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1 Supplementary Video1

We include videos to animate Gaussians with features using PCA, and different robotics tasks.2

Please refer to the video for the following content:3

1. Motivation and a brief overview of method design. (00:00-01:10 in supp.mp4)4

2. System walkthrough (01:10-01:37)5

3. System walkthrough (01:10-01:37)6

4. Part-level Manipulation in static scenes (01:37-01:54)7

5. Manipulation under dynamic scenes (01:54-02:20)8

2 Mathematical Details of Feature Splatting9

Point and surface splatting methods represent a scene explicitly via a mixture of 2D or 3D Gaussian10

ellipsoid. In the case of Gaussian Splatting, the geometry is represented as a collection of 3D11

Gaussian, each being the tuple {X ,Σ} where X ∈ R3 is the centroid of the Gaussian and Σ is its12

covariance matrix in the world frame. This gives the probability density function13

G(X ,Σ) = exp−1

2
X⊤Σ−1X . (1)

Gaussian splatting decomposes it into a scaling matrix S and a rotation matrix R via Σ =14

RSS⊤R⊤. The color information in the texture is encoded with a spherical harmonics map15

ci = SHϕ(di), which is conditioned on the viewing direction ϕ.16

To optimize for features, existing methods tend to append an additional vector fi ∈ Rd to each17

Gaussian, which is rendered in a view-independent manner because the semantics of an object shall18

remain the same regardless of view directions. The rasterization procedure starts with culling the19

mixture by removing points that lay outside the camera frustum. The remaining Gaussians are20

projected to the image plane according to the projection matrix W of the camera, which is then21

sorted from low to high using the distance from the virtual camera origin. This projection also22

induces the following transformation on the covariance matrix Σ:23

Σ
′
= JWΣW⊤J⊤ , (2)

where J is the Jacobian of the projection matrix W. We can then render both the color and the24

visual features with the splatting algorithm:25

{F̂, Ĉ} =
∑
i∈N

{fi, ci} · αi

i−1∏
j=1

(1− αj) , (3)

where αi is the opacity of the Gaussian conditioned on Σ
′

and the indices i ∈ N are in the ascending26

order determined by their distance to the camera origin.27
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(a) RGB Image

(b) Regularized Depth (c) Regularized Normal

(d) Unregularized Depth (e) Unregularized Normal
Figure 1: Qualitative results of depth supervision. (a) Rendered RGB image, which is not noticeably
different with or without depth supervision. (b) Rendered depth image with depth supervision.
Notice the red circle surface is accurately rendered as flat. (c) Rendered normal image with depth
supervision. Notice that the object edges are smoother. (d) Unregularized depth, which contains
artifacts on flat patterns. (e) Unregularized normal, which is noisy near the object edge.

3 Effect of Depth Supervision28

We have provided quantitative evidence in the paper to validate the effectiveness of the depth ini-29

tialization in training. For the other aspect of geometric regularization, depth supervision during the30

training, we provide qualitative samples in Fig. 1.31

4 Failure Case32

In tasks involving static scenes, aside from a few cases where objects are very similar and difficult to33

distinguish using text queries, resulting in segmentation failures, the system can effectively segment34

the objects of interest. Most failures in tasks are due to execution issues, such as collisions with35

surrounding objects when lifting the object, causing it to drop. These require more complex planning36

and are outside the scope of our research. Notably, although the system can effectively segment37

objects, when objects are closely packed, the generated grasp points might include other objects as38

is shown in Fig. 2, which will be addressed through further engineering improvements.39

Additionally, In our demonstration, we included a placement task where the object is placed down40

with the same orientation as it was grasped. While this is reasonable if the object remains stable41

during grasping, in reality, the object often rotates to some extent. The placement task thus re-42

quires perception of the object’s orientation during grasping, which is complicated by the gripper43

obstructing the view of the object. This presents a complex challenge.44

In dynamic scenes, the success rate of grasping operations primarily hinges on the accuracy of45

tracking. Objects with complex textures are easier to track due to the abundance of distinctive visual46

features, which facilitate consistent keypoint identification even during rotations. Conversely, single-47

color objects pose a challenge as their keypoints tend to diverge with rotation, making tracking48

difficult. Additionally, highly asymmetric objects are easier to track because their unique shapes49

provide reliable visual cues. In contrast, symmetric or nearly symmetric objects are prone to tracking50

failures during long-term or rapid movements due to the lack of distinctive features. Therefore,51

ensuring accurate tracking is crucial for improving grasping success rates in dynamic environments.52

As shown in Fig. 3, the tracking process of a toy duck, which is predominantly yellow and highly53

symmetrical, demonstrates several key challenges. The green points indicate invalid keypoints that54

are either predicted as hidden or not part of the cluster. Over long-term movement, especially with55
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Figure 2: Grasp execution error: The leftmost image is the captured image, the middle shows the
segmented grip of the pliers, and the rightmost image displays the generated grasp. The red grasp
has the highest score.

Figure 3: Tracking failure: The leftmost image shows the initially sampled feature points, with blue
indicating valid feature points and green indicating lost tracking points. The two images on the right
display the feature points’ status as the object moves, where valid feature points are continuously
lost.

rotation, the keypoints are progressively lost. This loss of reliable tracking features leads to track-56

ing failures when there are insufficient keypoints to calculate the object’s movement. To address57

long-term tracking issues, we need to design methods to reacquire the object during task execution,58

including re-sampling keypoints on the object. This will be a focus of future research.59

5 Text Query Comparison60

The 2D response maps for the same text query generated by different algorithms are displayed in61

Fig. 4. Grounded SAM[1] in TrackAnything[2] demonstrates effective segmentation at the object62

level; however, it fails to distinguish parts of objects and sometimes does not respond at all. Addi-63

tionally, it tends to merge multiple closely positioned objects into one. LERF[3] similarly exhibits64

weak responses at the part level, with very unclear segmentation between objects, making it nearly65

impossible to separate similar objects that are close together. F3RM[4] provides higher-quality66

features compared to LERF and can respond to some part-level queries, but it also struggles with67

accurately distinguishing between similar, closely positioned objects. In contrast, our algorithm ex-68

hibits near 2D segmentation capabilities and is highly sensitive to part-level queries, allowing for69

precise differentiation of different parts within distinct objects.70

6 GraspNet vs Grasp Sampling71

In our comparative analysis of grasp sampling methods, we employed GraspNet[5] with collision72

detection as LERFTOGO[6], sampling viewpoints on a hemisphere defined by theta and phi pa-73

rameters. Specifically, we tested configurations with 3x3, 5x5, and 10x10 viewpoints, effectively74

running GraspNet 9, 25, and 100 times respectively. The resulting grasps for these configurations75

are illustrated in the first three images as is shown in Fig. 5. Notably, the red circles highlight regions76

where valid grasps were not generated. In contrast, for our sampling-based method, we configured77

the system to sample 3000 points within the workspace, utilizing 16 threads of 12900K for parallel78
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(a) Cup

(b) Cup (Rim)

(c) Headphone

(d) Headphone
(band)

(e) Plier

(f) Plier
(Handle)

TrackAnything LERF F3RM GraspSplats
Figure 4: From left to right are the responses of TrackAnything (Grounded SAM), LERF, F3RM,
and our algorithm to the same text query.

Method Query Time↓
GraspNet-100 10.3
GraspNet-25 3.2
GraspNet-9 1.2

Ours 0.5

Table 1: Time efficiency comparison of different grasp sampling methods including ours and GraspNet with
different number of executions.

processing. The outcome of this approach is depicted in the last image. We also compare the time79

efficiency of the algorithms as is shown in Tab. 180

It is worth noting that while the GS grasps are directly generated with Gaussians, the point cloud81

data (pcd) is used solely for visualization purposes. This comparison underscores the efficiency and82

potential limitations of each method in terms of grasp generation and computational demands.83
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(a) GraspNet - 9 (a) GraspNet - 25 (a) GraspNet - 100 (d) Ours

Figure 5: The first three images from left to right show the grasps obtained by running GraspNet
with 9, 25, and 100 different viewpoints, respectively. The last image shows the results obtained by
our method, which sampled 3000 points in the workspace.

7 Limitation84

We present a comprehensive analysis of limitation, or failure modes, of the current implementation85

of GraspSplats. We hope they will help inspire future research.86

• General Deformation. The current scene deformation algorithm based on the Kabsch87

algorithm assumes that objects undergo rigid transformation. While the Gaussian repre-88

sentation is conceptually applicable to more general deformable objects (e.g., dough and89

clay), this is not investigated in the current work.90

• Tracking Failure. In addition, the tracking is sensitive to fast rotation and the resulting91

visual occlusions and motion blurs, which could be potentially addressed as an optimization92

problem using semantic and geometric priors fused in GeFF without assuming consistent93

object views.94

• Manipulation Policy. GraspSplats focuses on the grasping of the object parts via language95

guidance. However, in reality, it can be interesting to incorporate a more complex manip-96

ulation policy. For example, though GraspSplats supports the manipulation of articulated97

object, such as cabinets, by heuristic policy to pull with respect to the normal of the surface,98

it currently has the quasi-static assumption. Thus, it does not support more complex ma-99

nipulation. Future work may explore if it is possible to learn more complex manipulation100

policies on top of the powerful representations of GraspSplats.101

• Requirement for Scene Scanning. GraspSplats requires scanning of initial objects on the102

tabletop, where the scanning poses are generated from pre-programmed poses. Future work103

may include an active reconstruction policy to automate such a process.104

References105

[1] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, et al.106

Grounded sam: Assembling open-world models for diverse visual tasks. arXiv preprint107

arXiv:2401.14159, 2024.108

[2] H. K. Cheng, S. W. Oh, B. Price, A. Schwing, and J.-Y. Lee. Tracking anything with decoupled109

video segmentation. In ICCV, 2023.110

[3] J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik. Lerf: Language embedded111

radiance fields. In ICCV, 2023.112

[4] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola. Distilled feature fields enable113

few-shot language-guided manipulation. In Conference on Robot Learning. PMLR, 2023.114

[5] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for115

general object grasping. In CVPR, 2020.116

5



[6] A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Y. Chen, A. Kanazawa, and K. Goldberg. Lan-117

guage embedded radiance fields for zero-shot task-oriented grasping. In Conference on Robot118

Learning. PMLR, 2023.119

6


	Supplementary Video
	Mathematical Details of Feature Splatting
	Effect of Depth Supervision
	Failure Case
	Text Query Comparison
	GraspNet vs Grasp Sampling
	Limitation

