠

1

qcrit

◆
(52)

=

✓
1� ⇠

1 + ⇠

◆
Q+

2�

1 + ⇠
(53)

Q� = min
q̃

Q̃�(q̃) = �0

✓
1�

1 + ⇠

1� ⇠

1

qcrit

◆
(54)

=

✓
1 + ⇠

1� ⇠

◆
Q�

2�

1� ⇠
(55)

25

Published as a conference paper at ICLR 2024

Figure 7: Overview of Lemma 5. �0 = U(d2,x0) � U(d3,x0) and �1 = E[u | paD, do(D =
d2);�]� E[u | paD, do(D = d3);�]. Using an optimal policy oracle we can identify qcrit precisely
as detailed in Lemma 4. For � > 0 instead of returning qcrit Algorithm 1 returns q̃, as the agent can
incur regret and so the value of q for which the policy changes is no longer constrained to be qcrit.
We use q̃ in place to qcrit to calculate an approximate value of the target query, in the same way as in
Lemma 4. The maximum and minimum values of q̃ can take are q± which result in maximal regret �,
q̃ � q� = qcrit(1� �/�0) and q̃ q+ = qcrit(1 + �/�0). We can therefore bound the amount that
Q̃ deviates from the value of the target query Q.

Lemma 6. For � ⌧ E⇡⇤
[U], Q̃ and Q̃±

(as defined in Lemma 5) satisfy bounds,

���Q̃�Q
��� �(1�

Q

�0
) +O(�2) (56)

and

Q̃+
�Q 2�(1�

Q

�0
) +O(�2) (57)

Q� Q̃�
� �2�(1�

Q

�0
) +O(�2) (58)

Proof. As we work with the normalised utility function (see Appendix A.1), we have E⇡⇤
[U] 1

and so we can define the small regret regime as � ⌧ 1. We can Taylor expand the bounds on Q̃, Q̃±

about � = 0 giving,

Q� �(1�
Q

�0
) +O(�2) Q̃ Q+ �(1�

Q

�0
) +O(�2) (59)

and therefore, ���Q̃�Q
��� �(1�

Q

�0
) +O(�2) (60)

and

Q̃+
�Q 2�(1�

Q

�0
) +O(�2) (61)

Q� Q̃�
� �2�(1�

Q

�0
) +O(�2) (62)

therefore for small � the worst case error on our estimate Q̃ grows linearly in �, and our upper and
lower bounds for Q̃ also grow linearly.

Theorem 2. For almost all CIDs M = (G,P) satisfying Assumptions 1 and 2, we can iden-

tify an approximate causal model M 0 = (P 0, G0) given {⇡�(d | paD)}�2⌃ where E⇡� [U] �
E⇡⇤

� [U] � � and ⌃ is the set of mixtures of local interventions. The parameters of M 0
satisfy

|P 0(vi | pai)� P (vi | pai)| �(�) 8 Vi 2 V where �(0) = 0 and �(�) grows linearly in � for

small regret � ⌧ E⇡⇤
[U]. Proof in Appendix D.

26

Published as a conference paper at ICLR 2024

Proof. We use the ��optimal policy oracle to estimate the model parameters following the same
steps as in the proof of Theorem 1 in Appendix C. However, as the policy oracle is no longer optimal,
the parameters estimates will have errors. Here, we show that for the parameters of P these errors
grow linearly in � for � ⌧ 1, and that we learn a sparse sub-graph of G.

Estimating parameters of P .
In the proof of Theorem 1 we estimate the parameters P (ci | pai) in two cases.

Case 1.

Qk =
X

c

P (C = c;�)[U(d, c)� U(d0, c)] =
X

ck

P (ck | pak;�)�(ck) (63)

where

�(ck) :=
X

ck�1

. . .
X

c1

P (ck�1 | pak�1;�) . . . P (c1 | pa1;�)[U(d, c)� U(d0, c)] (64)

which we rearrange using P (c0k | pak;�) = 1� P (c00k | pak;�) to give,

P (c0k | pak;�) =
Qk � �(c00k)

�(c0k)� �(c00k)
(65)

Assume we have approximate values P̂ (c0k�1 | pak�1;�), . . . , P̂ (c01 | pa1;�) where P̂ (c0k |

pak;�) = P (c0k | pak;�) + O(�), i.e. errors in our estimates for these parameters grow lin-
early in � for � ⌧ 1. As �(ck) is a sum of products of these parameter estimates, then our estimate
of �(ck) also has linear error for � ⌧ 1, i.e. �̂(ck) = �(ck) +O(�), and likewise,

P̂ (c0k | pak;�) =
Qk � �(c00k) +O(�)

�(c0k)� �(c00k) +O(�)
= P (c0k | pak;�) (1 +O(�)) (66)

Then for k = 1 we know �(c1) = U(d, c)� U(d0, c) precisely, and so

P̂ (c01 | pa1;�) =
Q1 � �(c001) +O(�)

�(c01)� �(c001)
= P (c01 | pa1;�) (1 +O(�)) (67)

Which satisfies our assumption of O(�) error for k = 1, � ⌧ 1. Therefore for all k we have error
that grows linearly in � for � ⌧ 1.

The expressions for Qk,↵(ck) for case 2 in the proof of Theorem 1 are similar, and it is trivial to
show by the same method that for these parameters the error also grow linearly in � for � ⌧ 1.

Learning graph structure. In Theorem 1 we determine Pak from P (ck | do(C \ {Ck})).
Assuming causal faithfulness, which is satisfied for almost all P (Meek, 2013), Cj 2 Pak if and
only if P (ck | do(C \ {Ck})) differ for some Cj = cj , Cj = c0j . However, as we now only have
estimates P̂ (ck | do(C \ {Ck})), any variation with respect to Cj = cj may be due to the varying
errors in these estimates rather than variation in the conditional probability itself. However, we
have shown that we can learn any P (ci | pai) within error bounds, and that these bounds scale
linearly with � for � ⌧ 1. Let Cj 2 Pai+n and ✓kj = P (ck | do(C \ {Ck})), and denote the
corresponding upper and lower bounds from Lemma 6 as ✓±kj . If 9 ✓kj 6= ✓kj0 and either ✓+kj < ✓�kj0
or ✓+kj0 < ✓�kj , non-overlapping bounds for Cj = cj and Cj = c0j , then we know with certainty that
Cj 2 Pak. If there are no such non-overlapping bounds for all j, we do not know if Cj 2 Pak and
so exclude it from the set. This approach is guaranteed to identify a sub-graph of G (i.e. no false
positives—directed edges present in the approximate CBN that are not present in the environment).
Further, we only miss a parent if in the true underlying causal model for all Pak = pak intervening
to change Cj gives |P (ck | pak, do(cj))� P (ck | pak, do(c0j))| < O(�). Hence for � ⌧ 1 we only
fail to learn causal relations that small in magnitude (with respected to the regret �), i.e. where the
causal effect of the parent on the child is O(�).

27

Published as a conference paper at ICLR 2024

In Appendix F we explore the relation between the regret bound and the error in the learned causal
graph using simulated data, and find that even agents that incur relatively high regret can be used to
identify causal structure to a high accuracy compared to a random baseline.

E APPENDIX: PROOF OF THEOREM 3

Theorem 3. Given the CBN M = (P,G) that is causally sufficient we can identify optimal policies

⇡⇤
�(d | paD) for any given U where PaU ✓ C and for all soft interventions �. Given an approximate

causal model M 0 = (P 0, G0) for which |P 0(vi | pai)� P (vi | pai)| ✏ ⌧ 1, we can identify

regret-bounded policies where the regret � grows linearly in ✏. Proof in Appendix E.

Proof. First we consider the case where we know the exact model M = (P,G). As M is causally
sufficient we can identify E[u | d, paD;�] for any given soft interventions compatible with G and
which involve only variables in G (which includes AncU [{U}). Our policy oracle is constructed
by i) estimating E[u | d, paD;�] for the input �, ii) calculating d⇤ = argmaxd E[u | d, paD;�] and
returning any d⇤ satisfying this.

Next, consider the case where we know the approximate model M 0 = (P 0, G0), for which
|P 0(vi | pai)� P (vi | pai)| ✏ ⌧ 1 which implies P 0(vi | pai) = P (vi | pai) + ci ✏ where
|ci| 1. First we show that for any soft intervention � we can approximate the post-intervention
joint distribution P 0(Z = z | do(D = d),PaD = paD;�) = P (Z = z | do(D = d),PaD =
paD;�)+ k✏+O(✏2) where Z = C \PaD and k is a function of the model parameters and constant
in ✏. Let � =

P
j qj�j where �j are soft interventions.

P 0(Z = z | do(D = d),PaD = paD;�) =
X

j

qj
P 0(C = c | do(D = d);�)

P 0(Z = z0,PaD = paD;�j)
(68)

=
X

j

qj

Q
i
P 0(Ci = ci | do(D = d);�j)

P
z0
Q
i
P 0(Ci = c0i | do(D = d);�j)

(69)

=
X

j

qj

Q
i
[P (Ci = ci | do(D = d);�j) + ci✏]

P
z0
Q
i
[P (Ci = c0i | do(D = d);�j) + ci✏]

(70)

=
X

j

qj

Q
i
P (Ci = ci | do(D = d);�j)(1 + c0ij✏)

P
z0
Q
i
P (Ci = c0ij | do(D = d);�j)(1 + c0i✏)

(71)

= P (Z = z | do(D = d),PaD = paD;�) + ✏f(✓) +O(✏2) (72)

where c0ij := ci/P (Ci = ci | do(D = d);�j) and f(✓) is a polynomial in the model parameters
✓i = P (vi | pai). Therefore the expected utility under intervention � evaluated using M 0 satisfies,

EP 0 [U | do(D = d),PaD = paD] =
X

z

P 0(Z = z | do(D = d),PaD = paD;�) (73)

=
0X

z

(Z = z | do(D = d),PaD = paD;�) + ✏g(✓) +O(✏2)

(74)

= E[U | do(D = d),PaD = paD] + ✏g(✓) +O(✏2) (75)

where g(✓) is a polynomial in the model parameters. The decision d⇤ = argmaxd EP 0 [U | do(D =
d),PaD = paD] incurs at most ✏g(✓) regret, and therefore the regret is linear in ✏.

F EXPERIMENTS

As discussed in Section 4 the proofs of Theorems 1 and 2 can be viewed as causal discovery algorithms
where we assume i) knowledge of the set of environment variables C, ii) knowledge of the utility

28

Published as a conference paper at ICLR 2024

function U , iii) the decision task is unmediated and iv) domain dependence. Given these assumptions
we can learn an approximation of the underlying CBN given only the policy of the agent ⇡(�) under
interventions �, with the approximation being exact when ⇡(�) are optimal.

To demonstrate this theoretical result we take the proof for simple Binary decision tasks outlined in
Appendix B and recast it as a causal discovery algorithm (Algorithm 2 below). We test it on CIDs
of the form shown in Figure 6 where we randomly choose the joint distribution over X,Y and their
causal structure G. Note that Algorithm 2 is significantly simpler than the general method outlined
in the proof of Theorem 1, as it exploits the fact that D,X, Y are binary variables and that |C| = 2.
This causal discovery algorithm requires that we can intervene on the latent variables X,Y , but only
requires that we can observe the response of a single variable (the decision) to these interventions. To
motivate this setting, we can imagine situations where the latents X,Y cannot be directly observed
but can be intervened on.

Example. Many diseases cannot be directly observed in patient physiology, but can only be indirectly
observed through the presence of symptoms. Let X,Y 2 {0, 1} be two such diseases, for which
there are treatments, i.e. we can intervene to ‘turn off’ X and Y but cannot observe them. D 2 {0, 1}
represents a decision to provide a specific pain relief medication, which results in a change in the
symptom severity (utility). The response to pain relief depends on the presence or absence of the
diseases (e.g pain relief is highly effective for patients with X = T , moderately effective for Y = T
and less effective for X = F, Y = F). The doctor’s goal is to minimise symptom severity while
avoiding unnecessary use of pain medication, e.g. U(d, x, y) = d[s(x, y)� c] where c is some cost
associated with pain relief and s(x, y) is the response to pain relief. Following an intervention �
(e.g. curing a disease � = do(X = F)), the doctor adapts their treatment policy in the shifted
population. For example, this adaptation could occur by trial and error, with the doctor choosing
random treatment decisions D and observing the change in symptom severity—a context-free bandit
problem. Although we cannot directly observe the disease states X,Y , by intervening on the latent
disease state and observing how the doctor’s policy adapts, we can learn both the joint distribution
P (X,Y) and the causal graph over X,Y .

Figure 9 shows the average error in the learned parameters P (x, y) and G when ⇡(�) satisfy different
regret bounds. The results are averaged over 1000 randomly generated CBNs where i) the parameters
of the joint distribution P (x, y) are chosen at random, ii) the DAG G over X,Y is chosen at random
from X ! Y and X Y , iii) the utility function U(d, x, y) 2 [0, 1] is chosen at random (see
Appendix A.2 for description of parameters). To simulate the regret-bounded agent we calculate the
optimal policy for each environment and if the sub-optimal decision satisfies the regret bound we
choose randomly from the two decisions when sampling from the policy oracle in Algorithm 1. We
also compare to a random baseline algorithm which estimates P (x, y) = 1/4 and randomly selects
from X ! Y or X Y with equal probability. In a small number of cases Algorithm 1 fails to
predict P (x, y) 2 [0, 1] due to finite sample errors, and for these cases we replace the output of the
causal discovery algorithm with a random guess.

From Figure 9 it appears that the error rate grows sub-linearly with regret. Note that the relevant
scale for the regret is the difference in expected utility between the two decisions, hence we plot the
normalised regret bound where we divide � by this expected utility difference. Note that even for
relatively large regret bounds, representing agents that generalise weakly, we can still identify the
causal structure with a high accuracy. For example when the regret bound is 30% of the expected
utility difference, we can still identify the correct causal structure in⇠ 90% of the randomly generated
CIDs. This describes an agent that is guaranteed to incur a regret of at most 30% of the expected
utility difference between the decisions before the domain shift. If the domain shift results in the
expected utility difference being less that 30% of the unshifted expected utility difference, the agent
can return a sub-optimal decision.

G APPENDIX: TRANSPORTABILITY & PEARL’S CAUSAL HIERARCHY

Transportability. The problem of evaluating policies under distributional shifts has been studied
extensively in transportability theory (Pearl & Bareinboim, 2011; Bareinboim & Pearl, 2016; Bellot
& Bareinboim, 2022). For decision tasks as outlined in Section 2.2, transportability aims to provide
necessary and sufficient conditions for identifying the expected utility following a distributional shift,
R = E[u | d, paD;�], given (partial) knowledge of i) the joint P , causal graph G and interventional

29

Published as a conference paper at ICLR 2024

(a) Misclassification rate for G scaling with regret
bound

(b) Mean parameter error for P(x, y) scaling with
regret bound

(c) Worst-case error for P(x, y) scaling with regret
bound

Figure 9: Comparing the model-average error rates for a) the learned DAG and b) the mean error
for parameters P (x, y) and c) the worst-case error for parameters P (x, y), v.s. the (normalised)
regret bound �/ |E[u | D = 1]� E[u | D = 0]|. Average error taken over 1000 randomly generated
environments with binary decision D and two binary latent variables X,Y . Comparison to error rate
for random guess (green). Results appear to show sub-linear growth in error rate with regret bound.
Note that even weakly generalising agents can be used to identify causal structure significantly better
than the random baseline.

30

Published as a conference paper at ICLR 2024

Algorithm 2 Graph Learner for simple CID
1: function GRAPH LEARNER(⇧�

⌃, U , �, N)
2: d1, d2, x0, y0, qcrit Algorithm 1(U,⇧�

⌃, N,�1 = do(Y = 0)) . Identify qcrit for
do(Y = 0)

3: Exp. U difference = (U(d2, x0, y0)� U(d1, x0, y0)) ⇤ (1� 1/qcrit)
4: �0 = U(0, 0, d2)� U(0, 0, d1)
5: �1 = U(1, 0, d2)� U(1, 0, d1)
6: P (XY=0 = 0) = (Exp. U difference��1)/(�0 ��1)
7:
8: d1, d2, x0, y0, qcrit Algorithm 1(U,⇧�

⌃, N,�1 = do(Y = 1)) . Identify qcrit for
do(Y = 1)

9: Exp. U difference = (U(d2, x0, y0)� U(d1, x0, y0)) ⇤ (1� 1/qcrit)
10: �0 = U(0, 1, d2)� U(0, 1, d1)
11: �1 = U(1, 1, d2)� U(1, 1, d1)
12: P (XY=1 = 0) = (Exp. U difference��1)/(�0 ��1)
13:
14: d1, d2, x0, y0, qcrit Algorithm 1(U,⇧�

⌃, N,�1 = do(X = 0)) . Identify qcrit for
do(X = 0)

15: Exp. U difference = (U(d2, x0, y0)� U(d1, x0, y0)) ⇤ (1� 1/qcrit)
16: �0 = U(0, 0, d2)� U(0, 0, d1)
17: �1 = U(0, 1, d2)� U(0, 1, d1)
18: P (YX=0 = 0) = (Exp. U difference��1)/(�0 ��1)
19:
20: d1, d2, x0, y0, qcrit Algorithm 1(U,⇧�

⌃, N,�1 = do(X = 1)) . Identify qcrit for
do(X = 1)

21: Exp. U difference = (U(d2, x0, y0)� U(d1, x0, y0)) ⇤ (1� 1/qcrit)
22: �0 = U(1, 0, d2)� U(1, 0, d1)
23: �1 = U(1, 1, d2)� U(1, 1, d1)
24: P (YX=1 = 0) = (Exp. U difference��1)/(�0 ��1)
25:
26: if P (YX=0 = 0) = P (YX=1 = 0) then . Identify G and P from interventionals
27: if P (XY=0 = 0) = P (XY=1 = 0) then
28: G ()
29: P (x, y) = P (XY=0 = x)P (YX=0 = y)
30: else
31: G (Y ! X)
32: P (x, y) = P (YX=0 = y)P (XY=y = x)
33: end if
34: else
35: G (X ! Y)
36: P (x, y) = P (XY=0 = x)P (YX=x = y)
37: end if
38: return G,P (x, y)
39: end function

31

Published as a conference paper at ICLR 2024

distributions I in the source domain, and ii) (partial) knowledge of the joint P ⇤ and causal graph
G⇤ in the target domain (Pearl & Bareinboim, 2011; Bareinboim & Pearl, 2012b). Hence, these
results differ from Theorems 1 and 2 in that they restrict to the case where all assumptions on the data
generating process (i.e. inductive biases) can be expressed as (partial) knowledge of the underlying
CBN. For example, Bareinboim & Pearl (2016) claim the problem is essentially solved in the case
where ‘assumptions are expressible in DAG form’. This does not constrain possible approaches to
domain generalisation that make use of non-causal assumptions and heuristics4, and indeed deep
learning algorithms exploit a much wider set of inductive biases than causal assumptions alone
(Neyshabur et al., 2014; Battaglia et al., 2018; Rahaman et al., 2019; Goyal & Bengio, 2022; Cohen &
Welling, 2016). In many real-world tasks these may be sufficient to identify ‘good enough’ (i.e. regret-
bounded) policies without requiring knowledge of the causal structure of the data generating process.
Our aim has been to establish if learning causal models is necessary for domain generalisation in
general. Hence assuming that agents are restricted to using inductive biases that amount to (partial)
knowledge of the underlying CBN would be begging the question.

Causal hierarchy’s theorem (CHT). The celebrated causal hierarchy theorem (Bareinboim et al.,
2022; Ibeling & Icard, 2021) shows that for almost all environments there are causal relations
between environment variables that cannot be identified from observational data without additional
assumptions. Does this imply that a causal model is necessary for identifying optimal policies?

First, note that the CHT is an insufficiency result, and only implies trivial necessity results. For
example, is a causal model necessary for identifying all causal and associative relations between
environment variables? Yes, but only because this set of observational and interventional distributions
is a causal model. Formally, we can identify the underlying causal model (up to latent confounders) by
assuming causal faithfulness, which holds for almost all causal models (Meek, 2013). The difference
here is that the CHT is concerned with the identifiability of all causal and associative relations
between environment variables. This sets a much higher bar than domain generalisation, which
focuses on identifying a strict subset of these (regret-bounded policies) (Figure 4).

Secondly, the CHT is concerned with the collapse (or lack thereof) of the causal hierarchy. For
example, that observational data is insufficient for identifying all causal queries. We do not restrict
agents to having observational training data—in fact, typically we assume that agents have access to
both observational and interventional data in the online learning setting that we consider (e.g. agents
can intervene to fix the decision node D by assumption).

Finally, we can imagine a refinement of the CHT which states that observational data is insufficient
for identifying regret-bounded policies without additional assumptions, bringing it in line with
Theorems 1 and 2. If this was implied by the CHT, it would not imply our results unless we restrict
to the case where all assumptions as constraints on the causal structure (similar to transportability).
Likewise, it is simple to show that Theorem 1 does not imply the CHT. In deriving Theorem 1 we do
not restrict to observational distributions (or make any restrictions on the data available to the agent
when generating its policy).

4Indeed, notable examples of causal assumptions that go beyond those expressible in DAG form include
restricting the classes of structural equations Mooij et al. (2016) and assuming cause-effect asymmetry (Mitrovic
et al., 2018)

32

	Introduction
	Preliminaries
	Causal models
	Decision tasks
	Distributional shifts

	Equivalence of learning policies and causal models
	Relaxing the assumption of optimality
	Interpretation

	Discussion
	Related work
	Conclusion
	Preliminaries
	Setup and assumptions
	Parameterisation of CIDs
	Distributional shifts & policy oracles

	Appendix: Simplified proof
	Proof of theorem: main
	Proof of theorem: main approx
	Appendix: proof of theorem: CBN powerful
	Experiments
	Appendix: transportability & Pearl's causal hierarchy

