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Abstract
Offline reinforcement learning (RL) is crucial
when online exploration is costly or unsafe but
often struggles with high epistemic uncertainty
due to limited data. Most of existing methods rely
on fixed conservative policies, restricting adaptiv-
ity and generalization. To address this, we pro-
pose Reflect-then-Plan (RefPlan), a novel doubly
Bayesian offline model-based (MB) planning ap-
proach. RefPlan unifies uncertainty modeling and
MB planning by recasting planning as Bayesian
posterior estimation. At deployment, it updates a
belief over environment dynamics using real-time
observations, incorporating uncertainty into MB
planning via marginalization. Empirical results
on standard benchmarks show that RefPlan signif-
icantly improves the performance of conservative
offline RL policies. In particular, RefPlan main-
tains robust performance under high epistemic
uncertainty and limited data, while demonstrat-
ing resilience to changing environment dynamics,
improving the flexibility, generalizability, and ro-
bustness of offline-learned policies.

1. Introduction
Recent advances in offline reinforcement learning (RL)
enable learning performant policies from static datasets
(Levine et al., 2020; Kumar et al., 2020), making it ap-
pealing when online exploration is costly or unsafe.

The agent’s inability to gather more experiences have severe
implications. In particular, it becomes practically impossi-
ble to precisely identify the true Markov decision process
(MDP) with a limited dataset, as it only covers a portion of
the entire state-action space, leading to high epistemic un-
certainty for states and actions outside the data distribution.
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Most offline RL methods aim to learn a conservative policy
that stays close to the data distribution, thus steering away
from high epistemic uncertainty.

While incorporating conservatism into offline learning has
proven effective (Jin et al., 2021; Kumar et al., 2020), it
can result in overly restrictive policies that lack generaliz-
ability. Most methods learn a Markovian policy that relies
solely on the current state, leading the agent to potentially
take poor actions in unexpected states during evaluation.
Model-based (MB) planning can enhance the agent’s respon-
siveness during evaluation (Sikchi et al., 2021; Argenson &
Dulac-Arnold, 2021; Zhan et al., 2022), but it still primarily
addresses epistemic uncertainty through conservatism.

Noting this challenge, Chen et al. (2021) and Ghosh et al.
(2022) propose to learn an adaptive policy that can reason
about the environment and accordingly react at evaluation.
Essentially, they formulate the offline RL problem as a
partially observable MDP (POMDP)—where the partial
observability relates to the agent’s epistemic uncertainty, aka
Epistemic POMDP (Ghosh et al., 2021). Thus, learning an
adaptive policy involves approximately inferring the belief
state from the history of transitions experienced by the agent
and allowing the policy to condition on this belief state.

While learning an adaptive policy can help make the agent
more flexible and generalizable, it still heavily depends on
the training phase. Our empirical evaluation demonstrates
that a learned policy—whether it be adaptive or fixed—can
be significantly strengthened by incorporating MB planning.
However, existing MB planning methods fall short in ade-
quately addressing the agent’s epistemic uncertainty, and
it remains elusive how one can effectively incorporate the
uncertainty into planning.

We propose Reflect-then-Plan (RefPlan), a novel doubly
Bayesian approach for offline MB planning. RefPlan com-
bines epistemic uncertainty modeling with MB planning in
a unified probabilistic framework, inspired by the control-as-
inference paradigm (Levine, 2018). RefPlan adapts Bayes-
adaptive deep RL techniques (Zintgraf et al., 2020; Dorfman
et al., 2021) to infer a posterior belief distribution from past
experiences during test time (Reflect). To harness this uncer-
tainty for planning, we recast planning as Bayesian posterior
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Figure 1: Schematic illustration of RefPlan. (Reflect) At time t, real-time experiences τ:t = (s0,a0, r0, . . . , st) are used to
infer the posterior beliefmt over environments using a variational autoencoder. Unlike prior methods, RefPlan learns diverse
dynamics models conditioned on mt, capturing different transition and reward functions. (Plan) Offline planning is framed
as probabilistic inference, where the posterior over optimal plans p(τ |O) (O denotes optimality variables in the control-as-
inference framework) is inferred. Importantly, a prior p(τ) is incorporated by learning πθ via offline policy learning. By
marginalizing out mt, RefPlan addresses epistemic uncertainty, enhancing πθ for better adaptivity and generalizability.

estimation (Plan). By marginalizing over the agent’s epis-
temic uncertainty, RefPlan effectively considers a range of
possible scenarios beyond the agent’s immediate knowl-
edge, resulting in a posterior distribution over optimized
plans under the learned model (Figure 1).

In our experiments, we demonstrate that RefPlan can be in-
tegrated with various offline RL policy learning algorithms
to consistently boost their test-time performance in standard
offline RL benchmark domains (Fu et al., 2020). RefPlan
maintains robust performance under high epistemic uncer-
tainty, demonstrating superior resilience when faced with
out-of-distribution states, shifts in environment dynamics,
or limited data availability, consistently outperforming com-
peting methods in these challenging scenarios.

2. Preliminaries
We study RL in the framework of Markov decision processes
(MDPs), characterized by a tupleM = (S,A, T, r, d0, γ).
The state (S) and action (A) spaces are continuous,
T (s′|s,a) is the transition probability, r(s,a) is the reward
function, d0 is the initial state distribution, and γ ∈ [0, 1]
is the discount factor. The model of the environment refers
to the transition and reward functions. The goal of RL is
to find an optimal policy π∗ which maximizes the expected
discounted return, Es0∼d0,st∼T,at∼π∗ [

∑∞
t=0 γ

tr(st,at)].

Offline MB planning Given an offline dataset D =
{(si,ai, ri, s′i)}Ni=1 collected by a behavior policy β, model-
based (MB) methods train a predictive model p̂ψ(s′, r|s,a)
via maximum likelihood estimation (MLE), minimizing

L(ψ) = ED[− log p̂ψ(s
′, r|s,a)]. The learned model p̂ψ

then generates imaginary data Dmodel to aid offline policy
learning.

Here, we focus on using learned models for test-time plan-
ning. MB planning typically employs model predictive
control (MPC), where at each step, a trajectory optimiza-
tion (TrajOpt) method re-plans to maximize the expected
H-step return under p̂ψ, incorporating a value function Vϕ
for long-term rewards (Lowrey et al., 2018):

a∗t:t+H = argmax
at:t+H

Ep̂ψ [RH(st,at:t+H)] , (1)

where RH(st,at:t+H) :=
∑H−1
h=0 γ

hr̂ψ(ŝt+h,at+h) +
γHVϕ(ŝt+H) is the return of a candidate sequence at:t+H
under p̂ψ , with r̂ψ denoting the learned reward model.

MPPI is a TrajOpt method that optimizes trajectories by
sampling N̄ action sequences, weighting them via a soft-
max function with inverse temperature κ based on re-
turns (Nagabandi et al., 2019). The optimized action is

a∗t+h =
∑N̄
n=1 exp(κRnH)·ant+h∑N̄

n=1 exp(κRnH)
where RnH is the return of the

nth trajectory. MBOP (Argenson & Dulac-Arnold, 2021)
adapts MPPI for offline settings by sampling actions from a
behavior-cloning (BC) policy with smoothing.

The control-as-inference framework The control-as-
inference framework reformulates RL as a probabilistic
inference problem (Levine, 2018), introducing auxiliary
binary variables Ot, where Ot = 1 denotes that (st,at)
is optimal. The likelihood of optimality for a trajectory
τt:t+H = (st,at, . . . , st+H) is:
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Definition 1 (The optimality likelihood). For τt:t+H , let
O = 1 if Ot+h = 1 ∀h. Then,

p(O = 1|τ) ∝
∏

h

p(Ot+h = 1|st+h,at+h). (2)

Assuming p(Ot+h = 1|st+h,at+h) ∝ exp(κ · rt+h), we
obtain p(O|τ) ∝ exp(κ ·∑h rh).

1 Thus, expected return
maximization reduces to posterior inference over trajectories
given that all time steps are optimal under the probabilistic
graphical model (PGM) (see Figure 2, left):

p(τ |O) ∝ p(τ,O) =

p(st)

H∏

h=1

p(Ot+h|st+h,at+h)p(st+h+1|st+h,at+h). (3)

Typically, the prior over actions is assumed to be uniform
or implicitly defined by rewards (Levine, 2018; Piché et al.,
2019). However, in Section 3.1, we explicitly model the
action prior to formalize an offline MB planning framework,
enabling policy refinement via MB planning.

Epistemic POMDP, BAMDP, and Offline RL A par-
tially observable MDP (POMDP) extends MDPs to scenar-
ios with incomplete state information. POMDPs can be
reformulated as belief-state MDPs, where a belief —a prob-
ability distribution over states—represents the uncertainty
over states given the agent’s prior observations and actions
(Kaelbling et al., 1998).

Unlike an ordinary POMDP, epistemic POMDPs address
generalization to unseen test conditions in RL (Ghosh et al.,
2021). In this scenario, the agent experiences partial observ-
ability entirely due to its epistemic uncertainty about the
identity of the true environmentM at test time. Specifically,
at test time, the agent’s goal is to maximize the expected
return EM∼p(M|D)[

∑
t γ

trt] under the posterior p(M|D)
given the train data D. Thus, an epistemic POMDP is an
instance of Bayes-adaptive MDP (BAMDP) (Duff, 2002;
Kaelbling et al., 1998) or Bayesian RL (Ghavamzadeh et al.,
2015). Compared to a standard BAMDP, epistemic POMDP
puts focus on the agent’s test time evaluation performance.
For a thorough definition of BAMDPs, please check Ap-
pendix A.1.

In this work, we view offline RL as epistemic POMDP,
following Ghosh et al. (2022), drawing connections to
Bayesian approaches. That is, limited coverage of the state-
action space in the offline dataset induces epistemic uncer-
tainty about dynamics beyond the data distribution. Failure
to manage this uncertainty can result in catastrophic out-
comes, particularly when an offline-trained agent encounters

1While we use an exponential form for p(O|τ), other mono-
tonic functions are possible (Okada & Taniguchi, 2020). We sim-
plify notation by writing Ot = 1 as Ot and τt:t+H as τ .

unseen states or slightly altered dynamics during deploy-
ment, leading to arbitrarily poor performance.

To address these challenges, we provide a Bayesian take on
the offline RL problem, enabling reasoning over the agent’s
uncertainty through a prior belief b0 = p(M), updated to a
posterior bt = p(M|τ:t) as new experiences τ:t are gathered
during deployment. However, computing the exact posterior
belief is generally intractable. Therefore, in Section 3, we
tackle this challenge by approximating the belief distribution
through variational inference techniques adapted from meta-
RL approaches (Zintgraf et al., 2020; Dorfman et al., 2021).

3. RefPlan: a Probabilistic Framework for
Offline Planning

In this section, we seek to address the following question:

How can we leverage a learned model at test time
for enhancing an offline-trained agent?

To tackle this, we introduce RefPlan, a novel probabilistic
framework for offline MB planning that allows an agent
to reason with its uncertainty during deployment. Our ap-
proach is developed in three parts.

First, in Section 3.1, we derive a sampling-based offline
MB planning algorithm from the control-as-inference per-
spective. This view is crucial as it provides a principled
foundation for our framework and formally justifies using
an offline-trained policy as a prior to guide planning. Next,
in Section 3.2, we detail our approach for modeling the
agent’s epistemic uncertainty over the environment dynam-
ics by adapting recent variational inference techniques from
meta-RL (Zintgraf et al., 2020; Dorfman et al., 2021).

While these individual components are built upon concepts
from prior work, our primary conceptual novelty lies in their
synthesis. In Section 3.3, we unify the probabilistic planning
formulation with the learned epistemic uncertainty. This
integration allows the agent to plan under the learned models
and adapt in real-time while accounting for its uncertainty.

3.1. Offline Model-Based Planning as Probabilistic
Inference

We recast offline MB planning within the control-as-
inference framework, treating planning as a posterior infer-
ence problem. This approach enables the agent to optimize
its actions by reasoning over the learned dynamics model
and prior knowledge obtained from offline training. Central
to this formulation is the use of a prior policy, which guides
the agent’s plans based on knowledge learned offline.

We start by formalizing the concept of a prior policy, which
lay the basis for our Bayesian formulation of the offline MB
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Figure 2: PGMs for the control-as-inference framework, offline MB planning, and RefPlan. (Left) States evolve within the learned
model, with actions and states influencing optimality. Optimality variables act like observations in a hidden Markov model, framing
planning as inferring the posterior over actions given optimality. (Middle) In offline MB planning, actions follow the prior policy πp:
at ∼ πp(·|st; θ). (Right) RefPlan uses past experiences τ:t to infer mt, the agent’s belief about the environment, and computes the
expected optimal action sequence by marginalizing over mt.

planning process.

Definition 2 (Prior policy). A prior policy πp : S → P(A)
is a policy learned from an offline RL algorithm L using the
dataset D.

The prior policy, parameterized by θ, is provided by an
offline learning algorithm L, such as CQL (Kumar et al.,
2020) or BC, and must be considered by the offline MB
planner when optimizing the planning objective in (1).

In the offline setting, we aim to enhance the prior policy πp
via MB planning at test time by inferring the posterior over
at:t+H , conditioned on the optimality observations Ot+h
predicted by the learned model p̂ψ. At time t, we seek to
compute p(at:t+H |O), as shown in Figure 2 (middle).

The key distinction in this setup from the original control-
as-inference framework is the inclusion of the prior policy,
which serves as a source for action sampling during plan-
ning. Given πp and p̂ψ , we can define the prior distribution
over the trajectory τ as follows:

p(τ) =

H−1∏

h=0

πp(at+h|st+h)p̂ψ(st+h+1|st+h,at+h). (4)

Sampling trajectories from this prior, p(τ), is straightfor-
ward through forward sampling, where actions are drawn
from πp and state transitions are generated using p̂ψ .

Computing the exact posterior p(τ |O) is intractable due to
the difficulty of calculating the marginal p(O). However,
importance sampling offers a practical method to estimate
the posterior expectation over at:t+H . To demonstrate, we
first expand the posterior using Bayes’ rule:

p(τ |O) ∝ p(O|τ)p(τ) ∝ exp
(
κ

H−1∑

h=0

rt+h

)

[H−1∏

h=0

p̂ψ(st+h+1|st+h,at+h)πp(at+h|st+h)
]
.

Then, we can estimate the expected value of an arbitrary
function f(at:t+H) under p(τ |O). That is,

Ep(τ |O)[f(at:t+H)] =

∫

τ

f(at:t+H) p(τ |O) dτ

=

∫

τ

f(at:t+H)
α · exp

(
κ
∑
h rt+h

)

p(O) p(τ) dτ

=
Ep(τ)

[
f(at:t+H) exp

(
κ
∑
h rt+h

)]

Ep(τ)
[
exp

(
κ
∑
h rt+h

)] . (5)

In the last step, we used p(O) =
∫
τ
p(O|τ)p(τ)dτ =

α Ep(τ)
[
exp

(
κ
∑
h rt+h

)]
and the proportionality coeffi-

cient α > 0 cancels out.

Thus, the posterior expectation over at:t+H can be obtained
with f(at:t+H) = at:t+H as below.

Ep(τ |O)[at:t+H ] =
Ep(τ)

[
at:t+H exp

(
κ
∑
h rt+h

)]

Ep(τ)
[
exp

(
κ
∑
h rt+h

)] (6)

≈
N̄∑

n=1

(
exp

(
κ
∑
h r

n
t+h

)
∑N̄
i=1 exp

(
κ
∑
h r

i
t+h

)
)
ant:t+H . (7)

That is, we estimate the posterior mean by sampling N̄
trajectories from p(τ) with πp and p̂ψ, then computing
the weighted sum of the actions. Each weight wn :=

exp(κ
∑
h rt+h)∑N̄

i=1 exp(κ
∑
h r

i
t+h)

is proportional to the exponentiated

MB return of the nth trajectory, assigning higher weights to
plans with better returns. This helps the agent select actions
likely to improve on those from the prior policy.

We note that (7) can also be derived from an optimization
perspective. Specifically, LOOP (Sikchi et al., 2021) con-
strains the distribution over plans by minimizing the KL
divergence from the prior policy. In LOOP, the variance
of values generated by the model ensemble is penalized to
mitigate uncertainty; however, the agent’s epistemic uncer-
tainty is not explicitly modeled and fully addressed. By
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contrast, by viewing offline RL as an epistemic POMDP
and formulating it as a probabilistic inference problem, we
can directly incorporate the agent’s epistemic uncertainty
into MB planning by approximately learning the belief dis-
tribution, which we delve into in the next part.

3.2. Learning Epistemic Uncertainty via Variational
Inference

Although offline RL can be framed as a BAMDP, obtaining
an exact posterior belief update is impractical. Inspired by
Zintgraf et al. (2020) and Dorfman et al. (2021), we intro-
duce a latent variablem to approximate the underlying MDP.
We assume that knowing the posterior distribution p(m|τ:t)
is sufficient for planning under epistemic uncertainty. As
a result, transitions and rewards are assumed to depend on
m, i.e., T (st+1|st,at,m) and r(st,at,m). When p(m|τ:t)
is accurate and τ:t is in-distribution, T and r will closely
match the transitions in D. For out-of-distribution (OOD)
τ:t, the posterior over m allows modeling diverse scenarios
for T and r.

Given a trajectory τ:t, consider the task of maximizing its
likelihood, conditioned on the actions. Conditioning on the
actions is essential because they are generated by a policy—
β during training and πp at evaluation—and are not modeled
by the environment. Although directly optimizing the like-
lihood p(s0, r0, s1, r1, . . . , st+1|a0, . . . ,at) is intractable,
we can maximize the ELBO as in VariBAD by introducing
an encoder qφ and a decoder p̂ψ:

log p(s0, r0, . . . , st+1|a0, . . . ,at)

= log

∫

mt

p(s0, r0, . . . , st+1,mt | a0, . . . ,at) dmt

= logEmt∼qφ(·|τ:t)
[
p(s0, r0, . . . , st+1,mt | a0, . . . ,at)

qφ(mt|τ:t)

]

≥ Emt∼qφ(·|τ:t)[log p̂ψ(s0, . . . , st+1|mt,a0, . . . ,at)]

−KL(qφ(mt|τ:t)||p(mt)) = ELBOt(φ,ψ). (8)

The encoder qφ is parameterized as an RNN followed
by a fully connected layer that outputs Gaussian param-
eters µ(τ:t) and log σ2(τ:t). Thus, mt ∼ qφ(·|τ:t) =
N

(
µ(τ:t), σ

2(τ:t)
)
. The KL term regularizes the posterior

with the prior p(mt), which is a standard normal at t = 0
and the previous posterior qφ(·|τ:t−1) for subsequent time
steps. The decoder p̂ψ learns the transition dynamics and
reward function of the true MDP. This becomes clear when
we observe that the first term in ELBOt corresponds to the
reconstruction loss, which can be decomposed as follows:

log p̂ψ(s0, r0, . . . , st+1|mt,a0, . . . ,at) (9)

= log p(s0|mt) +

t∑

h=0

[
log p̂ψ(sh+1|sh,ah,mt)

+ log p̂ψ(rh+1|sh,ah,mt)
]
.

Here, p̂ψ learns to predict future states and rewards condi-
tioned on the latent variable mt. The encoder captures the
agent’s epistemic uncertainty, while the decoder provides
predictions about the environment under different latent
variables mt. To sum up, we train a variational autoencoder
(VAE) via maxϕ,ψ ED

[∑T
t=0 ELBOt(ϕ, ψ)

]
using tra-

jectories sampled from the offline dataset D.

Unlike VariBAD, where the decoder is only used to train the
encoder, we also use p̂ψ for MB planning. To improve p̂ψ’s
accuracy, we employ a two-stage training procedure: first,
the VAE is trained with ELBO; then, the encoder is frozen
and p̂ψ is further finetuned using the MLE objective:

L(ψ) = Eτ

[
H−1∑

h=0

Emh [− log p̂ψ(sh+1, rh|sh,ah,mh)]

]
.

Trajectory segments of length H are sampled from D. At
each step h ∈ [0, H), the encoder qφ(·|τ:h) samples mh,
enabling computation of the inner expectation and refining
p̂ψ for improved predictions.

3.3. Integrating Epistemic Uncertainty into
Model-Based Planning

Building on the probabilistic inference formulation of offline
MB planning and the representation of epistemic uncertainty
via variational inference in the BAMDP framework, we
introduce RefPlan. This offline MB planning algorithm
integrates epistemic uncertainty into the planning process,
improving decision-making and enhancing the performance
of any offline-learned prior policy during test time.

Assume we have a samplemt ∼ qφ(m|τ:t), representing the
agent’s belief about the environment at time t. Our goal is to
use this posterior to enhance test-time planning. In Section
3.1, we have computed p(τ |O) using the learned models p̂ψ
and the prior policy πp. By introducing the latent variable
m to capture epistemic uncertainty, we extend the transition
and reward functions to depend on m, giving the dynamics
p̂ψ(st+1|st,at,mt) and rewards r(st,at,mt), resulting in
the following conditional trajectory distribution:

p(τ |O,mt) ∝ p(O|τ,mt)p(τ |mt)

∝ exp
(
κ

H−1∑

h=0

r(st+h,at+h,mt)
)

×
[H−1∏

h=0

p̂ψ(st+h+1|st+h,at+h,mt)πp(at+h|st+h)
]
.

Thus, we can apply the sampling-based posterior estimation
in (7) to compute Ep(τ |O,mt)[at:t+H ].

A practical approach to handle epistemic uncertainty is to
marginalize over the latent variable mt, effectively averag-
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Table 1: Normalized score performance when trained on ME and tested starting from OOD states sampled from R. For each
prior policy, we report the performance of the prior policy (Prior), performance with LOOP, and performance with RefPlan.
The ‘Orig’ column shows the performance of the original prior policy on the ME dataset for reference. Best results under
OOD conditions are in bold.

Prior Policy Environment Orig Prior + LOOP + RefPlan

CQL
Hopper 111.4 84.21 90.01 89.39
HalfCheetah 98.3 71.81 85.48 85.92
Walker2d 108.9 65.01 85.95 92.61

MAPLE
Hopper 46.9 39.60 45.78 42.50
HalfCheetah 64.0 62.31 91.41 91.84
Walker2d 111.8 66.82 74.05 87.82

COMBO
Hopper 105.6 81.75 80.67 85.51
HalfCheetah 97.6 57.89 79.57 84.49
Walker2d 108.3 62.54 66.88 72.82

ing over possible scenarios. This results in the marginal pos-
terior p(τ |O). Although directly computing this marginal
posterior is challenging, we can estimate the expectation of
optimal plans using the law of total expectation:

Ep(τ |O)[at:t+H ] = Emt∼qφ(·|τ:t)
[
Ep(τ |O,mt)[at:t+H | mt]

]
.

The inner expectation follows (7), with states and rewards
sampled from p̂ψ , conditional on mt. The outer expectation
over mt is computed using Monte Carlo sampling with n̄
samples, giving us:

Ep(τ |O)[at:t+H ] ≈

1

n̄

n̄∑

j=1

[
N̄∑

n=1

(
exp

(
κ
∑
h r

n,j
t+h

)
∑N̄
i=1 exp

(
κ
∑
h r

i,j
t+h

)
)
ant:t+H

]
, (10)

where rn,jt+h = r(sn,jt+h,a
n
t+h,m

j
t ) and sn,jt+h+1 ∼

p̂ψ(·|sn,jt+h,ant+h,m
j
t ). Figure 2 (right) illustrates how Ref-

Plan leverages the agent’s past experiences τ:t to shape
epistemic uncertainty through the latent variable mt and
enhances the prior policy πp through posterior inference.
Algorithm 2 in the appendix summarizes RefPlan.2 Addi-
tionally, following Sikchi et al. (2021), we apply an uncer-
tainty penalty based on the variance of the returns predicted
by the learned model ensemble.

4. Experiments
In this part, we answer the following research questions:
(RQ1) How does RefPlan perform when the agent is initial-
ized in a way that induces high epistemic uncertainty due to
OOD states? (RQ2) Can RefPlan effectively improve poli-
cies learned from diverse offline policy learning algorithms?

2Direct planning with sampling methods like SIR (Skare et al.,
2003) may be better for multi-modal problems. However, our
approach using (10) yields strong empirical results, so we leave
direct sampling for future work.

(RQ3) How does RefPlan perform when trained on limited
offline datasets that increase epistemic uncertainty by re-
stricting the datasets’ coverage of the state-action space?
(RQ4) How robust is RefPlan when faced with shifts in
environment dynamics at test time?

We evaluate these RQs using the D4RL benchmark (Fu
et al., 2020) and its variations, focusing on locomotion tasks
in HalfCheetah, Hopper, and Walker2d environments, each
with five configurations: random (R), medium (M), medium-
replay (MR), medium-expert (ME), and full-replay (FR).

Metrics: For RQ1-RQ3, we compare normalized scores
averaged over 3 seeds, with 100 for online SAC and 0 for a
random policy, scaled linearly in between, using the D4RL
library (Fu et al., 2020). For RQ4, we report average returns.

Baselines: RefPlan is designed to improve any offline
learned policy through planning. We have obtained prior
policies using model-free methods (CQL, EDAC) and MB
methods (MOPO, COMBO, MAPLE). Among offline MB
planning methods, we use LOOP, which is designed to en-
hance prior policies and outperforms methods like MBOP.
Therefore, for each prior policy, we compare its original per-
formance to its performance when augmented with LOOP
or RefPlan for test-time planning.

4.1. Epistemic Uncertainty from OOD States

To address RQ1, we assessed RefPlan’s robustness under
high epistemic uncertainty caused by OOD initialization.
Prior policies were trained on the ME dataset and evaluated
on the states from the R dataset. We tested three prior
policies: CQL, MAPLE, and COMBO (Table 1).

Across all environments, RefPlan consistently mitigated per-
formance degradation due to OOD initialization, with partic-
ularly notable improvements in HalfCheetah and Walker2d.
For instance, when MAPLE was used as the prior policy in

6



Reflect-then-Plan: Offline Model-Based Planning through a Doubly Bayesian Lens

Table 2: Normalized scores of offline RL algorithms on D4RL MuJoCo Gym environments (3 seeds). For each prior policy, we show its
original performance and its performance augmented with LOOP or RefPlan (Ours) for MB planning during testing. Bold indicates the
best performance, while underline denotes cases where confidence intervals significantly overlap between two methods.

CQL EDAC MOPO COMBO MAPLE

Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours

H
op

pe
r

R 1.0 1.1 1.2 23.6 23.5 23.5 32.2 32.4 32.4 6.3 6.2 6.0 31.5 31.8 31.6
M 66.9 73.9 85.1 101.5 101.5 101.5 66.9 67.5 67.7 60.9 67.9 77.2 29.4 33.7 32.8
MR 94.6 97.5 98.1 100.4 101.0 101.1 90.3 93.6 94.5 101.1 101.4 101.8 61.0 77.7 82.6
ME 111.4 111.6 112.1 106.7 104.7 109.9 91.3 82.7 96.5 105.6 78.4 107.8 46.9 53.4 57.8
FR 104.2 106.2 107.6 106.6 107.0 107.2 73.2 55.6 77.2 89.9 54.9 84.1 79.1 77.0 91.7

H
al

fC
he

et
ah R 19.9 21.4 21.2 22.5 25.8 25.9 29.8 31.5 33.0 40.3 40.0 40.7 33.5 34.9 35.0

M 47.4 57.1 56.5 63.8 73.0 71.4 42.8 58.4 59.8 67.2 73.2 77.4 68.8 72.9 74.6
MR 47.0 52.1 54.1 61.8 66.9 66.5 70.6 71.8 73.8 73.0 71.2 75.0 71.5 74.7 76.3
ME 98.3 104.0 108.5 100.8 107.1 108.8 73.5 94.5 96.6 97.6 110.3 110.3 64.0 91.9 92.8
FR 77.5 81.8 86.7 81.7 87.5 88.5 81.7 88.2 90.8 71.8 82.6 86.3 66.8 87.8 90.2

W
al

ke
r2

d

R 0.1 0.1 0.3 17.5 13.4 21.7 13.3 12.4 13.1 4.1 3.0 4.3 21.8 21.8 21.9
M 77.1 84.4 86.2 77.6 91.7 93.2 82.0 79.1 85.9 71.2 81.1 87.4 88.3 89.7 91.6
MR 63.5 81.9 93.6 85.0 86.0 86.4 81.7 85.2 88.3 88.0 89.5 93.3 85.0 89.5 91.2
ME 108.9 111.4 111.8 98.5 97.4 116.0 51.9 49.0 68.1 108.3 111.1 112.7 111.8 112.9 114.0
FR 96.6 99.4 101.3 98.0 98.3 99.7 90.5 92.6 93.2 78.1 83.0 99.5 94.2 96.7 98.4

0.875 0.900 0.925
LOOP

RefPlan
Median

0.88 0.90 0.92 0.94

IQM

0.850 0.875 0.900

Mean

0.12 0.14 0.16 0.18

Optimality Gap

Human Normalized Score

Figure 3: RLiable (Agarwal et al., 2022) comparison of RefPlan and LOOP. Across all four metrics (the higher the better for
Median, IQM, and Mean, while the lower the better for Optimality Gap), RefPlan demonstrates superior performance with
non-overlapping confidence intervals, highlighting statistically significant improvements over LOOP.

HalfCheetah, RefPlan outperformed the original policy. In
Walker2d, RefPlan boosted performance by 16.4%, 31.4%,
and 42.5% for COMBO, MAPLE, and CQL, respectively.
Although the gains were more modest in Hopper, RefPlan
still reduced performance drops. Overall, RefPlan showed
strong resilience under high epistemic uncertainty caused
by OOD initialization.

4.2. RefPlan Enhances Any Offline-learned Policies

To address RQ2, we evaluated the normalized score metric
across the five offline policy learning algorithms. Table 2
shows that RefPlan outperformed baselines in 10 (CQL), 7
(EDAC), 12 (MOPO), 9 (COMBO), and 12 (MAPLE) of 15
tasks, matching performance in the others. Both MB plan-
ning methods, LOOP and RefPlan, improved performance,
with RefPlan showing a more substantial gain. On aver-
age, RefPlan enhanced prior policy performance by 11.6%,
compared to LOOP’s 5.3%.

In order to make a more statistically rigorous comparison
between RefPlan and LOOP, we leverage RLiable (Agarwal
et al., 2022), a framework designed for robust evaluation
of RL algorithms. RLiable focuses on statistically sound
aggregate metrics, such as the median, interquartile mean
(IQM), mean, and optimality gap, which provide a compre-
hensive view of algorithm performance across tasks. By

using bootstrapping with stratified sampling, RLiable also
estimates confidence intervals, ensuring that comparisons
are not skewed by outliers or noise.

We applied RLiable to compare RefPlan and LOOP across
the tested environments and prior policy setups (Figure
3). Across all metrics, RefPlan consistently outperformed
LOOP, with non-overlapping confidence intervals, indicat-
ing statistically significant improvements. These results
demonstrate RefPlan’s superior ability to enhance various
offline policy learning algorithms by explicitly accounting
for epistemic uncertainty during planning.

Another key question is whether the performance gains
from RefPlan stem from its principled Bayesian framework
or simply from a larger inference budget. To investigate
this, we conducted an additional experiment using CQL as
the prior policy on the MR and FR datasets. We compared
RefPlan to LOOP under an equivalent computational load by
allocating LOOP a 16-fold increase in its sampling budget,
matching the maximum budget used by RefPlan (i.e., when
n̄ = 16). The results, summarized in Table 3, demonstrate
that while increasing the computational budget improves
LOOP’s performance, RefPlan consistently maintains its
advantage across the tested configurations. This finding
suggests that the superior performance of RefPlan is not
merely a product of increased computation but is attributable
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Figure 4: Performance comparison of RefPlan and LOOP across different dataset sizes in Hopper, HalfCheetah, and Walker2d
environments using the FR dataset, which contains 1M samples. We use CQL as the prior policy learning algorithm, and the results
represent the average and standard error calculated from three random seeds.

Table 3: RefPlan vs. LOOP with an equivalent inference
budget.

Environment Config LOOP (16x) RefPlan

Hopper MR 97.8 ± 1.1 98.1 ± 0.5
FR 107.5 ± 0.6 107.6 ± 0.5

Walker2d MR 83.2 ± 8.8 93.6 ± 1.1
FR 99.9 ± 1.5 101.3 ± 0.3

HalfCheetah MR 53.2 ± 0.1 54.1 ± 0.6
FR 83.1 ± 0.8 86.7 ± 0.7

to its explicit modeling and marginalization of epistemic
uncertainty during planning.

4.3. Performance with Data with Different Sizes

With limited data, the agent faces increased epistemic un-
certainty. A key question is whether RefPlan can better
handle these scenarios with constrained data (RQ3). To
explore this, we randomly subsample 50K, 100K, 250K,
and 500K transition samples from the FR dataset for each
environment. We then train the prior policy using CQL and
compare its performance with that achieved when enhanced
by either LOOP or RefPlan. As shown in Figure 4, RefPlan
consistently demonstrates greater resilience to limited data,
outperforming the baselines across all three environments.

4.4. Is RefPlan More Robust to Changing Dynamics?

To address RQ4, we evaluated RefPlan in the HalfCheetah
environment under varying dynamics, including disabled
joint, hill, slopes (gentle and steep), and field, following the
approach of Clavera et al. (2019) (Appendix D). High epis-
temic uncertainty arises when dynamics differ from those
seen during prior policy training. We trained the prior policy
using the FR dataset, which contains the most diverse tra-
jectories, and used MAPLE for its adaptive policy learning.

Table 4: Average returns on HalfCheetah with dynamics
changes.

Task Orig LOOP Ours

joint 5295 6088 6190
hill 327.1 949.7 1224
gentle 1087 2363 2435
steep 2123 3245 6238
field 1205 2774 3345

Table 4 shows that while MAPLE struggled with changed
dynamics, MB planning methods improved performance.
RefPlan achieved the best results across all variations but
still faced notable drops, especially in the hill and gentle
environments. Data augmentation for single-task offline RL
could enhance adaptability, a topic for future work.

5. Related Work
Offline RL Policy distribution shift in offline RL leads
to instabilities like extrapolation errors and value overes-
timation (Kumar et al., 2019; Fujimoto et al., 2019). To
mitigate this, policy constraint methods limit deviation from
the behavior policy (Wu et al., 2019; Kumar et al., 2019;
Fujimoto & Gu, 2021), while value-based approaches pe-
nalize OOD actions (Kumar et al., 2020; An et al., 2021).
Another strategy avoids querying OOD actions by learning
values only from in-dataset samples and distilling a policy
(Kostrikov et al., 2022).

MB offline policy learning trains a dynamics model from
batch data to generate imaginary rollouts for dataset aug-
mentation. To prevent exploiting model errors, ensemble-
estimated uncertainty can be penalized in rewards (Yu et al.,
2020; Kidambi et al., 2021; Lu et al., 2021). Alternatively,
values of model-generated samples can be minimized (Yu
et al., 2021), or adversarial dynamics models can discourage
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selecting OOD actions (Rigter et al., 2022).

Offline policies are typically fixed after training, but Ghosh
et al. (2021; 2022) show they can fail under high epistemic
uncertainty, underscoring the need for adaptivity. APE-V
(Ghosh et al., 2022) addresses this by using a value ensem-
ble to approximate the distribution over environments, en-
abling policy adaptation during evaluation. MAPLE (Chen
et al., 2021) employs an RNN to encode the agent’s history
into a dense vector for adaptive conditioning while leverag-
ing an ensemble dynamics model to expose the policy to
diverse simulated environments, improving robustness to
uncertainty.

Model-based planning for offline RL MB planning en-
hances responsiveness at test time. MBOP (Argenson &
Dulac-Arnold, 2021) applies MPC with MPPI (Williams
et al., 2015), adapting it for offline RL by using a BC policy
for trajectory generation. Uncertain rollouts can be filtered
based on ensemble disagreement (Zhan et al., 2022).

LOOP (Sikchi et al., 2021) improves offline-learned policies
with planning, outperforming MBOP. It uses KL-regularized
optimization for offline planning but only addresses epis-
temic uncertainty by penalizing ensemble variance in re-
wards during TrajOpt. In contrast, RefPlan takes a Bayesian
approach, explicitly modeling epistemic uncertainty for bet-
ter generalization and performance.

Probabilistic interpretation of MB planning The
control-as-inference framework (Levine, 2018; Abdol-
maleki et al., 2018) provides a probabilistic view of con-
trol and RL problems, naturally leading to sampling-based
solutions in MB planning (Piché et al., 2019). Okada &
Taniguchi (2020) showed that various sampling-based Tra-
jOpt algorithms can be derived from this perspective. Jan-
ner et al. (2022) introduced a diffusion-based planner using
control-as-inference to derive a perturbation distribution,
embedding reward signals into the diffusion sampling pro-
cess. However, to our knowledge, we are the first to propose
an offline MB planning algorithm that integrates an offline-
learned policy as a prior in a Bayesian framework while
explicitly modeling epistemic uncertainty within a unified
probabilistic formulation.

Bayesian RL and epistemic POMDP Bayesian RL
(Ghavamzadeh et al., 2015) and BAMDPs (Duff, 2002)
address learning optimal policies in unknown MDPs. A
BAMDP can be reformulated as a belief-state MDP, where
the belief serves as a sufficient statistic of the agent’s his-
tory (Guez et al., 2012), framing BAMDPs as a special
case of partially observable MDPs (POMDPs) (Kaelbling
et al., 1998). Zintgraf et al. (2020) extended this perspective
to meta-RL, introducing VariBAD, a variational inference-
based method for approximating the belief distribution over

possible environments.

Relatedly, Ghosh et al. (2021) introduced the epistemic
POMDP, where an agent’s epistemic uncertainty—arising
from incomplete exploration or task ambiguity—induces
partial observability. An epistemic POMDP is an instance
of BAMDP, with a special focus on performance during a
single evaluation episode rather than online learning and
asymptotic regret minimization. Ghosh et al. (2022) further
noted that offline RL in a single-task setting can be viewed
as an epistemic POMDP, as static offline datasets typically
cover only a subset of the state-action space, leading to
partial observability in environment dynamics beyond the
dataset.

We also adopt the epistemic POMDP perspective for single-
task offline RL but focus on MB planning. Unlike prior
approaches, our goal is to enhance offline-learned policies
by addressing epistemic uncertainty, enabling more effective
generalization during deployment.

6. Conclusion
In this paper, we introduced RefPlan (Reflect-then-Plan),
a novel doubly Bayesian approach to offline model-based
planning that integrates epistemic uncertainty modeling with
model-based planning in a unified probabilistic framework.
Our method enhances offline RL by explicitly accounting
for epistemic uncertainty, a common challenge in offline
settings where data coverage is often incomplete. Through
extensive experiments on standard offline RL benchmarks,
we demonstrated that RefPlan consistently outperforms ex-
isting methods, particularly under challenging conditions of
OOD initialization, limited data availability, and changing
environment dynamics, making it a valuable tool for more
reliable and adaptive offline RL. Future work could extend
RefPlan to more complex models and environments.
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A. Additional Background
A.1. Bayes-Adaptive Markov Decision Processes

Bayes-Adaptive Markov Decision Processes (BAMDPs) (Duff, 2002) extend the standard MDP framework by explicitly
incorporating uncertainty over the transition and reward functions. In a BAMDP, instead of assuming that the transition
dynamics T (s′|s,a) and reward function r(s,a) are known and fixed, we assume that they are drawn from an unknown
distribution. The agent maintains a posterior belief over these functions and updates it as new data are collected through
interaction with the environment.

To illustrate, consider a simple case where we have finite and discrete state and action spaces with |S| = ns and |A| = na;
hence, a state can be represented with an integer, i.e., s = i for i = 1, . . . , ns, and similarly for the actions. While the
reward function r(s, a) is assumed to be known, we are uncertain about the transition probabilities T (s′|s, a). We can model
this uncertainty by placing a prior distribution over the transition probabilities, typically using a Dirichlet prior, which is
conjugate to the multinomial likelihood of observing transitions between states.

For each state-action pair (s, a) ∈ S × A, the transition probabilities T (s′|s, a) are parameterized by a multinomial
distribution:

T (s′|s, a) ∼ Multinomial(θs,a,s′), (11)

where θs,a = (θs,a,1, . . . ,θs,a,ns) represents the probabilities of transitioning from state s to any state s′ ∈ S under action
a. These parameters follow a Dirichlet distribution:

θs,a ∼ Dirichlet(αs,a), (12)

where αs,a = (αs,a,1, . . . , αs,a,ns) > 0 are the Dirichlet hyperparameters.

Initially, the agent holds a prior belief about the transition probabilities, represented by the Dirichlet hyperparameters αs,a
for all state-action pairs. As the agent interacts with the environment and observes transitions of the form (s, a, s′), it updates
its posterior belief by simply updating the corresponding Dirichlet hyperparameters. Specifically, when the agent observes a
transition from state s to state s′ under action a, the corresponding Dirichlet hyperparameter is updated as:

αs,a,s′ ← αs,a,s′ + 1, (13)

while all other Dirichlet hyperparameters remain unchanged. This process of updating the Dirichlet hyperparameters fully
captures the agent’s experiences; hence, these hyperparameters act as sufficient statistics for the agent’s belief about the
environment.

By transforming the BAMDP into a belief-state MDP, where the belief state bt = p(θ|τ:t) is a distribution over transition
probabilities conditioned on the observed trajectory τ:t = (s0, a0, s1, . . . , st), the agent can solve the problem using standard
MDP solution methods. The augmented state space, or hyper-state space, includes both the physical state s ∈ S and the
belief state b ∈ B. In this simple finite state-action example, the belief state corresponds to the Dirichlet hyperparameters α.

The transition dynamics of the resulting belief-state MDP are fully known and can be written as:

T (s̄′|s̄, a) = T (s′, α′|s, α, a) = T (s′|s, a, α)p(α′|s, α, a) (14)

=
αs,a,s′∑

s′′∈S αs,a,s′′
I
(
α′
s,a,s′ = αs,a,s′ + 1

)
, (15)

where I(·) is the indicator function. This transformation turns the BAMDP into a fully observable MDP in the hyper-state
space, which allows the use of standard, e.g., DP methods to compute an optimal policy.

However, the computational complexity of solving the BAMDP grows quickly with the number of states and actions. If the
states are fully connected (i.e., p(s′|s, a) > 0, ∀s, a, s′), the number of reachable belief states increases exponentially over
time, making exact solutions intractable for even moderately sized problems.

For a comprehensive overview of solution methods for BAMDPs, we refer readers to the survey by Ghavamzadeh et al.
(2015). In this work, we have utilized variational inference techniques from Zintgraf et al. (2020) and Dorfman et al. (2021)
to approximate the agent’s posterior belief over the environment dynamics, p(b|τ:t), based on past experiences.
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Table 5: Performance comparison of RefPlan against baseline methods on Hopper, HalfCheetah, and Walker2d tasks using
MOPO and COMBO for offline policy optimization. The table evaluates original policies (Orig), policies trained with
Non-Markovian (NM) dynamics models (NM (Train)), NM-trained policies combined with RefPlan for planning (NM
(Train) + RefPlan), and RefPlan using original policies as priors. Results demonstrate RefPlan’s ability to improve test-time
performance across different dynamics models and environments.

Orig NM
(Train)

NM (Train)
+RefPlan RefPlan

H
op

pe
r M 66.9 - - 67.7

MR 90.3 93.2 98.18 94.5
ME 91.3 - - 96.5

H
al

fC
he

et
ah

M 42.8 40.6 66.45 59.8
MR 70.6 53.2 72.46 73.8
ME 73.5 71.6 100.34 96.6

W
al

ke
r2

d M 82.0 60.6 72.73 85.9
MR 81.7 53.3 79.75 88.3
ME 51.9 42.4 64.59 68.1

Orig NM
(Train)

NM (Train)
+RefPlan RefPlan

H
op

pe
r M 60.9 52.2 62.30 77.2

MR 101.1 44.9 61.90 101.8
ME 105.6 27.3 39.23 107.8

H
al

fC
he

et
ah

M 67.2 30.3 41.61 77.4
MR 73.0 47.6 59.54 75.0
ME 97.6 93.5 109.25 110.3

W
al

ke
r2

d M 71.2 79.1 89.43 87.4
MR 88.0 80.4 91.01 93.3
ME 108.3 36.7 38.47 112.7

B. Additional Results
B.1. Performance comparison: non-Markovian dynamics model for training vs. planning

The experiments presented in Table 5 aims to evaluate the effectiveness of RefPlan in leveraging the VAE dynamics—
consisting of the variational encoder qϕ and the probabilistic ensemble decoder p̂ψ (Figure 6)—for planning at test time.
Specifically, these experiments compare the following approaches:

• “Orig": the original prior policy trained using MOPO or COMBO.

• “NM (Train)": the policy trained using a non-Markovian (NM) VAE dynamics model during offline policy optimization
via MOPO or COMBO.

• “NM (Train) + RefPlan ": the RefPlan agent that uses the policies trained using NM dynamics models as priors.

• “RefPlan ": the RefPlan agent that uses the original prior policies as priors.

The results demonstrate several key findings. First, RefPlan consistently outperforms NM (Train) across all environments
and datasets, confirming that the VAE dynamics models are significantly more effective when used for planning at test
time rather than during offline policy training. This highlights RefPlan’s ability to explicitly handle epistemic uncertainty,
leveraging the agent’s real-time history to infer the underlying MDP dynamics.

Second, in MOPO results, NM (Train) diverged or underperformed in several cases. This suggests that the heuristically
estimated model uncertainty used in MOPO is not well-suited for integrating with the VAE dynamics models during offline
training. Even with large penalty parameters, the value function diverged in the Hopper tasks, indicating a fundamental
limitation in using NM models with MOPO for policy optimization. By contrast, COMBO results did not exhibit these
issues, suggesting that COMBO’s framework is better equipped to incorporate such dynamics models during training.

Finally, applying RefPlan to policies trained with NM dynamics models (NM (Train) + RefPlan) further boosted test-time
performance, often by substantial margins. This demonstrates that even when NM dynamics models introduce suboptimality
during offline training, RefPlan can recover and enhance the policy’s performance through effective planning at test time.
Across all environment-dataset combinations, RefPlan provides robust improvements over both the original and NM
(Train)-optimized policies, further validating its capability to address epistemic uncertainty and improve the generalization
of offline-learned policies.

B.2. Evaluating the impact of the number of latent samples on variances and performance

This experiment evaluates how the sample variance of the marginal action posterior mean from (10) changes with the number
of latent samples (n̄) used in the outer expectation. At each time step, we compute the posterior mean K times, calculate its
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Figure 5: The sample variance and the performance vs. the number of latent samples of RefPlan, evaluated from three
environments with the MR and FR datasets using CQL as the prior policy.

variance averaged across action dimensions, and report the running average over a 1,000-step episode. Results are averaged
over three random seeds, with CQL as the prior policy, across three environments (Hopper, HalfCheetah, Walker2d) and two
dataset configurations (MR, FR).

The figures show that as n̄ increases, the average sample variance decreases, with n̄ = 1 consistently yielding the highest
variance. Performance, measured as normalized scores, generally improves with increasing n̄, suggesting a positive
correlation between reduced variance and higher performance. However, while reduced variance likely contributes to this
improvement, further investigation is needed to confirm causality, as other factors may also play a role.

C. Algorithm Details
C.1. Algorithm Summary

RefPlan is designed to enhance any offline RL policy by incorporating MB planning that accounts for epistemic uncertainty.
The algorithm operates in two primary stages: pretraining (Appendix C.3) and test-time planning.
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Algorithm 1 Offline MB Planning

Input: p̂, Vϕ, D, πθ, L
Train p̂ψ with D via MLE
Train Vϕ and πθ with L and D
t← 1
repeat

Observe st
a∗t:t+H ←TrajOpt(st, p̂ψ, πθ, Vϕ)
Take a∗t , observe st+1, rt
t← t+ 1

until episode terminates

Algorithm 2 RefPlan: Offline MB Planning as Probabilistic Inference

Input: τ:t = (s0,a0, r0, . . . , st), p̂ψ , qϕ, πp, Q̂, H , N̄ , n̄, κ
µt, σt ← qϕ(·|τ:t) {Get the Gaussian parameters}
{mj

t}n̄j=1 ∼ N (µt, σ
2
t ) {Sample n̄ latent vectors from the approximate posterior}

for n = 1, . . . , N̄ do
for h = 0, . . . ,H − 1 do
ant+h ∼ πp(·|st+h) {Sample prior action sequence}
snt+h+1 ∼ p̂ψ(·|snt+h,ant+h, µt) {Sample the next state from model using µt}

end for
for j = 1, . . . , n̄ do
sn,jt ← st
for h = 0, . . . ,H − 1 do

sn,jt+h+1 ∼ p̂ψ(·|s
n,j
t+h,a

n
t+h,m

j
t ) {Sample next state from model using mj

t}
rn,jt+h ← r(sn,jt+h,a

n
t+h,m

j
t ) {Compute the reward using mj

t}
end for

end for
end for
Compute Ep(τ |O)[at:t+H ] with (10)
return Ep(τ |O)[at:t+H ] {Return the plan to be used in line 7 of Algorithm 1}

Pretraining stage The first step is to train a prior policy πp using any offline RL algorithm. In parallel, a VAE is trained
using the ELBO objective in (8), where the encoder captures the agent’s epistemic uncertainty and the decoder learns the
environment dynamics. See Appendix C.3 for more details.

Test-time planning stage During evaluation, the agent employs MPC (Algorithm 1), where RefPlan serves as the trajectory
optimization subroutine. At each time step t, the agent gathers its history τ:t and encodes it into a latent variablemt using the
pretrained encoder (line 2 of Algorithm 2). This latent variable encapsulates the agent’s current belief about the environment,
reflecting epistemic uncertainty.

Then, we first generate N̄ prior plans with the prior policy and the learned model (lines 5-8). Each plan has the length of H ,
and we use µt to condition p̂ψ at this stage. Optionally, we add a Gaussian noise to the actions sampled by πp, following
Argenson & Dulac-Arnold (2021); Sikchi et al. (2021).

Once the prior plans are prepared, we rollout the plans under the learned model to generate multiple trajectories. That is,
for each sampled mt, we obtain N̄ trajectories (lines 9-14). These trajectories are then used to estimate the optimal plan,
conditioned on mj

t . We marginalize out the latent variable via Monte-Carlo expectation using the law of total expectation.

Finally, the first action from the optimized plan is selected and executed in the environment. This process repeats at
each subsequent time step, with the agent continuously updating its belief state and re-optimizing its plan based on new
observations.
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Table 6: Hyperparameters for Model Architecture and Training

Architecture Hyperparameters Value

Task Embedding Dimension 16
State Embedding Dimension 16
Action Embedding Dimension 16
Reward Embedding Dimension 4
GRU Hidden Dimension 256
Decoder Network Architecture Fully connected, [200, 200, 200, 200] with skip connection
Decoder ensemble size 20
Decoder number of elite models 14

Training Hyperparameters Value

KL Weight Coefficient 0.1
Input Normalization True
Learning Rate 0.001
Weight Decay 0.01
Optimizer AdamW
Batch Size 64

C.2. Architecture

Encoder

GRU

Decoder

Figure 6: A schematic illustration of the architecture of RefPlan. We use the same encoder architecture as in VariBAD
(Zintgraf et al., 2020), which consists of a GRU model and a fully connected layer. Unlike VariBAD, which uses the decoder
only for training the encoder, we employ a two-stage training procedure (Appendix C.3) to learn a decoder that is directly
used for planning at test time. The decoder network reconstructs the past trajectory and predicts the next state but does not
attempt to predict the entire future trajectory as in the prior work (see also Eq.(9)).

Figure 6 illustrates the architecture of RefPlan. For the encoder, we adopt the architecture from VariBAD (Zintgraf et al.,
2020), with a few minor modifications to the hyperparameters. The encoder utilizes a GRU network to encode the agent’s
history and outputs the parameters of a Gaussian distribution representing the latent variable mt.

At time t = 0, we initialize z−1 = 0 and a−1 = 0. The state st, the previous action at−1, and the previous reward rt−1

are first embedded into their respective latent spaces using distinct linear layers, each followed by ReLU activation. These
embedded vectors, along with the hidden state from the previous time step zt−1, are then processed by the GRU, which
outputs the updated hidden state zt. This hidden state is subsequently linearly projected onto the task embedding space to
obtain the mean (µt) and log variance (log σ2

t ) of the Gaussian distribution for the latent variable at the current time step.

Since the decoder plays a critical role in test-time planning, we follow established practices from prior work and implement
the decoder using a probabilistic ensemble network (Chua et al., 2018; Janner et al., 2019; Yu et al., 2020; 2021; Chen et al.,
2021). Specifically, the ensemble consists of 20 models, from which we select the 14 elite models that achieve the lowest
validation loss during training. The decoder network conditions on a latent sample mt ∼ N (µt, σ

2
t ), along with st and at,

to predict the next state st+1 and reward rt+1. The hyperparameters associated with the architecture are summarized in
Table 6.
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Table 7: Reproducing the reported performances of offline policy learning algorithms on the D4RL MuJoCo tasks. ∗Numbers reported in
An et al. (2021).

CQL EDAC MOPO COMBO MAPLE

Paper Rep. Paper Rep. Paper Rep. Paper Rep. Paper Rep.

H
op

pe
r

R 10.8 1.0 25.3 23.6 11.7 32.2 17.9 6.3 10.6 31.5
M 86.6 66.9 101.6 101.5 28.0 66.9 97.2 60.9 21.1 29.4
MR 48.6 94.6 101.0 100.4 67.5 90.3 89.5 101.1 87.5 61.0
ME 111.0 111.4 110.7 106.7 23.7 91.3 111.1 105.6 42.5 46.9
FR 101.9∗ 104.2 105.4 106.6 - 73.2 - 89.9 - 79.1

H
al

fC
he

et
ah R 35.4 19.9 28.4 22.5 35.4 29.8 38.8 40.3 38.4 33.5

M 44.4 47.4 65.9 63.8 42.3 42.8 54.2 67.2 50.4 68.8
MR 46.2 47.0 61.3 61.8 53.1 70.6 55.1 73.0 59.0 71.5
ME 62.4 98.3 106.3 100.8 63.3 73.5 90.0 97.6 63.5 64.0
FR 76.9∗ 77.5 84.6 81.7 - 81.7 - 71.8 - 66.8

W
al

ke
r2

d

R 7.0 0.1 16.6 17.5 13.6 13.3 7.0 4.1 21.7 21.8
M 74.5 77.1 92.5 77.6 17.8 82.0 81.9 71.2 56.3 88.3
MR 32.6 63.5 87.1 85.0 39.0 81.7 56.0 88.0 76.7 85.0
ME 98.7 108.9 114.7 98.5 44.6 51.9 103.3 108.3 73.8 111.8
FR 94.2∗ 96.6 99.8 98.0 - 90.5 - 78.1 - 94.2

C.3. Pretraining

RefPlan requires two stages of pretraining. First, we use an off-the-shelf offline RL algorithm to train a prior policy πp. In
our experiments, we evaluated several algorithms, including CQL (Kumar et al., 2020), EDAC (An et al., 2021), MOPO (Yu
et al., 2020), COMBO (Yu et al., 2021), and MAPLE (Chen et al., 2021), though any offline RL policy learning algorithm
could be utilized.

Second, we train the encoder qϕ and the decoder p̂ψ . The encoder qϕ is trained using the ELBO loss as defined in (8). The
decoder p̂ψ is trained to reconstruct the past and to predict the next state, conditioned on the sample mt the current state st,
and the action at. This training constitutes the first phase of dynamics learning. During this step, the encoder learns a latent
representation that captures essential information for reconstructing the trajectory. Unlike VariBAD, where the decoder
is trained to reconstruct the entire trajectory including future states, we found that focusing on the past and the next state
improves the decoder’s performance.

After completing the first training phase, we freeze the encoder network parameters and proceed to the second phase. In this
phase, we fine-tune the decoder network p̂ψ to accurately predict the next state given mt, st, and at. This is achieved using
the loss function that we reiterate here for clarity:

L(ψ) = Eτ∼D

[
H−1∑

h=0

Emh∼qϕ(·|τ:h)[− log p̂ψ(sh+1, rh|sh,ah,mh)]

]
. (16)

The second training phase ensures that the learned dynamics model, p̂ψ, accurately predicts the next state. This two-stage
approach allows RefPlan to maintain an effective dynamics moel for planning at test time, unlike VariBAD, where the
decoder is discarded after training the VAE.

D. Experimental Details
D.1. Experimental settings

D4RL MuJoCo environments & datasets We use the v2 version for each dataset as provided by the D4RL library (Fu
et al., 2020).

Evaluation under high epistemic uncertainty due to OOD initialization (RQ1) To address RQ1, we assessed a policy
trained on the ME dataset of each MuJoCo environment by initializing the agent from a state randomly selected from the R
dataset. The results, presented in Figure 1, 1, and 1 are averaged over 3 seeds. For a fair comparison, the same initial state
was used across all methods being compared—the prior policy, LOOP, and RefPlan—under the same random seed.

Benchmarking on D4RL tasks (RQ2) To generate the benchmark results shown in Table 2, we first trained the
five baseline policies on each dataset across the three environments. The focus of our analysis is on the performance
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Figure 7: Best performance vs. the number of BayesOpt iterations, using CQL as a prior policy on the MR datasets across
three environments.

improvements of these prior policies when augmented with either LOOP or RefPlan as an MB planning algorithm during
the evaluation phase. Thus, our approach is designed to be complementary to any offline policy learning algorithms, making
the relative performance gains more relevant than the absolute performance of each algorithm. Nevertheless, we aimed to
closely replicate the original policy performance reported in prior studies. Table 7 compares our reproduced results with
those originally reported. Overall, our implementation closely matches the original performances, often exceeding them
significantly across various datasets. However, in some cases, our reproduced policy checkpoints underperformed compared
to the originally reported results, such as CQL on the R datasets, EDAC on Walker2d M and ME datasets, COMBO on
the Hopper R and M datasets, and MAPLE on the Hopper MR dataset. We will make our code publicly available upon
acceptance.

Varying dataset sizes (RQ3) In Figure 4, we present the normalized average return scores for CQL and its enhancements
with either LOOP or RefPlan as we vary the dataset size from 50K to 500K. We conducted these experiments using the
FR dataset across three environments, which originally contains 1M transition samples. To create the smaller datasets, we
randomly subsampled trajectories. If the subsampled data exceeded the desired dataset size, we trimmed the last trajectory
accordingly. For CQL training, we applied the same hyperparameters as those used for the full FR dataset.

Table 8: Environment configuration for the HalfCheetah varia-
tions used in RQ4 experiments, showing the original and modified
height parameter values for each task.

Task Original Modified

hill 0.6 0.2
gentle 1 0.2
steep 4 0.5
field Uniform(0.2, 1) Uniform(0.05, 0.4)

Changing dynamics (RQ4) To explore RQ4, we
adapted the HalfCheetah environment following the ap-
proach of Clavera et al. (2019), introducing five vari-
ations: disabled joint, hill, gentle slope, steep slope,
and field. These variations were implemented using
the code from https://github.com/iclavera/
learning_to_adapt. Unlike the original work,
which focuses on meta-RL, our study addresses an of-
fline RL problem within a single task framework. Hence,
to make the tasks easier, we modified the height param-
eter for most variations, excluding the disabled joint task. The specific adjustments to the height parameters are detailed in
Table 8. These changes were intended to create more manageable tasks while still providing a meaningful challenge for the
offline RL algorithms.

D.2. Hyperparameters

Table 9-13 outline the hyperparameters used for RefPlan across the five prior policies discussed in Section 4. We conducted
a grid search over the following hyperparameters: the planning horizon H ∈ {2, 4}, the standard deviation of the Gaussian
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Table 9: Hyperparameters used for MAPLE + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2D

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 2 0.01 10.0 1 1.0 4 0.05 10.0 16 1.0 2 0.05 0.1 16 1.0
medium 2 0.01 0.1 8 0.1 4 0.01 5.0 16 0.5 2 0.05 10.0 1 0.1
med-replay 4 0.01 5.0 1 0.1 4 0.01 10.0 8 0.1 4 0.05 0.1 16 0.1
med-expert 2 0.01 0.1 1 1.0 4 0.01 10.0 4 0.1 2 0.01 10.0 8 0.5
full-replay 2 0.01 10.0 1 0.5 2 0.01 5.0 16 0.1 2 0.05 5.0 1 1.0

Table 10: Hyperparameters used for COMBO + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 2 0.05 0.1 16 0.1 2 0.05 0.1 4 0.1 4 0.01 0.5 16 1.0
medium 2 0.01 10.0 16 0.5 4 0.05 5.0 16 0.1 4 0.05 1.0 16 0.5
med-replay 4 0.01 0.5 8 1.0 2 0.01 5.0 4 0.1 4 0.01 5.0 16 0.1
med-expert 4 0.01 0.5 8 1.0 2 0.05 5.0 16 0.1 4 0.01 10.0 16 0.1
full-replay 4 0.01 0.1 8 0.5 4 0.01 10.0 4 0.1 4 0.05 1.0 8 0.5

Table 11: Hyperparameters used for MOPO + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 2 0.01 5.0 1 0.1 4 0.01 10.0 8 0.1 2 0.05 0.1 8 1.0
medium 2 0.05 5.0 1 0.1 4 0.05 10.0 4 0.1 2 0.05 5.0 4 1.0
med-replay 4 0.05 5.0 16 0.1 2 0.05 10.0 4 0.1 4 0.01 1.0 16 0.1
med-expert 4 0.05 1.0 8 0.1 4 0.01 10.0 16 0.1 4 0.01 10.0 16 1.0
full-replay 2 0.05 5.0 16 1.0 4 0.05 5.0 16 0.1 4 0.05 10.0 1 0.1

Table 12: Hyperparameters used for CQL + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 4 0.01 10.0 1 0.1 4 0.05 5.0 1 0.1 4 0.05 10.0 16 1.0
medium 2 0.01 5.0 16 0.5 2 0.01 5.0 1 0.5 2 0.05 10.0 16 1.0
med-replay 4 0.05 0.1 8 0.1 4 0.01 5.0 16 0.1 4 0.05 1.0 4 0.1
med-expert 4 0.01 1.0 1 0.5 2 0.01 5.0 8 0.1 2 0.01 5.0 8 0.1
full-replay 4 0.05 10.0 16 0.1 2 0.01 5.0 8 0.1 4 0.01 5.0 8 0.1

Table 13: Hyperparameters used for EDAC + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 4 0.05 10.0 16 0.5 4 0.05 5.0 8 0.1 2 0.05 10.0 4 0.1
medium 2 0.01 10.0 16 0.1 4 0.05 10.0 4 0.1 4 0.05 10.0 1 0.1
med-replay 2 0.05 10.0 1 0.1 4 0.05 10.0 8 0.1 4 0.05 5.0 16 0.1
med-expert 2 0.01 1.0 16 0.5 2 0.05 5.0 8 0.1 4 0.05 5.0 16 0.1
full-replay 4 0.05 10.0 4 0.1 2 0.05 10.0 8 0.1 2 0.05 10.0 1 0.1

noise σ ∈ {0.01, 0.05}, the inverse temperature parameter κ ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, the number of latent samples
n̄ ∈ {1, 4, 8, 16}, and the value uncertainty penalty p ∈ {0.1, 0.5, 1.0}. Our findings indicate that κ and n̄ are the most
influential hyperparameters, while the others have a comparatively minor effect on performance. For LOOP, we conducted a
similar grid search over the same hyperparameters, excluding n̄, which is specific to RefPlan.

In addition, we used Bayesian optimization (BayesOpt, Snoek et al. (2012)), implemented in W&B (Biewald, 2020), to
explore the challenge of identifying optimal hyperparameters for RefPlan. Figure 7 compares the number of iterations
required for BayesOpt to achieve or surpass the performance of the best hyperparameter configuration found via grid search
in each environment. Specifically, we used CQL as the prior policy and the MR dataset from three environments. Notably,
BayesOpt required fewer than 20 iterations to exceed the performance reported in Table 2.
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Table 14: Per-epoch runtimes for VAE pretraining on the ME dataset.

Hopper HalfCheetah Walker2d

qϕ p̂ψ qϕ p̂ψ qϕ p̂ψ

55.3s 39.8s 53.2s 40.7s 54.6s 40.7s

Table 15: Runtime per environment step for RefPlan during evaluation in the HalfCheetah environment.

H
n̄ 1 2 3 4

2 7.9× 10−3s 8.7× 10−3s 9.3× 10−3s 1.0× 10−2s
4 1.5× 10−2s 1.6× 10−2s 1.8× 10−2s 1.9× 10−2s

D.3. Computational Costs of RefPlan

In this section, we provide a detailed discussion of the computational costs associated with deploying RefPlan. As outlined
in Appendix C.3, RefPlan requires the following pretrained components: a prior policy πp, an encoder qϕ, and a decoder p̂ψ .
Since the prior policy is trained using standard offline policy learning algorithms (e.g., CQL, EDAC, MOPO, COMBO, and
MAPLE), which are not our contributions, we focus on reporting the computational costs associated with training the VAE
model and executing the planning stage. All experiments were conducted on a single machine equipped with an RTX 3090
GPU.

VAE Pretraining Table 14 presents the per-epoch runtimes for VAE pretraining in the three environments. The reported
runtimes correspond to datasets with 2M transition samples, the largest dataset size used in our experiments. Both the VAE
pretraining and decoder fine-tuning phases were executed for up to 200 epochs or until the validation loss ceased to improve
for 5 consecutive epochs, whichever occurred first.

Test-Time Planning At test time, planning with RefPlan involves selecting hyperparameters as detailed in Appendix D.2.
Among these, the planning horizon H and the number of latent samples n̄ influence runtime. Specifically, the computational
cost scales linearly with H , which is an inherent property of planning algorithms. However, the cost increases sub-linearly
with n̄, as shown in Table 15. For example, with H = 4 and n̄ = 4, the agent achieves approximately 53 environment steps
per second. We hypothesize that further optimization of PyTorch tensor operations to fully exploit GPU parallelism could
yield even better computational performance, particularly with respect to n̄.
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