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Abstract
Uncertainty estimation is crucial for deep learn-
ing models to detect out-of-distribution (OOD)
inputs. However, the naive deep learning classi-
fiers produce uncalibrated uncertainty for OOD
data. Improving the uncertainty estimation typi-
cally requires external data for OOD-aware train-
ing or considerable costs to build an ensemble. In
this work, we improve on uncertainty estimation
without extra OOD data or additional inference
costs using an alternative Split-Ensemble method.
Specifically, we propose a novel subtask-splitting
ensemble training objective where a task is split
into several complementary subtasks based on
feature similarity. Each subtask considers part
of the data as in-distribution while all the rest as
OOD data. Diverse submodels can therefore be
trained on each subtask with OOD-aware objec-
tives, learning generalizable uncertainty estima-
tion. To avoid overheads, we enable low-level
feature sharing among submodels, building a tree-
like Split-Ensemble architecture via iterative split-
ting and pruning. Empirical study shows Split-
Ensemble, without additional computational cost,
improves accuracy over a single model by 0.8%,
1.8%, and 25.5% on CIFAR-10, CIFAR-100, and
Tiny-ImageNet, respectively. OOD detection for
the same backbone and in-distribution datasets
surpasses a single model baseline by 2.2%, 8.1%,
and 29.6% in mean AUROC, respectively.

1. Introduction
Deep learning models achieve high accuracy metrics when
applied to in-distribution (ID) data. However, such models
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deployed in the real world can also face corrupted, perturbed,
or out-of-distribution inputs (Hendrycks & Dietterich, 2019).
Then, model predictions may not be reliable. Therefore,
estimation of the epistemic uncertainty with OOD detection
is crucial for trustworthy models (Gal & Ghahramani, 2016).

In general, uncertainty estimation is not a trivial task. Prac-
titioners often consider various statistics derived from the
uncalibrated outputs of softmax classifiers as confidence
scores (Hendrycks et al., 2022). On the other hand, deep en-
sembling is another popular approach (Lakshminarayanan
et al., 2017), where uncertainty can be derived from pre-
dictions of independently trained deep networks. However,
deep ensembles come with large memory and computational
costs, which grow linearly with the ensemble size. Recent
research investigates strategies to share and reuse param-
eters and processing across ensemble submodels (Gal &
Ghahramani, 2016; Wen et al., 2020; Turkoglu et al., 2022).
Though these techniques reduce memory overheads, they
suffer from the reduced submodel diversity and, thus, un-
certainty calibration. Moreover, their computational costs
remain similar to the naive deep ensemble since the infer-
ence through each individual submodel is still required.

More advanced methods for uncertainty estimation using a
single model include temperature scaling, adversarial pertur-
bation of inputs (Liang et al., 2017), and classifiers with the
explicit OOD class trained by OOD-aware outlier exposure
training (Hendrycks et al., 2018). However, as outlier ex-
posure methods typically outperform other approaches that
do not utilize external OOD-like data, OOD data distribu-
tion can be unknown or unavailable to implement effective
outlier exposure training in practical applications.

This work aims to propose novel training objectives and
architectures to build a classifier with a single-model
cost, without external OOD proxy data, while achieving
ensemble-level performance and uncertainty estimation. To
avoid the redundancy of having multiple ensemble submod-
els learn the same task, we, instead, split an original multi-
class classification task into multiple complementary sub-
tasks. As illustrated in Figure 1, each subtask is defined by
considering a subset of classes in the original training data
as ID classes. Then, the rest of the training set is a proxy for
OOD distribution for the subtask. Feature similarity is used
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Figure 1. Overview. We split an original task into complementary subtasks to create objectives for submodel training. All submodels
form an ensemble to perform the original task, and, importantly, each submodel can be trained with OOD-aware objectives of the subtask
as proposed in Section 3. To implement an efficient Split-Ensemble architecture, we start with a shared backbone and iteratively perform
splitting and pruning based on subtask similarity and sensitivity described in Section 4.

in grouping the subtasks so that the ID and OOD classes
can be well separated. This enables our novel training ob-
jective with subtask splitting, where each submodel learns
an OOD-aware objective for generalizable uncertainty es-
timation without external data. Finally, an ensemble of all
submodels implements the original multiclass classification.

Our splitting objective requires a method to design compu-
tationally efficient submodel architectures for each subtask.
Most subtask processing, as part of the original task, can
utilize similar low-level features. Hence, it is possible to
share early layers across submodels. Moreover, as each
subtask is easier than the original task, we can use lighter
architectures for the latter unshared processing in submod-
els when compared to the backbone design of the original
task. Considering these two key observations, we propose
a novel iterative splitting and pruning algorithm to learn a
tree-like Split-Ensemble model. As illustrated in Figure 1,
the Split-Ensemble shares early layers for all submodels.
Then, they gradually branch out into different subgroups,
resulting in completely independent branches for each sub-
model towards the last layers. Global structural pruning is
further performed on all the branches to remove redundan-
cies in submodels. Given the potential large design space
of Split-Ensemble architectures, we propose correlation-
based splitting and pruning criteria based on the sensitivity
of model weights to each subtask’s objective. This method
enables automated architecture design through a single train-
ing run for our Split-Ensemble.

In summary, the paper makes the following contributions:

• We propose a subtask-splitting training objective for
OOD-aware ensemble training without external data.

• We propose a dynamic splitting and pruning algorithm
to build an efficient tree-like Split-Ensemble architec-
ture corresponding to the subtask splitting.

• We empirically show that the proposed Split-Ensemble
approach significantly improves accuracy and OOD
detection over a single model baseline with a similar
computational cost, and outperforms larger ensemble
baselines by a factor of 4×.

In the following sections, we first discuss related work in
Section 2, followed by deriving the subtask-splitting training
objectives in Section 3, then propose criteria and algorithm
for splitting and pruning mechanism in Section 4, and finally
present experiment results in Section 5.

2. Related Work
2.1. OOD Detection and OOD-aware Training

OOD detection has a long history of research, including
methods applicable to deep neural networks (DNNs). Lane
et al. (2007) firstly propose to use classification confidence
scores to perform in-domain verification through a linear
discriminant model. Liang et al. (2017) enhance OOD de-
tection by temperature scaling and adversarial perturbations.
Papadopoulos et al. (2021) propose a method to explicitly
make the model aware of OOD using an outlier-exposure
training objective with OOD proxy data. Zhou et al. (2020)
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Figure 2. Subtask splitting. Each submodel learns its subtask using a subset of the original training data. OOD detection by outlier
exposure training is realized using other subtasks’ examples. Concatenated ID logits from all submodels implement the original multiclass
classification task.

investigate the differences between OOD-unaware/-aware
DNNs in model performance, robustness, and uncertainty.
Jeong & Kim (2020) propose a few-shot learning method
for detecting OOD samples. Besides supervised learning,
Winkens et al. (2020); Sehwag et al. (2021) investigate
self-supervised OOD detector based on contrastive learning.
Wang et al. (2022) propose partial and asymmetric super-
vised contrastive Learning (PASCL) to distinguish between
tail-class ID samples and OOD samples. However, the
above single-model OOD detectors cannot be implemented
without the availability of OOD proxy data. In contrast, our
work proposes a novel subtask-splitting training objective
to allow OOD-aware learning without external data.

2.2. Deep Ensembles

Ensemble methods improve performance and uncertainty es-
timation by using predictions of multiple members, known
as submodels. Lakshminarayanan et al. (2017) propose
the foundation for estimating uncertainty in neural net-
works using ensemble techniques. However, computational
and memory costs grow linearly with the number of sub-
models in deep ensembles. To improve efficiency, Havasi
et al. (2021) replace single-input and single-output lay-
ers with multiple-input and multiple-output layers, Gal &
Ghahramani (2016) extract model uncertainty using ran-
dom dropouts, and Durasov et al. (2021) utilize fixed bi-
nary masks to specify network parameters to be dropped.
Wen et al. (2020) enhance efficiency by expanding layer
weights using low-rank matrices, Turkoglu et al. (2022)
adopt feature-wise linear modulation to instantiate submod-
els from a shared backbone, and Valdenegro-Toro (2023)
ensembles only a selection of layers. These methods aim to
mitigate the parameter overheads associated with deep en-
sembles. However, they cannot reduce computational costs
because each submodel runs independently. Split-Ensemble

overcomes the redundancy of ensemble processing by hav-
ing submodels that run complementary subtasks with layer
sharing. In addition, we further optimize Split-Ensemble
design with tree-like architecture by splitting and pruning.

2.3. Efficient Multi-task Learning

With the subtask splitting, our method also falls into the do-
main of multi-task learning. Given the expense of training
individual models for each task, research has been con-
ducted to train a single model for multiple similar tasks.
Sharma et al. (2017) propose an efficient multi-task learn-
ing framework by simultaneously training multiple tasks.
Ding et al. (2021) design Multiple-level Sparse Sharing
Model (MSSM), which can learn features selectively with
knowledge shared across tasks. Sun et al. (2021) introduce
Task Switching Networks (TSNs), a task-conditioned archi-
tecture with a single unified encoder/decoder for efficient
multi-task learning. Zhang et al. (2022) develop AutoMTL
that automates efficient MTL model development for vi-
sion tasks. Sun et al. (2022) propose a pruning algorithm
on a shared backbone for multiple tasks. In this work, we
explore correlations between multiple subtasks to design a
novel splitting and pruning algorithm. Previous works on
split-based structure search consider layer splitting (Wang
et al., 2019; Wu et al., 2019; 2020) to increase the number
of filters in certain layers for better model capacity. Split-
Ensemble, on the other hand, uses architecture splitting as
a way of deriving efficient architecture under a multi-task
learning scenario of subtask-splitting training, leading to a
novel tree-like architecture.

3. Subtask Splitting Method
In this section, we provide the definition of subtask splitting
given a full classification task in Section 3.1. We derive
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Figure 3. Iterative splitting and pruning. Starting from a shared backbone, we compute the layer-wise sensitivity mask M for each
subtask loss, and calculate pair-wise IoU score J across different subtasks for the layer-wise correlation graph. Model is split at the layer
with a small minimal cutting threshold (MCT), and, then, is pruned globally. Applying splitting and pruning in an iterative fashion leads
to the final Split-Ensemble architecture that satisfies computational cost constraints.

proper training objectives to improve both accuracy and un-
certainty calibration for submodels learning these subtasks
in Section 3.2, and how final classification and OOD detec-
tion are performed with the ensemble of subtask models in
Section 3.3, as in Figure 2.

3.1. Complementary Subtask Splitting

Consider a classification task with N classes in total. Here
we define the process of complementary subtask splitting
as grouping the classes into n groups with Ki classes in the
i-th group, where

∑n
i=1 Ki = N , and each class is only

contained in one group. This splits the original classification
task into n subtasks with the i-th class considering only the
Ki classes as in-distribution (ID), while all the other classes
are out-of-distribution (OOD) for this subtask.

For training, it is possible to train a submodel for each
subtask separately with only the data within the Ki classes.
However, at inference, we do not know in advance which
submodel we should assign an input with the unknown class
to. Therefore, each submodel still needs to handle images
from all the classes, not only within the Ki classes. To
address that, we add an additional class, namely “OOD”
class, to the subtask to make it a (Ki+1)-way classification
task. In the training of the corresponding submodel, we use
the entire dataset of the original task with a label conversion.
For images in the Ki ID classes of the subtask, we assign
them label 0 through Ki − 1 in the subtask. For all the
other images from the N − Ki OOD classes, we assign
the same label Ki to them indicating the OOD class. In
this way, a well-trained submodel classifier on the subtask

can correctly classify the images within its ID classes, and
reject other classes as OOD. Then each input image from
the original task will be correctly classified by one and only
one submodel, while being rejected by all others.

The grouping strategy for the subtask splitting will affect
the final performance. To enable each submodel to learn a
generalizable distinction between the ID and OOD classes
more easily, we intend to have the ID classes semantically
closer to each other while away from the OOD classes. In
most large-scale real-world datasets, it is by nature that some
classes are semantically closer than others, and all classes
can be grouped into multiple semantically close groups
(e.g. the superclass in CIFAR-100 (Krizhevsky & Hinton,
2009) or the WordNet hierarchy in ImageNet (Deng et al.,
2009)). In the case where the semantically similar groups
are not naturally available (e.g. in CIFAR-10), we cluster
the classes based on mean hidden layer features of each
class’s training data on a pretrained classifier of the original
task, where classes with closer features are grouped together.
We empirically verify our intuition on the semantically close
grouping in Table 7 in the Appendix.

3.2. Submodel Training Objective

Here we derive the training objective for the submodel to
learn generalizable uncertainty estimation on each subtask.
Without loss of generality, we consider a subtask with K
in-distribution classes out of the total N classes in the deriva-
tion. The existence of OOD classes in each subtask enables
us to perform OOD-aware training for each submodel, with-
out utilizing external data outside of the original task. Hence,
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we take inspiration from outlier exposure (Hendrycks et al.,
2018), where we train with normal one-hot label for ID data,
but use a uniform label for OOD data to prevent the model
from over-confidence. Formally, for an input from OOD
classes, we set the i-th element of the label ŷOOD as

ŷOOD
i =

{
1/N 0 ≤ i ≤ K − 1

(N −K)/N i = K
, (1)

where class K corresponds to the OOD class. Note that we
set the subtask target of ID classes to 1/N instead of 1/K
to make the ID logits comparable across all submodels with
different amounts of classes when facing an OOD input.
The OOD logit at class K is therefore used as a “sink” to
assign the remaining softmax probability. Optimally, all
submodels will output a low max probability of 1/N when
facing an OOD input of the original task, which is as desired
for the outlier exposure objective (Hendrycks et al., 2018).

Under the setting of our subtask, each ID class only consists
the data from one class in the original task, yet the OOD
class corresponds to all data in the rest N −K classes, lead-
ing to a (N −K)× training data to other classes. Directly
training with the imbalanced class will lead to significant
bias over the OOD class. We refer to recent advances in im-
balanced training and use the class-balance reweighing (Cui
et al., 2019) as the loss of each class. The weight wi of class
i of the subtask is formulated as

wi =

{
1−β
1−βn 0 ≤ i ≤ K − 1

1−β
1−β(N−K)n i = K

, (2)

where n is the amount of data in each class of the origi-
nal task, and β ∈ [0, 1) is a hyperparameter balancing the
weight. We follow Cui et al. (2019) to set β = 0.9999,
where ablation study shows the choice of β does not affect
the final performance metric. We apply the reweighing on
the binary cross entropy (BCE) loss to formulate the sub-
model training objective LCB(X,Y ) with submodel output
logits X and label Y as

LCB = EX

K∑
i=0

[
−wi

(
ŷi log σ(xi)+(1− ŷi) log(1−σ(xi))

)]
,

(3)
where σ(·) denotes the Sigmoid function, xi is the i-th ele-
ment of a output logit x, and ŷi follows Equation (1). Note
that although the submodel learns a multi-class classifica-
tion as illustrated in Figure 2, we use the summation of
BCE loss of each individual class from 0 through k as the
submodel training objective. This choice of assuming each
category is classified independently has been shown to have
advantages in learning from imbalanced datasets (Cui et al.,
2019). It also gives us more flexibility in controlling the
target labels and class-wise reweighting.

3.3. Ensemble Training and Inference

To get the final output logits for the original task, we con-
catenate the ID class logits from each submodel into a
N -dimensional vector. Then the classification can be per-
formed with an argmax of the concatenated logits. In order
to calibrate the range of logits across all submodels, we
perform a joint training of all submodels, with the objective

Lens =
∑
i

Li
CB(Xi, Ŷi) + λLCE(X,Y ). (4)

Here Xi and Ŷi denote the output logits and the subtask tar-
get of submodel i, as formulated in Section 3.2. X denotes
the concatenated ID logits, Y denotes the label of the origi-
nal task, and LCE is the cross entropy loss. Hyperparameter
λ balances the losses. Empirically, we find that a small λ
(e.g. 1e-4) is enough for the logits ranges to calibrate across
submodels, while not driving the ID logits of each submodel
to be overconfident.

For uncertainty estimation, we compute the probability of
the ensemble model outputting a label y from the con-
tribution of submodel fi given an input z as p(y|z) =
p(y|z, fi)× p(fi|z). Here, p(y|z, fi) can be estimated with
the softmax probability of the y class at the output of sub-
model fi. p(fi|z) can be estimated with 1− the softmax
probability of the OOD class of submodel fi, as the prob-
ability that fi provides a valid ID output for the ensemble.
With the design of the OOD-aware training objective in
Equation (1), we use p(y|z) as the OOD detection criteria.
Specifically, a single threshold will be selected so that all
input with a smaller probability than the threshold will be
considered as OOD sample.

4. Architecture with Splitting and Pruning
In this section, we propose the Split-Ensemble architec-
ture to effectively and efficiently learn the aforementioned
subtask-splitting training task. Starting from a single back-
bone, we discuss the process of submodel splitting in Sec-
tion 4.1 and formulate the criteria to prune unimportant
structures in Section 4.2. Figure 3 overviews our pipeline.

4.1. Correlation-based Automated Splitting

Intuitively, with the subtasks split from the original task,
submodels should be able to share the low-level features
learned in the early layers of the model, while using diverse
high-level filters in later layers in each subtask. Given the
difficulty of merging independently training submodels dur-
ing training, we instead start our ensemble training from a
single backbone model for the original task. We consider
all the submodels using the same architecture with the same
parameters of the backbone model, only with independent
fully-connected (FC) classifiers at the end.
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The question therefore becomes: On which layer shall we
split a submodel from the shared backbone? Here we pro-
pose an automated splitting strategy that can learn a proper
splitting architecture given the split subtasks. Intuitively,
two submodels can share the same layer if both of their tasks
benefit from the existing weights (i.e., removing a filter will
hurt both subtasks simultaneously). Otherwise, if the weight
sensitive to subtask 1 can be removed for subtask 2 without
harm, and vice versa, then it would be worth splitting the
architecture and shrinking the submodels separately. For-
mally, for submodels sharing the same layer with weight
W , we perform a single-shot sensitivity estimation of all the
weight elements wj in W on the loss Li

CB of each subtask
i respectively as

sij =
|g(wj)|∑

wk∈W |g(wk)|
, g(wj) = wj∇wj

Li
CB(W ), (5)

following the criteria proposed in SNIP (Lee et al., 2019).
Then we perform a Top-K masking to select the K weight
elements with the largest sensitivity, forming a sensitive
mask Mi for submodel i. The weight element lies in the
intersection of the two masks Mi ∩Mj are sensitive for
both subtasks, while other elements in the union Mi ∪Mj

but not in the intersection is only sensitive to one subtask.
We use the Intersection over Union (IoU) score to measure
the pair-wise mask correlation as Jij =

|Mi∩Mj |
|Mi∪Mj | , where

| · | denotes the cardinality of a set. It has been observed
in previous multi-task pruning work that pruning mask cor-
relations will be high in the early layers and drop sharply
towards later layers (Sun et al., 2022), as later layers learn
more high-level features that are diverse across subtasks. A
pair of submodels can be split at the earliest layer where
the IoU score drops below a pre-defined threshold. The
architecture and parameters of the new branch are initial-
ized as the exact copy of the original layers it is splitting
from, which guarantees the same model functionality before
and after the split. The branches will then be updated and
pruned independently according to their subtask objectives
after the splitting is performed.

In the case of multiple submodels, we compute the pair-
wise IoU score between each pair of submodels and build
a “correlation graph” for each layer. The correlation graph
is constructed as a weighted complete graph C = (V,E)
with each submodel being a node v ∈ V , and the IoU score
between two submodels Juv is assigned as the weight of the
edge (u, v) ∈ E between the corresponding nodes. Then a
split of the model is equivalent to performing a cut on the
correlation graph to form two separated subgraphs S and
T . Here we propose a measurement of “Minimal Cutting
Threshold” (MCT), which is the minimal correlation thresh-
old for edge removal that can cut the correlation graph into
two. Formally, the MCT of a correlation graph C is defined

as

MCT (C) = min
S,T

[
max

u∈S,v∈T,(u,v)∈E
Juv

]
, s.t. S+T = V. (6)

A small MCT indicates that a group of submodels has a weak
correlation with the rest, therefore they can be separated
from the shared architecture. In practice, we will iteratively
split the earliest layer with an MCT lower than a predefined
value in a branch shared by multiple submodels, until all
submodels have individual branches or the training ends.
The splitting strategy will turn a single backbone model into
a tree-like architecture, as illustrated in Figure 3.

4.2. Sensitivity-aware Global Pruning

To remove the redundancy in the submodels for simpler
subtasks, we perform global structural pruning on the Split-
Ensemble architecture. We perform structural sensitivity
estimation on a group of weight element ws belonging to a
structure S for the loss Li

CB of each subtask i. We utilize the
Hessian importance estimation (Yang et al., 2023), which is
computed as

Ii(S) =

(∑
s∈S

ws∇wsLi
CB(ws)

)2

. (7)

It has been shown that this importance score is compara-
ble across different layers and different types of structural
components (Yang et al., 2023), making it a good candi-
date for global pruning. Then, we greedily prune a fixed
number of filters with the smallest Ii in submodel i. In the
case where multiple submodels are sharing the structure,
we separately rank the importance of this structure in each
submodel, and will only prune the filters that are prunable
for all the submodels sharing it.

Putting everything together, we iteratively perform the afore-
mentioned automated splitting and pruning process during
the training of the Split-Ensemble model. Splitting and
pruning are performed alternatively. Removing commonly
unimportant structures will reduce the sensitivity correlation
in the remaining parameters, enabling further splitting of
the submodels. In the meantime, having a new split enables
additional model capacity for further pruning. The split-
ting will be fixed when all submodels have an individual
branch towards later layers of the model. Pruning will be
stopped when the Floating-point Operations (FLOPs) of
the Split-Ensemble architecture meet a predefined computa-
tional budget, typically the FLOPs of the original backbone
model. The Split-Ensemble model will then train with the
fixed model architecture for the remaining training epochs.
The detailed process of Split-Ensemble training is provided
in the pseudo-code in Algorithm 1 of Appendix B.
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Table 1. OOD detection results. Models trained on ID dataset are evaluated against multiple OOD datasets. The results are reported for
models with ResNet-18 backbone. FPR and detection error are evaluated with the threshold achieving 95% TPR.

ID OOD FPR Det. Error AUROC AUPR
dataset dataset (95% TPR)↓ (95% TPR) ↓ ↑ ↑

CIFAR-10

Single Model / Naive Ensemble (4x) / Split-Ensemble (ours)

CIFAR-100 56.9 / 50.6 / 47.9 30.9 / 27.8 / 26.4 87.4 / 87.8 / 89.6 85.7 / 85.6 / 89.5
TinyImageNet (crop) 30.9 / 29.9 / 39.2 17.9 / 17.4 / 22.1 93.1 / 94.4 / 94.9 96.0 / 93.8 / 96.4
TinyImageNet (resize) 54.9 / 50.3 / 46.0 29.9 / 27.7 / 25.5 87.5 / 89.3 / 91.7 86.2 / 88.0 / 92.8
SVHN 48.4 / 31.1 / 30.5 17.0 / 12.2 / 12.1 91.9 / 93.8 / 95.2 84.0 / 85.8 / 91.9
LSUN (crop) 27.5 / 18.7 / 37.5 16.3 / 11.9 / 21.3 92.1 / 95.9 / 95.3 96.8 / 94.8 / 96.8
LSUN (resize) 49.4 / 34.6 / 33.2 27.2 / 19.8 / 19.1 90.5 / 93.4 / 94.5 90.7 / 93.3 / 95.7
Uniform 83.0 / 85.3 / 63.7 76.3 / 78.1 / 58.7 91.9 / 88.5 / 92.5 99.2 / 98.8 / 99.3
Gaussian 9.4 / 95.4 / 33.0 9.3 / 87.2 / 30.5 97.7 / 85.6 / 95.7 99.8 / 98.3 / 99.6
Mean 45.1 / 49.5 / 41.4 28.1 / 35.3 / 27.0 91.5 / 91.1 / 93.7 92.3 / 92.3 / 95.3

CIFAR-100

CIFAR-10 76.2 / 78.6 / 78.5 40.6 / 41.8 / 41.7 80.5 / 80.3 / 79.2 83.2 / 82.2 / 81.7
TinyImageNet (crop) 66.1 / 77.5 / 58.1 41.2 / 49.7 / 31.6 85.8 / 80.3 / 88.4 88.3 / 82.2 / 90.0
TinyImageNet (resize) 68.2 / 78.6 / 72.1 38.9 / 41.8 / 38.6 84.4 / 77.5 / 82.7 86.9/ 79.3 / 84.6
SVHN 60.6 / 75.2 / 75.0 20.4 / 24.5 / 24.4 87.7 / 83.3 / 81.2 81.1 / 74.4 / 69.9
LSUN (crop) 70.9 / 84.7 / 64.7 44.8 / 49.3 / 34.9 76.7 / 76.7 / 85.3 86.6 / 79.9 / 86.6
LSUN (resize) 66.7 / 79.1 / 72.0 35.9 / 42.1 / 38.5 85.4 / 78.3 / 83.2 87.9 / 80.1 / 85.6
Uniform 100.0 / 100.0 / 95.0 90.9 / 90.9 / 65.9 59.2 / 69.1 / 88.3 95.2 / 91.6 / 98.8
Gaussian 100.0 / 100.0 / 99.6 90.9 / 72.5 / 90.9 40.6 / 59.2 / 63.1 92.0 / 95.2 /95.5
Mean 76.1 / 84.2 / 74.0 48.9 / 52.3 / 45.7 73.9 / 75.6 / 82.0 87.3 / 83.7 / 86.6

Tiny-IMNET

CIFAR-10 99.3 / 97.7 / 100.0 33.3 / 50.3 / 33.3 56.5 / 46.7 / 81.2 48.9 / 48.6 / 82.7
CIFAR-100 99.2 / 97.5 / 100.0 33.3 / 50.3 / 9.1 54.6 / 46.1 / 72.6 45.5 / 47.5 / 51.9
SVHN 95.2 / 97.5 / 100.0 16.1 / 20.1 / 16.1 64.8 / 46.5 / 83.6 38.1 / 26.6 / 80.2
LSUN (crop) 100.0 / 97.5 / 94.0 33.3 / 50.3 / 33.3 28.9 / 45.9 / 80.2 25.9 / 48.8 / 78.5
LSUN (resize) 99.8 / 97.8 / 100.0 50.3 / 50.3 / 33.3 44.9 / 45.9 / 76.3 36.5 / 47.4 / 77.2
Uniform 100.0 / 90.2 / 100.0 83.3 / 73.5 / 83.3 24.2 / 43.9 / 63.8 77.7 / 90.2 / 92.5
Gaussian 100.0 / 96.7 / 100.0 83.3 / 73.5 / 83.3 25.4 / 43.8 / 49.3 78.1 / 89.9 / 88.1
Mean 99.1 / 96.4 / 99.1 45.1 / 52.6 / 46.4 42.8 / 45.8 / 72.4 50.1 / 57.0 / 78.7

5. Experiments
In this section, we compare the OOD detection performance
and the accuracy of Split-Ensemble against baseline single
model and ensemble methods on various datasets in Sec-
tion 5.1 and 5.2 respectively. We provide ablation studies
on the design choices of using OOD-aware target in subtask
training and selecting MCT threshold for iterative splitting
in Section 5.3. Detailed experiment settings are available in
Appendix A, and additional results in Appendix C.

5.1. Performance on OOD Detection

As we focus the design of Split-Ensemble on better OOD-
aware training, here we compare the OOD detection perfor-
mance of our method against a single model and naive en-
semble baselines with ResNet-18 backbone. All models are
trained using the same code under the same settings. Table 1
shows the comparison between the OOD detection perfor-
mance. We can clearly see that our method outperforms a
single model baseline and a 4× larger naive ensemble across

all benchmarks. This improvement shows our OOD-aware
training performed on each subtask can generalize to unseen
OOD data, without using additional training data. We also
evaluated our method on CIFAR10-LT with SCOOD bench-
mark, a more challenging long-tailed dataset. As shown in
Table 2, our approach consistently excels across accuracy,
expected calibration error (ECE), and all OOD detection
metrics. We further provide additional results on the SC-
OOD dataset and against other OOD detection methods in
Table 9 and Table 10 in Appendix C due to space constraints.

5.2. Performance on Classification Accuracy

We train Split-Ensemble on CIFAR-10, CIFAR-100 datasets
and evaluate its classification accuracy. The results are com-
pared with baseline single model, naive ensemble with 4x
submodels, and other parameter-efficient ensemble methods
in Table 3. On CIFAR-100, we notice that the Naive Ensem-
ble with independent submodels achieves the best accuracy.
Other efficient ensembles cannot reach the same level of
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Table 2. Comparison between previous state-of-the-art ensemble-based methods and ours on the SC-OOD CIFAR10-LT benchmarks.
The results are reported for models with ResNet-18 backbone. Best score in bold, second best underlined.

Method Accuracy ↑ ECE ↓ FPR95 ↓ AUROC ↑ AUPR ↑
Naive Ensemble 12.7 50.2 98.4 45.3 50.9
MC-Dropout 63.4 25.8 90.6 66.6 66.1
MIMO 35.7 28.8 96.3 55.1 56.9
MaskEnsemble 67.7 24.6 89.0 66.82 67.4
BatchEnsemble 70.1 21.1 87.45 68.0 68.7
FilmEnsemble 72.5 21.3 84.32 75.5 76.0

Split-Ensemble (ours) 73.7 16.5 80.5 81.7 77.6

Table 3. Classification results on CIFAR-10 and CIFAR-100. Best score for each metric in bold, second-best underlined. We implement
all baselines using default hyperparameters. All accuracies are given in percentage with ResNet-18/ResNet-34 as backbone

Method FLOPs CIFAR-10 Acc (↑) CIFAR-100 Acc (↑)

Single Model 1x 94.7 / 95.2 75.9 / 77.3
Naive Ensemble 4x 95.7 / 95.5 80.1 / 80.4

MC-Dropout 4x 93.3 / 90.1 73.3 / 66.3
MIMO 4x 86.8 / 87.5 54.9 / 54.6
MaskEnsemble 4x 94.3 / 90.8 76.0 / 64.8
BatchEnsemble 4x 94.0 / 91.0 75.5 / 66.1
FilmEnsemble 4x 87.8 / 94.3 77.4 / 77.2

Split-Ensemble (Ours) 1x 95.5 / 95.6 77.7 / 77.4

accuracy with shared parameters, yet still require the same
amount of computation. Our Split-Ensemble, on the other
hand, beats not only single model but also other efficient
ensemble methods, without additional computational cost.

Additional results on Tiny-ImageNet and ImageNet1K from
Table 4 show that Split-Ensemble can bring consistent per-
formance gain over single model, especially for difficult
tasks like ImageNet, where a single model cannot learn
well. The improved performance comes from our novel
task-splitting training objective, where each submodel can
learn faster and better on simpler subtasks, leading to better
convergence. The iterative splitting and pruning process fur-
ther provides efficient architecture for the Split-Ensemble to
achieve high performance without computational overhead.

As observed by (Ovadia et al., 2019), the performance and
uncertainty estimation ability of ensemble methods may
be challenged by corruptions in the data. To this end, we
compare Split-Ensemble against other baseline methods on
the corrupted CIFAR-10-C dataset, and show its robustness
under corrupted inputs. The results are presented in Table 11
in Appendix C.

5.3. Ablation Studies

In this section, we provide the results of exploring the use
of OOD-aware target (Equation (1)) and the impact of MCT
threshold in automated splitting (Section 4.1). Due to space
limitation, we put additional results on ablating the influence

Table 4. Classification results on TinyImageNet and Ima-
geNet1K. Top-1 accuracies (%) are reported for models with
ResNet-18 backbone. Best score in bold.

Method TinyImageNet ImageNet1K

Single Model 26.1 69.0
Naive Ensemble 44.6 69.4

Split-Ensemble (ours) 51.6 70.9

of the number of subtask splittings and the grouping of
classes for each subtask in Appendix C.

OOD-aware target In Section 3.2, we propose to use
an outlier exposure-inspired target for the inputs belonging
to the OOD class, so as to better calibrate the confidence
during submodel training. Table 5 compares the results of
training Split-Ensemble submodels with the original one-hot
labels for OOD class vs. the proposed OOD-aware targets.
No matter how many subtask splittings we use, using the
OOD-aware target significantly improved the AUROC for
OOD detection, while also helping the ID accuracy of the
model. The results indicate that having an explicit OOD
class is inadequate for the submodel to learn generalizable
OOD detection, and the OOD-aware training objective is
effective. Improving submodel OOD detection also helps
ensemble accuracy as the submodels can better distinguish
their ID classes from others.
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Table 5. Ablation on OOD-aware subtask training. Models are
trained on CIFAR-100. OOD detection is against the CIFAR-10
dataset.

# splits OOD class target Accuracy AUROC

2
One-hot 71.0 76.0

OOD-aware 77.7 78.1

4
One-hot 77.2 77.5

OOD-aware 78.0 78.2

5
One-hot 77.7 77.3

OOD-aware 77.9 78.1

Table 6. Ablation on MCT thresholds. Models are trained on
CIFAR-100 with 5 subtask splits. OOD detection is against CIFAR-
10. Detailed split architectures are visualized in Appendix C.

MCT threshold 0.0 (all-share) 0.1 0.2 0.4 0.7

Accuracy 76.2 77.9 78.4 77.9 77.9
AUROC 76.7 78.0 78.8 79.9 78.9

Automated splitting threshold In Section 4.1, we design
our automatic splitting strategy as splitting a (group of)
submodels from the backbone when the MCT at a certain
layer drops below a predefined threshold. The choice of this
MCT threshold is therefore impactful on the final architec-
ture and performance of the Split-Ensemble model. Table 6
explores the model performance as we increase the MCT
threshold from 0.0 (all-share). As the threshold increases,
the models can branch out easier in earlier layers (see ar-
chitectures in Figure 6 in Appendix C), which improves
the flexibility for the submodels to learn diverse features
for the OOD-aware subtasks, leading to improvements in
both ID accuracy and OOD detection. However, more and
earlier branches require the use of aggressive pruning to
maintain the ensemble under cost constraints, which even-
tually hurts the model performance. A threshold around
0.4 gives a good balance with adequate diversity (as deep
ensemble) and high efficiency (as single model) to the final
Split-Ensemble model, leading to good performance.

6. Conclusions
In this paper, we introduced the Split-Ensemble method, a
new approach to improve single-model accuracy and OOD
detection without additional training data or computational
overhead. By dividing the learning task into complementary
subtasks, we enabled OOD-aware learning without exter-
nal data. Our split-and-prune algorithm efficiently crafted
a tree-like model architecture for the subtasks, balancing
performance and computational demands. Empirical results
validated the effectiveness of our Split-Ensemble. We hope
this work opens up a promising direction for enhancing
real-world deep learning applications with task and model

splitting, where subtasks and submodel architectures can be
co-designed to learn better-calibrated efficient models on
complicated tasks.
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Bischl, B., Daudt, R. C., D’Aronco, S., Wegner, J., and
Schindler, K. Film-ensemble: Probabilistic deep learning
via feature-wise linear modulation. Advances in Neural
Information Processing Systems, 35:22229–22242, 2022.

Valdenegro-Toro, M. Sub-ensembles for fast uncertainty
estimation in neural networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4119–4127, 2023.

Wang, D., Li, M., Wu, L., Chandra, V., and Liu, Q. Energy-
aware neural architecture optimization with fast splitting
steepest descent. arXiv preprint arXiv:1910.03103, 2019.

Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding,
S., Mardziel, P., and Hu, X. Score-cam: Score-weighted
visual explanations for convolutional neural networks. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pp. 24–25,
2020.

10



Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model Splitting

Wang, H., Zhang, A., Zhu, Y., Zheng, S., Li, M., Smola,
A. J., and Wang, Z. Partial and asymmetric contrastive
learning for out-of-distribution detection in long-tailed
recognition. In Proceedings of the International Con-
ference on Machine Learning, volume 162, pp. 23446–
23458, 2022.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alterna-
tive approach to efficient ensemble and lifelong learning.
arXiv preprint arXiv:2002.06715, 2020.

Winkens, J., Bunel, R., Roy, A. G., Stanforth, R., Natarajan,
V., Ledsam, J. R., MacWilliams, P., Kohli, P., Karthike-
salingam, A., Kohl, S., Cemgil, T., Eslami, S. M. A.,
and Ronneberger, O. Contrastive training for improved
out-of-distribution detection, 2020.

Wu, L., Wang, D., and Liu, Q. Splitting steepest descent
for growing neural architectures. Advances in neural
information processing systems, 32, 2019.

Wu, L., Ye, M., Lei, Q., Lee, J. D., and Liu, Q. Steepest
descent neural architecture optimization: Escaping local
optimum with signed neural splitting. arXiv preprint
arXiv:2003.10392, 2020.

Yang, H., Yin, H., Shen, M., Molchanov, P., Li, H., and
Kautz, J. Global vision transformer pruning with hessian-
aware saliency. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 18547–18557, 2023.

Yang, J., Wang, H., Feng, L., Yan, X., Zheng, H., Zhang,
W., and Liu, Z. Semantically coherent out-of-distribution
detection. In Proceedings of the IEEE International Con-
ference on Computer Vision, 2021.

Zhang, L., Liu, X., and Guan, H. AutoMTL: A program-
ming framework for automating efficient multi-task learn-
ing. In Advances in Neural Information Processing Sys-
tems, 2022.

Zhou, L., Yu, B., Berend, D., Xie, X., Li, X., Zhao, J., and
Liu, X. An empirical study on robustness of dnns with
out-of-distribution awareness. In Asia-Pacific Software
Engineering Conference (APSEC), pp. 266–275, 2020.

11



Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model Splitting

A. Experimental Setup
Datasets and metrics. We perform classification tasks on four popular image classification benchmarks, including
CIFAR-10, CIFAR-100 (Krizhevsky, 2009), Tiny ImageNet (Deng et al., 2009) and ImageNet (Krizhevsky et al., 2012)
datasets. Additionally, we examine our method on the challenging long-tailed dataset, CIFAR10-LT and CIFAR100-LT
datasets (Cao et al., 2019).

• CIFAR10 is a collection of 60,000 32x32 color images spanning 10 different classes, such as automobiles, birds, and
ships, with each class containing 6,000 images. It is commonly used in machine learning and computer vision tasks for
object recognition, serving as a benchmark to evaluate the performance of various algorithms.

• CIFAR100 is a diverse and challenging image dataset consisting of 60,000 32x32 color images spread across 100
different classes. Each class represents a distinct object or scene, making it a comprehensive resource for fine-grained
image classification and multi-class tasks. CIFAR-100 is widely used in machine learning research to evaluate the
performance of models in handling a wide range of object recognition challenges.

• Tiny ImageNet is a compact but diverse dataset containing thousands of small-sized images, each belonging to one
of 200 categories. This dataset serves as a valuable resource for tasks like image classification, with each image
encapsulating a rich variety of objects, animals, and scenes, making it ideal for training and evaluating machine learning
models.

• ImageNet is a widely used benchmark in the field of computer vision and machine learning. It contains approximately
1,000 images each from 1,000 different categories, totalling around 1 million images.

• CIFAR10-LT & CIFAR100-LT are the long-tailed version of CIFAR10 and CIFAR100 datasets with imbalance ratio
ρ = 100.

For the out-of-distribution detection task, we use CIFAR-10, and CIFAR-100, Tiny ImageNet as in-distribution datasets, and
use CIFAR-10, CIFAR-100, Tiny ImageNet, SVHN, LSUN, Gaussian Noise, Uniform Noise, as out-of-distribution datasets.
Additionally, we adopt a more challenging OOD detection benchmark, named semantically coherent out-of-distribution
detection (SC-OOD) (Yang et al., 2021).

• SVHN. The Street View House Numbers (SVHN) dataset is a comprehensive collection of house numbers captured
from Google Street View images. It consists of over 600,000 images of house numbers from real-world scenes, making
it a critical resource for tasks like digit recognition and localization. SVHN’s diversity in backgrounds, fonts, and
lighting conditions makes it a challenging but vital dataset for training and evaluating machine learning algorithms in
the domain of computer vision.

• LSUN. The LSUN (Large-scale Scene Understanding) dataset is a vast collection of high-resolution images, primarily
focused on scenes and environments. It encompasses a diverse range of scenes, including bedrooms, kitchens, living
rooms, and more. LSUN serves as a valuable resource for tasks such as scene recognition and understanding due to its
extensive coverage of real-world contexts and rich visual content.

• Gaussian Noise and Uniform Noise. After introducing Gaussian Noise or Uniform Noise to the dataset, we obtain a
modified dataset, which is then utilized as an OOD dataset for our experiments. We implement this operation using the
library from (Kirchheim et al., 2022).

• SC-OOD benchmark. The SC-OOD (Semantically Coherent Out-of-Distribution) benchmark is designed for evaluat-
ing out-of-distribution detection models by focusing on semantic coherence. This benchmark addresses the limitations
of traditional benchmarks that often require models to distinguish between objects with similar semantics from different
datasets, such as CIFAR dogs and ImageNet dogs.

We use five key metrics to evaluate the performance of ID classification and OOD detection tasks.
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• Accuracy. This is defined as the ratio of the number of correct predictions to the total number of predictions made. We
report top-1 classification accuracy on the test(val) sets of ID datasets.

• FPR (95% TPR). This metric stands for ’False Positive Rate at 95% True Positive Rate’. It measures the proportion of
negative instances that are incorrectly classified as positive when the true positive rate is 95%. A lower FPR at 95%
TPR is desirable as it indicates fewer false alarms while maintaining a high rate of correctly identified true positives.

• Detection Error (95% TPR). Detection Error at 95% TPR is a metric that quantifies the overall error rate when the
model achieves a true positive rate of 95%. It combines false negatives and false positives to provide a single measure
of error. Lower detection error values indicate better performance, as the model successfully identifies more true
positives with fewer errors.

• AUROC is short for Area Under the Receiver Operating Characteristic Curve(AUROC). This metric measures the
ability of a model to distinguish between in-distribution and OOD samples. The ROC curve plots the true positive rate
against the false positive rate at various threshold settings. The AUROC is the area under this curve, with higher values
(closer to 1.0) indicating better discrimination between in-distribution and OOD samples.

• AURP is short for Area Under the Precision-Recall Curve (AUPR), this metric is particularly useful in scenarios where
there is a class imbalance (a significant difference in the number of in-distribution and OOD samples). It plots precision
(the proportion of true positives among positive predictions) against recall (the proportion of true positives identified).
Higher AUPR values suggest better model performance, especially in terms of handling the balance between precision
and recall.

Implementation Details. Our Split Ensemble model was trained over 200 epochs using a single NVIDIA A100 GPU
with 80GB of memory, for experiments involving CIFAR-10, CIFAR-100, and Tiny ImageNet datasets. For the larger-scale
ImageNet dataset, we employ 8 NVIDIA A100 GPUs, each with 80GB memory, to handle the increased computational
demands. We use an SGD optimizer with a momentum of 0.9 and weight decay of 0.0005. We also adopt a 200-epoch cosine
learning rate schedule with 10 warm-up epochs and a batchsize of 256. Our experiments typically run for approximately
2 hours on both CIFAR-10 and CIFAR-100 datasets, whereas on the Tiny ImageNet and ImageNet datasets, they take
approximately 10 hours and 24 hours, respectively. We employ data augmentation techniques such as rotation and flip
during the training phase, while the testing phase does not involve data augmentation. As for the backbone models in
our experiments, we utilize the standard ResNet-18 and ResNet-34 architectures. We heuristically decide the number of
submodels in the Split-Ensemble via ablation study, where we find 8 submodels for ImageNet-1K and 5 submodels for other
datasets leads to the best performance in both ID and OOD detection. The classes are grouped based on semantic similarity
into subtasks for the submodels to learn. For OOD detection score computation, we use the max softmax probability for the
single model, max softmax probability of the mean logits for the naive ensemble, and use the probability score proposed in
Section 3.3 for our Split-Ensemble. A single threshold is used to detect OOD with score lower than the threshold.

B. Pseudo Code of Split-Ensemble Training
The Pseudo code of Split-Ensemble training is available in Algorithm 1.

C. Additional Results and Visualizations
In this section, we provide additional results in comparison with baseline methods in different settings as well as ablation
results on our design choices following the discussion in Section 5.3.

Subtask grouping strategy In Section 3.1, we propose to use the group of classes that are semantically-close to form
each subtasks of the complementary task splitting. We illustrate this concept in Figure 4, showing the natural semantic
similarity we utilized to group our subtasks. Furthermore, we verify this intuition against have random assignment of classes
to each subtask. As illustrated in Table 7, having semantically-close subtask grouping significantly improves the OOD
detection ability of the Split-Ensemble model over that of random grouping. This improvement is more significant with
more subtask splittings. We believe that semantic grouping of subtasks help the submodels to better learn the difference
between ID classes and OOD classes of the subtask, as the semantically-close ID classes may share more distinct features
comparing to other classes.
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Algorithm 1 Training the Split-Ensemble model
1: # Initialization and preparation
2: Load dataset {X,Y }
3: Subtask label conversion Y → Ŷi as Equation (1)
4: Initialize Split-Ensemble F with all submodels fi sharing backbone model
5: # Split ensemble training
6: while Training do
7: Update F to minimize Lens in Equation (4) with SGD
8: # Iterative splitting and pruning
9: if Epoch % Prune Interval == 0 then

10: # Splitting
11: if ∃ branch in F with multiple submodel fi sharing all layers then
12: for Layers in the branch shared only by fi do
13: Compute sensitivity map following Equation (5) for each fi
14: Compute MCT of the layer following Equation (6)
15: if MCT < threshold then
16: Split branch at the layer
17: Break
18: end if
19: end for
20: end if
21: # Pruning
22: if FLOPs > target then
23: for All submodels fi do
24: Compute Ii

S for all S following Equation (7)
25: Rank Ii

S to decide prunable structures with minS IL
S

26: Remove structures prunable for (all) corresponding submodels
27: end for
28: end if
29: end if
30: end while

Table 7. Ablation on subtask grouping strategy. Models are trained on CIFAR-100. OOD detection is against the CIFAR-10 dataset.

# splits Subtask grouping Accuracy AUROC

2 Random 77.3 78.9
Semantic 77.8 79.6

4 Random 77.3 77.5
Semantic 77.5 79.1

5 Random 77.4 77.3
Semantic 77.9 78.9

Number of subtask splittings We conducted an analysis to explore the impact of the number of splits on the accuracy
and OOD detection performance of the Split-Ensemble model. Unlike traditional ensemble that repeatedly learn the same
task with more submodels, Split-Ensemble always learns a complementary subtask splitting corresponding to the original
task. Increasing the amount of splits will therefore enable each submodel to learn a simpler subtasks with less ID classes,
intuitively leading to a model architecture with more yet smaller branches. As shown in Table 8, the Split-Ensemble accuracy
is not sensitive to the number of splits, showing the scalability of our learning algorithm. For OOD detection, a larger number
of splits enables each submodel to learn its OOD-aware objective more easily, therefore leading to better AUROC. Yet the
performance may suffer from aggressive pruning with too much branches in the Split-Ensemble, as observed with a large
MCT threshold in Table 6. An interesting future direction would be automatically design the amount of subtask splitting and
the grouping of each subtask during the training process to better fit the subtasks to the Split-Ensemble architecture.

Additional OOD detection results on CIFAR10 with SC-OOD benchmark We further compare our methods with
previous state-of-the-art methods. In Table. 9, our Split-Ensemble model outperforms single-model approaches in OOD
detection without incurring additional computational costs or requiring extra training data. Its consistent high performance
across key metrics highlights its robustness and efficiency, underscoring its practical utility in OOD tasks. In Table. 10,
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20

Figure 4. TSNE visualization of learned features from ResNet-18 with CIFAR10 test set. Samples with different class labels are
marked in different colors. The adjacent features within the dashed lines are to be grouped into one subtask.

Table 8. Ablation on number of splits. Models are trained on CIFAR-100. OOD detection is against the CIFAR-10 dataset. All models
are constrained with single-model computation cost.

# splits 2 4 5 8 10

Accuracy 77.7 78.0 77.9 77.5 77.3
AUROC 78.1 78.2 79.9 80.4 77.3

our Split-Ensemble model consistently outshines other ensemble-based methods in both image classification and OOD
detection, achieving top rankings across all key metrics, which underscores the model’s efficiency and effectiveness.

Robustness to corruption We evaluated our method and ensemble baselines on the corrupted dataset, CIFAR-10-C.
In Table 11, We follow Ovadia et al. (2019) to report averaged top-1 accuracy (%) and ECE metric (%) across different
corruption types for the fixed corruption severity level, which has a 1 to 5 range. It can be seen that even under data
corruptions, our method has either the best or the second best in accuracy while being consistently well-calibrated and
low-complexity among the ensemble baselines.

Model activation map visualization We visualize the learned feature map activations of a Split-Ensemble model across
different layers using Score-CAM (Wang et al., 2020) in Figure 5. The shared feature maps, delineated by dashed lines,
represent the common features extracted across different submodels, emphasizing the model’s capacity to identify and
leverage shared representations. The distinct feature maps outside the dashed boundaries correspond to specialized features
pertinent to individual sub-tasks, demonstrating the Split-Ensemble model’s ability to focus on unique aspects of the data
when necessary. This visualization underscores the effectiveness of the Split-Ensemble architecture, highlighting its dual
strength in capturing both shared and task-specific features within a single, cohesive framework, thereby bolstering its
robustness and adaptability in handling diverse image classification and OOD detection tasks.

Model architecture visualization We visualize the Split-Ensemble models achieved under different MCT thresholds
in Figure 6, as discussed in Table 6 of Section 5.3. Models here use 5 splits and are trained on CIFAR-100 dataset with
ResNet-18 as backbone. With a larger MCT threshold, the model will split into more branches at earlier layers. Meanwhile
the model will also be pruned more aggressively to keep the overall computation cost unchanged. We can clearly see
that with a proper MCT threshold, our method can learn a tree-like Split-Ensemble architecture with different submodels
branching out at different layers, as designed by our iterative splitting and pruning algorithm in Section 4.
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Table 9. Comparison between previous state-of-the-art single-model-based methods and ours on the SC-OOD CIFAR10 bench-
marks. The results are reported for models with ResNet-18 backbone. Best score in bold, second best underlined.

Method Additional Data FPR95 ↓ AUROC ↑ AUPR ↑
ODIN é 52.0 82.0 85.1
EBO é 50.0 83.8 85.1
OE Ë 50.5 88.9 87.8
MCD Ë 73.0 83.9 80.5
UDG é 55.6 90.7 88.3
UDG Ë 36.2 93.8 92.6
Split-Ensemble (ours) é 45.5 91.1 89.9

Table 10. Comparison between previous state-of-the-art ensemble-based methods and ours on the SC-OOD CIFAR10 benchmarks.
The results are reported for models with ResNet-18 backbone. Best score in bold, second best underlined.

Method FLOPs FPR95 ↓ AUROC ↑ AUPR ↑
Naive Ensemble 4x 42.3 90.4 90.6
MC-Dropout 4x 54.9 88.7 88.0
MIMO 4x 73.7 83.5 80.9
MaskEnsemble 4x 53.2 87.7 87.9
BatchEnsemble 4x 50.4 89.2 88.6
FilmEnsemble 4x 42.6 91.5 91.3

Split-Ensemble (ours) 1x 45.5 91.1 89.9

Table 11. Accuracy (↑)/expected calibration error (↓) on the corrupted CIFAR-10-C dataset. Best score for each metric in bold,
second-best underlined. We implement all baselines using default hyperparameters. All accuracies/ECEs are given in percentage with
ResNet-18 as backbone.

Method FLOPs Clean Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

Naive Ensemble 4x 95.7 / 3.9 91.4 / 7.7 85.1 / 13.6 78.6 / 19.7 71.9 / 26.0 59.4 / 37.7

MC-Dropout 4x 92.4 / 3.5 88.3 / 5.7 82.7 / 9.5 77.0 / 13.6 70.9 / 18.2 59.6 / 26.2
MIMO 4x 84.4 / 1.1 79.0 / 3.4 72.0 / 6.9 65.7 / 10.8 59.2 / 15.1 49.8 / 21.4
MaskEnsemble 4x 94.2 / 3.3 89.3 / 6.9 83.6 / 10.9 77.6 / 15.4 70.9 / 20.2 58.9 / 29.9
BatchEnsemble 4x 93.8 / 3.1 88.8 / 5.7 82.7 / 10.1 76.1 / 15.4 69.4 / 20.2 57.6 / 29.1
FilmEnsemble 4x 93.8 / 3.0 89.1 / 6.5 84.1 / 10.5 77.7 / 13.9 71.5 / 20.2 59.2 / 27.2

Split-Ensemble (Ours) 1x 95.5 / 4.1 90.7 / 7.0 84.8 / 10.5 79.2 / 13.7 73.2 / 16.7 61.7 / 22.7
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Figure 5. Visualization of Split-Ensemble’s learned features using Score-CAM. The number of splits is set to 8 and the model is trained
on ImageNet1K with ResNet-18 as backbone. The feature maps within the dashed lines across the layers indicate shared representations.
The input image’s class is ’Angora’, targeted by submodel 2.
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Figure 6. Visualization of Split-Ensemble architectures under different MCT threshold. The number of splits is set to 5. Number in
each block denotes the number of filters in the layer.
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