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Abstract

Post-hoc gradient-based interpretability methods [1, 2] that provide instance-
specific explanations of model predictions are often based on assumption (A):
magnitude of input gradients—gradients of logits with respect to input—noisily
highlight discriminative task-relevant features. In this work, we test the validity of
assumption (A) using a three-pronged approach:
1. We develop an evaluation framework, DiffROAR, to test assumption (A) on four

image classification benchmarks. Our results suggest that (i) input gradients of
standard models (i.e., trained on original data) may grossly violate (A), whereas
(ii) input gradients of adversarially robust models satisfy (A) reasonably well.

2. We then introduce BlockMNIST, an MNIST-based semi-real dataset, that by
design encodes a priori knowledge of discriminative features. Our analysis
on BlockMNIST leverages this information to validate as well as characterize
differences between input gradient attributions of standard and robust models.

3. Finally, we theoretically prove that our empirical findings hold on a simplified
version of the BlockMNIST dataset. Specifically, we prove that input gradients
of standard one-hidden-layer MLPs trained on this dataset do not highlight
instance-specific “signal” coordinates, thus grossly violating (A).

Our findings motivate the need to formalize and test common assumptions in inter-
pretability in a falsifiable manner [3]. We believe that the DiffROAR framework and
BlockMNIST datasets serve as sanity checks to audit interpretability methods; code
and data available at https://github.com/harshays/inputgradients.

1 Introduction
Interpretability methods that provide instance-specific explanations of model predictions are often
used to identify biased predictions [4], debug trained models [5], and aid decision-making in high-
stakes domains such as medical diagnosis [6, 7]. A common approach for providing instance-specific
explanations is feature attribution. Feature attribution methods rank or score input coordinates,
or features, in the order of their purported importance in model prediction; coordinates achieving
the top-most rank or score are considered most important for prediction, whereas those with the
bottom-most rank or score are considered least important.

Input gradient attributions. Ranking input coordinates based on the magnitude of input gradients
is a fundamental feature attribution technique [8, 1] that undergirds well-known methods such as
SmoothGrad [2] and Integrated Gradients [9]. Given instance x and a trained model θ with prediction
ŷ on x, the input gradient attribution scheme (i) computes the input gradient∇xLogitθ(x, ŷ) of the
logit 2 of the predicted label ŷ and (ii) ranks the input coordinates in decreasing order of their input
gradient magnitude. Below we explicitly characterize the underlying intuitive assumption behind
input gradient attribution methods:
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2In Appendix C, we show that our results also hold for input gradients taken w.r.t. the loss
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(a) BlockMNIST images

(b) Standard Resnet18 gradients

(c) Standard MLP gradients

(d) `2 Robust Resnet18 gradients

(e) `2 Robust MLP gradients

Figure 1: Experiments on BlockMNIST dataset. (a) Four representative images from class 0 & class 1
in BlockMNIST dataset; every image consists of a signal and null block that are randomly placed as
the top or bottom block. The signal block, containing the MNIST digit, determines the image class.
The null block, containing the square patch, does not encode any information of the image class.
For these four images, subplots (b-e) show the input gradients of standard Resnet18, standard MLP,
`2 robust Resnet18 (ε=2) and `2 robust MLP (ε=4) respectively. The plots clearly show that input
gradients of standard BlockMNIST models highlight the signal block and the non-discriminative null
block, thereby violating (A). In contrast, input gradients of adversarially robust models exclusively
highlight the signal block, suppress the null block, and satisfy (A). Please see Section 5 for details.

Assumption (A): Coordinates with larger input gradient magnitude are more relevant for
model prediction compared to coordinates with smaller input gradient magnitude.

Sanity-checking attribution methods. Several attribution methods [10] are based on input gradients
and explicitly or implicitly assume an appropriately modified version of (A). For example, Integrated
Gradients [9] aggregate input gradients of linearly interpolated points, SmoothGrad [2] averages
input gradients of points perturbed using gaussian noise, and Guided Backprop [11] modifies input
gradients by zeroing out negative values at every layer during backpropagation. Surprisingly, unlike
vanilla input gradients, popular methods that output attributions with better visual quality fail simple
sanity checks that are indeed expected out of any valid attribution method [12, 13]. On the other hand,
while vanilla input gradients pass simple sanity checks, Hooker et al. [14] suggest that they produce
estimates of feature importance that are no better than a random designation of feature importance.

Do input gradients satisfy assumption (A)? Since (A) is necessary for input gradients attributions
to accurately reflect model behavior, we introduce an evaluation framework, DiffROAR, to analyze
whether input gradient attributions satisfy assumption (A) on real-world datasets. While DiffROAR
adopts the remove-and-retrain (ROAR) methodology [14], DiffROAR is more appropriate for testing
the validity of assumption (A) because it directly compares top-ranked features against bottom-ranked
features. We apply DiffROAR to evaluate input gradient attributions of MLPs & CNNs trained
on multiple image classification datasets. Consistent with the message in Hooker et al. [14], our
experiments indicate that input gradients of standard models (i.e., trained on original data) can grossly
violate (A) (see Section 4). Furthermore, we also observe that unlike standard models, adversarially
trained models [15] that are robust to `2 and `∞ perturbations satisfy (A) in a consistent manner.

Probing input gradient attributions using BlockMNIST. Our empirical findings mentioned above
strongly suggest that standard models grossly violate (A). However, without knowledge of ground-
truth discriminative features learned by models trained on real data, conclusively testing (A) remains
elusive. In fact, this is a key shortcoming of the remove-and-retrain (ROAR) framework. So, to further
verify and better understand our empirical findings, we introduce an MNIST-based semi-real dataset,
BlockMNIST, that by design encodes a priori knowledge of ground-truth discriminative features.
BlockMNIST is based on the principle that for different inputs, discriminative and non-discriminative
features may occur in different parts of the input. For example, in an object classification task, the
object of interest can occur in different parts of the image (e.g., top-left, center, bottom-right etc.) for
different images. As shown in Figure 1(a), BlockMNIST images consist of a signal block and a null
block that are randomly placed at the top or bottom. The signal block contains the MNIST digit that
determines the class of the image, whereas the null block, contains a square patch with two diagonals
that has no information about the label. This a priori knowledge of ground-truth discriminative
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features in BlockMNIST data allows us to (i) validate our empirical findings vis-a-vis input gradients
of standard and robust models (see fig. 1) and (ii) identify feature leakage as a reason that potentially
explains why input gradients violate (A) in practice. Here, feature leakage refers to the phenomenon
wherein given an instance, its input gradients highlight the location of discriminative features in the
given instance as well as in other instances that are present in the dataset. For example, consider the
first BlockMNIST image in fig. 1(a), in which the signal is placed in the bottom block. For this image,
as shown in fig. 1(b,c), input gradients of standard models incorrectly highlight the top block because
there are other instances in the BlockMNIST dataset which have signal in the top block.

Rigorously demonstrating feature leakage. In order to concretely verify as well as understand
feature leakage more thoroughly, we design a simplified version of BlockMNIST that is amenable to
theoretical analysis. On this dataset, we first rigorously demonstrate that input gradients of standard
one-hidden-layer MLPs exhibit feature leakage in the infinite-width limit and then discuss how feature
leakage results in input gradient attributions that clearly violate assumption (A).

Paper organization: Section 2 discusses related work and section 3 presents our evaluation frame-
work, DiffROAR, to test assumption (A). Section 4 employs DiffROAR to evaluate input gradient
attributions on four image classification datasets. Section 5 analyzes BlockMNIST data to differen-
tially characterize input gradients of standard and robust models using feature leakage. Section 6
provides theoretical results on a simplified version on BlockMNIST that shed light on how feature
leakage results in input gradients that violate assumption (A). Our code, along with the proposed
datasets, is publicly available at https://github.com/harshays/inputgradients.

2 Related work

Due to space constraints, we only discuss directly related work and defer the rest to Appendix A.

Sanity checks for explanations. Several explanation methods that provide feature attributions are
often primarily evaluated using inherently subjective visual assessments [1, 2]. Unsurprisingly, recent
“sanity checks” show that sole reliance on visual assessment is misleading, as attributions can lack
fidelity and inaccurately reflect model behavior. Adebayo et al. [12] and Kindermans et al. [13] show
that unlike input gradients [8], other popular methods—guided backprop [16], gradient � input [17],
integrated gradients [9]—output explanations which lack fidelity on image data, as they remain
invariant to model and label randomization. Similarly, Yang and Kim [18] use custom image datasets
to show that several explanation methods are more likely to produce false positive explanations than
vanilla input gradients. Moreover, several explanation methods based on modified backpropagation
do not pass basic sanity checks [19, 20, 21]. To summarize, well-known gradient-based attribution
methods that seek to mitigate gradient saturation [9, 22], discontinuity [23], and visual noise [16]
surprisingly fare worse than vanilla input gradients on multiple sanity checks.

Evaluating explanation fidelity. The black-box nature of neural networks necessitates frameworks
that evaluate the fidelity or “correctness” of post-hoc explanations without knowledge of ground-truth
features learned by trained models. Modification-based evaluation frameworks [24, 25, 26] gauge
explanation fidelity by measuring the change in model performance after masking input coordinates
that a given explanation method considers most (or least) important. However, due to distribution
shifts induced by input modifications, one cannot conclusively attribute changes in model performance
to the fidelity of instance-specific explanations [27]. The remove-and-retrain (ROAR) framework [14]
accounts for distribution shifts by evaluating the performance of models retrained on train data
masked using post-hoc explanations. Surprisingly, contrary to findings obtained via sanity checks,
experiments with the ROAR framework show that multiple attribution methods, including vanilla input
gradients, are no better than model-independent random attributions that lack explanatory power [14].
Therefore, motivated by the central role of vanilla input gradients in attribution methods, we augment
the ROAR framework to understand when and why input gradients violate assumption (A).

Effect of adversarial robustness. Adversarial training [15] not only leads to robustness to `p
adversarial attacks [28], but also leads to perceptually-aligned feature representations [29], and
improved visual quality of input gradients [30]. Recent works hypothesize that adversarial training
improves the visual quality of input gradients by suppressing irrelevant features [31] and promoting
sparsity and stability [32] in explanations. Kim et al. [33] use the ROAR framework to conjecture
that adversarial training “tilts” input gradients to better align with the data manifold. In this work,
we use experiments on real-world data and theory on data with features known a priori in order to
differentially characterize input gradients of standard and robust models vis-a-vis assumption (A).
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3 DiffROAR evaluation framework

In this section, we introduce our evaluation framework, DiffROAR, to probe the extent to which
instance-specific explanations, or feature attributions, highlight discriminative features in practice.
Specifically, our framework, DiffROAR, builds upon the remove-and-retrain (ROAR) methodology [14]
to test whether feature attribution methods satisfy assumption (A) on real-world datasets.

Setting. We consider the standard classification setting; Each data point (x(i), y(i)), where instance
x(i) ∈ Rd and label y(i) ∈ Y for some label set Y , is drawn independently from a distribution D on
Rd × Y . Given dataset {(x(i), y(i))} where i ∈ [n]:= {1, · · · , n}, x(i)j denotes the jth coordinate of
x(i). Note that we also refer to the d coordinates of instance x(i) as features interchangeably.

Attribution schemes. A feature attribution scheme A : Rd → {σ : σ is a permutation of [d]} maps
a d-dimensional instance x to a permutation, or ordering, A(x) : [d] → [d] of its coordinates. For
example, the input gradient attribution scheme takes as input instance x & predicted label ŷ and
outputs an ordering [d] that ranks coordinates in decreasing order of their input gradient magnitude.
That is, coordinate j is ranked ahead of coordinate k if the magnitude of the jth coordinate of
∇xLogitθ(x, ŷ) is larger than that of the kth coordinate.

Unmasking schemes. Given instance x and a subset S ⊆ [d] of coordinates, the unmasked instance
xS zeroes out all coordinates that are not in subset S: xSj = xj if j ∈ S and 0 if j /∈ S. An
unmasking scheme A : Rd → {S : S ⊆ [d]} simply maps instance x to a subset A(x) ⊆ [d] of
coordinates that can be used to obtain unmasked instance xA(x). Any attribution scheme A naturally
induces top-k and bottom-k unmasking schemes, Atop

k and Abot
k , which output k coordinates with the

top-most and bottom-most attributions in A(x) respectively. In other words, given attribution scheme
A and level k, the top-k and bottom-k unmasking schemes, Atop

k and Abot
k , can be defined as follows:

Top-k unmasked imageOriginal image

Figure 2: Pictorial example of a top-
25% unmasked image.

Atop
k (x):= {A(x)j : j ≤ k} ,
Abot
k (x):= {A(x)j : d− k < j ≤ d} .

For example, Figure 2 depicts an image x and its top-k un-
masked variant xA

top
k (x). In this case, the attribution scheme A

assigns higher rank to pixels in the foreground. So, the top-
25% unmasking operation, xA

top
25%

(x), highlights the monkey by
retaining pixels with top-25% attribution ranks and zeroing out
the remaining pixels that correspond to the green background.

Predictive power of unmasking schemes. The predictive power of an unmasking scheme A with
respect to model architecture M (e.g., resnet18) can be defined as the best classification accuracy that
can be attained by training a model with architecture M on unmasked instances that are obtained via
unmasking scheme A. More formally, it can defined as follows:

PredPowerM (A) := sup
f∈M,f :Rd→Y

ED
[
1
[
f(xA(x)) = y

]]
.

Due to masking-induced distribution shifts, models with architectureM that are trained using original
data cannot be plugged in to estimate PredPowerM (A). The ROAR framework [14] sidesteps this
issue by retraining models on unmasked data, as similar model architectures tend to learn “similar”
classifiers [34, 35, 36, 37]. Therefore, we employ the ROAR framework to estimate PredPowerM (A)
in two steps. First, we use unmasking scheme A to obtain unmasked train and test datasets that
comprise data points of the form (xA(x), y). Then, we retrain a new model with the same architecture
M on unmasked train data and evaluate its accuracy on unmasked test data.

DiffROAR evaluation metric to test assumption (A). Recall that an attribution scheme A maps an
instance x to a permutation of its coordinates that reflects the order of estimated importance in model
prediction. An attribution scheme that satisfies assumption (A) must place coordinates that are more
important for model prediction higher up in the the attribution order. More formally, given attribution
scheme A, architecture M and level k, we define DiffROAR as the difference between the predictive
power of top-k and bottom-k unmasking schemes, Atop

k and Abot
k :

DiffROARM (A, k) = PredPowerM (Atop
k )− PredPowerM (Abot

k ) (1)

4



Interpreting the DiffROAR metric. The sign of the DiffROAR metric indicates whether the given
attribution scheme satisfies or violates assumption (A). For example, DiffROARM (A, ·) < 0 implies
that A violates assumption (A) , as coordinates with higher attribution ranks have worse predictive
power with respect to architecture M . Similarly, the magnitude of the DiffROAR metric quantifies
the extent to which the ordering in attribution scheme A separates the most and least discriminative
coordinates into two disjoint subsets. For example, a random attribution scheme Ar, which outputs
attributions Ar(x) chosen uniformly at random from all permutations of [d], neither highlights nor
suppresses discriminative features; E[DiffROARM (Ar, k)] = 0 for any architecture M .

On testing assumption (A). To verify (A) for a given attribution schemeA, it is necessary to evaluate
whether input coordinates with higher attribution rank are more important for model prediction than
coordinates with lower rank. Consequently, the ROAR-based metric in Hooker et al. [14], which
essentially computes the top-k predictive power, is not sufficient to test whether attribution methods
satisfy assumption (A). Therefore, as discussed above, DiffROAR tests (A) by comparing the top-k
predictive power, PredPowerM (Atop

k ), to the bottom-k predictive power, PredPowerM (Abot
k ), using

multiple values of k.

4 Testing assumption (A) on image classification benchmarks

In this section, we use DiffROAR to evaluate whether input gradient attributions of standard and
adversarially robust MLPs and CNNs trained on four image classification benchmarks satisfy as-
sumption (A). We first summarize the experiment setup and then describe key empirical findings.

Datasets and models. We consider four benchmark image classification datasets: SVHN [38],
Fashion MNIST [39], CIFAR-10 [40] and ImageNet-10 [41]. ImageNet-10 is an open-sourced
variant (https://github.com/MadryLab/robustness/) of Imagenet [41], with 80, 000 images
grouped into 10 super-classes. ImageNet-10 enables us to test assumption (A) on Imagenet without
the computational overload of training models on the 1000-way ILSVRC classification task [42]. We
evaluate input gradient attributions of standard and adversarially trained two-hidden-layer MLPs and
Resnets [43]. We obtain `2 and `∞ ε-robust models with perturbation budget ε using PGD adversarial
training [15]. Unless mentioned otherwise, we train models using stochastic gradient descent (SGD),
with momentum 0.9, batch size 256, `2 regularization 0.0005 and initial learning rate 0.1 that decays
by a factor of 0.75 every 20 epochs. Additionally, we use standard data augmentation and train
models for at most 500 epochs, stopping early if cross-entropy loss on training data goes below 0.001.
Appendix C.1 provides additional details about the datasets and trained models.3

Estimating DiffROAR on real data. We compute the evaluation metric, DiffROARM (A, k), on
real datasets in four steps, as follows. First, we train a standard or robust model with architecture
M on the original dataset and obtain its input gradient attribution scheme A. Second, as outlined
in Section 3, we use attribution scheme A and level k (i.e., fraction of pixels to be unmasked) to
extract the top-k and bottom-k unmasking schemes: Atop

k and Abot
k . Third, we apply Atop

k and Abot
k

on the original train & test datasets to obtain top-k and bottom-k unmasked datasets respectively.
Finally, to compute DiffROARM (A, k) via eq. (1), we estimate top-k and bottom-k predictive power,
PredPowerM (Atop

k ) and PredPowerM (Abot
k ), by retraining new models with architecture M on top-

k and bottom-k unmasked datasets respectively. Also, note that we (a) average the DiffROAR metric
over five runs for each model and unmasking fraction or level k and (b) unmask individual image
pixels without grouping them channel-wise.

Experiment setup. Now, we analyze the DiffROAR metric as a function of the unmasking fraction
k ∈ {5, 10, 20, . . . , 100}% in order to evaluate whether input gradient attributions of models trained
on four image classification benchmarks satisfy assumption (A). In particular, as shown in Figure 3,
we use DiffROAR to analyze input gradients of standard and adversarially robust two-hidden-layer
MLPs on SVHN & Fashion MNIST, Resnet18 on ImageNet-10, and Resnet50 on CIFAR-10. In
order to calibrate our findings, we compare input gradient attributions of these models to two natural
baselines: model-agnostic random attributions and input-agnostic attributions of linear models.

Input gradients of standard models. Input gradient attributions of standard MLPs trained on
SVHN satisfy assumption (A), as the DiffROAR metric in Figure 3(a) is positive for all values
of level k < 100%. However, in Figure 3(b), the DiffROAR curves of standard MLPs trained on

3Code publicly available at https://github.com/harshays/inputgradients
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(a) Input gradients of MLPs on SVHN
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(c) Input gradients of Resnet18 on ImageNet-10

standard, ε = 0
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(b) Input gradients of MLPs on Fashion MNIST

standard, ε = 0.00
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(d) Input gradients of Resnet50 on CIFAR-10

standard, ε = 0

`2 robust, ε = 0.25

`2 robust, ε = 0.50

`∞ robust, ε = 8
255

linear model

random attribution

Figure 3: DiffROAR plots for input gradient attributions of standard and adversarially robust two-
hidden-layer MLPs on (a) SVHN & (b) Fashion MNIST, (c) Resnet18 on ImageNet-10 and (d)
Resnet50 on CIFAR-10. Subplot (a) indicates that adversarially robust MLPs consistently and
considerably outperform standard MLPs on the DiffROAR metric for all k < 100%. Subplot (b)
shows that for most unmasking fractions k, standard MLPs trained on Fashion MNIST, unlike robust
MLPs, fare no better than model-agnostic random attributions and input-agnostic attributions of linear
models. Subplots (c) and (d) show that when k < 40%, standard Resnet models trained on CIFAR-
10 and ImageNet-10 grossly violate (A), thereby implying that coordinates with top-most gradient
attribution rank have worse predictive power than coordinates with bottom-most rank. In stark contrast,
input gradients of Resnets that are robust to `2 and `∞ adversarial perturbations satisfy assumption
(A) reasonably well. We observe that increasing the perturbation budget ε during adversarial training
amplifies the magnitude of DiffROAR for every k across all four image classification benchmarks.

Fashion MNIST indicate that input gradient attributions, consistent with findings in Hooker et al.
[14], can fare no better than model-agnostic random attributions and input-agnostic attributions
of linear models vis-a-vis assumption (A). Furthermore, and rather surprisingly, the shaded area
in Figure 3(c) and Figure 3(d) shows that when level k < 40%, DiffROAR curves of standard Resnets
trained on CIFAR-10 and Imagenet-10 are consistently negative and perform considerably worse
than model-agnostic and input-agnostic baseline attributions. These results strongly suggest that on
CIFAR-10 and Imagenet-10, input gradients of standard Resnets grossly violate assumption (A) and
suppress discriminative features. In other words, coordinates with larger gradient magnitude have
worse predictive power than coordinates with smaller gradient magnitude.

Input gradients of robust models. Models that are ε-robust to `2 and `∞ adversarial perturba-
tions fare considerably better than standard models on the DiffROAR metric. For example, in Fig-
ure 3(a), when level k equals 10%, robust MLPs trained on SVHN outperform standard MLPs on
the DiffROAR metric by roughly 10-30%. The DiffROAR curves of adversarially robust MLPs in Fig-
ure 3 are positive at every level k < 100%, which strongly suggests that input gradient attributions
of robust MLPs satisfy assumption (A). Similarly, robust resnet50 models trained on CIFAR-10 and
ImageNet-10 satisfy assumption (A) reasonably well and, unlike standard resnet50 models, starkly
highlight discriminative features. Furthermore, we observe that increasing the perturbation budget
ε in `2 or `∞ PGD adversarial training [15] amplifies the magnitude of DiffROAR across k and for
all four datasets. That is, the adversarial perturbation budget ε determines the extent to which input
gradients differentiates the most and least discriminative coordinates into two disjoint subsets.

Additional results. In Appendix C, we show that our DiffROAR results are robust to choice of model
architecture & SGD hyperparameters during retraining and also hold for input gradients taken with
respect to cross-entropy loss. Additionally, while DiffROAR without retraining gives qualitatively
similar results, they are not as consistent across architectures as with retraining, particularly for small
unmasking fraction k that induce non-trivial distribution shifts.
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5 Analyzing input gradient attributions using BlockMNIST data
To verify whether input gradients satisfy assumption (A) more thoroughly, we introduce and perform
experiments on BlockMNIST, an MNIST-based dataset that by design encodes a priori knowledge of
ground-truth discriminative features.

BlockMNIST dataset design: The design of the BlockMNIST dataset is based on two intuitive
properties of real-world object classification tasks: (i) for different images, the object of interest may
appear in different parts of the image (e.g., top-left, bottom-right); (ii) the object of interest and the
rest of the image often share low-level patterns such as edges that are not informative of the label on
their own. We replicate these aspects in BlockMNIST instances, which are vertical concatenations of
two 28× 28 signal and null image blocks that are randomly placed at the top or bottom with equal
probability. The signal block is an MNIST image of digit 0 or digit 1, corresponding to class 0 or 1 of
the BlockMNIST image respectively. On the other hand, the null block in every BlockMNIST image,
independent of its class, contains a square patch made of two horizontal, vertical, and slanted lines, as
shown in Figure 1(a). It is important to note that unlike the MNIST signal block that is fully predictive
of the class, the non-discriminative null block contains no information about the class. Standard as
well as adversarially robust models trained on BlockMNIST data attain 99.99% test accuracy, thereby
implying that model predictions are indeed based solely on the signal block for any given instance.
We further verify this by noting that the predictions of trained model remain unchanged on almost
every instance even when all pixels in the null block are set to zero.

Do standard and robust models satisfy (A)? As discussed above, unlike the null block that has no
task-relevant information, the MNIST digit in the signal block entirely determines the class of any
given BlockMNIST image. Therefore, in this setting, we can restate assumption (A) as follows: Do
input gradient attributions highlight the signal block over the null block? Surprisingly, as shown
in Figure 1(b,c), input gradient attributions of standard MLP and Resnet18 models highlight the signal
block as well as the non-discriminative null block. In stark contrast, subplots (d) and (e) in Figure 1
show that input gradient attributions of `2 robust MLP and Resnet18 models exclusively highlight
MNIST digits in the signal block and clearly suppress the square patch in the null block. These results
validate our findings on real-world datasets by showing that unlike standard models, adversarially
robust models satisfy (A) on BlockMNIST data.

Feature leakage hypothesis: Recall that the discriminative signal block in BlockMNIST images
is randomly placed at the top or bottom with equal probability. Given our results in Figure 1,
we hypothesize that when discriminative features vary across instances (e.g., signal block at top
vs. bottom), input gradients of standard models not only highlight instance-specific features but
also leak discriminative features from other instances. We term this hypothesis feature leakage.

T
op

B
ot

to
m

Class 0 Class 1

(a) BlockMNIST-Top

Class 0 Class 1

(b) Standard Resnet18

Class 0 Class 1

(c) Standard MLP

Figure 4: (a) In BlockMNIST-Top images, the signal &
null blocks are fixed at the top & bottom respectively.
In contrast to results on BlockMNIST in fig. 1, input
gradients of standard (b) Resnet18 and (c) MLP trained
on BlockMNIST-Top highlight discriminative features in
the signal block, suppress the null block, and satisfy (A).

To test our hypothesis, we leverage the
modular structure in BlockMNIST to
construct a slightly modified version,
BlockMNIST-Top, wherein the location
of the MNIST signal block is fixed at
the top for all instances (see fig. 4). In
this setting, in contrast to results on
BlockMNIST, input gradients of stan-
dard Resnet18 and MLP models trained
on BlockMNIST-Top satisfy assump-
tion (A). Specifically, when the signal
block is fixed at the top, input gradi-
ent attributions in Figure 4(b, c) clearly
highlight the signal block and suppress
the null block, thereby supporting our feature leakage hypothesis. Based on our BlockMNIST ex-
periments, we believe that understanding how adversarial robustness mitigates feature leakage is an
interesting direction for future work.

Additional results. In Appendix D.1, we (i) visualize input gradients of several BlockMNIST and
BlockMNIST-Top images, (ii) introduce a quantitative proxy metric to compare feature leakage
between standard and robust models, (iii) show that our findings are fairly robust to the choice and
number of classes in BlockMNIST data, and (iv) evaluate feature leakage in five feature attribution
methods. We also provide experiments that falsify hypotheses vis-a-vis input gradients and assumption
(A) that we considered in addition to feature leakage.
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6 Feature leakage in input gradient attributions

To understand the extent of feature leakage more thoroughly, we introduce a simplified version of
the BlockMNIST dataset that is amenable to theoretical analysis. We rigorously show that input
gradients of standard one-hidden-layer MLPs do not differentiate instance-specific features from
other task-relevant features that are not pertinent to the given instance.

Dataset: Given dimension of each block d̃, feature vector u∗ ∈ Rd̃ with ‖u∗‖ = 1, number of blocks
d and noise parameter η, we will construct input instances of dimension d̃ · d. More concretely, a
sample (x, y) ∈ Rd̃·d × {±1} from the distribution D is generated as follows:

y = ±1 with probability 0.5 and
x = [ηg1, ηg2, . . . , yu∗ + ηgj , . . . , ηgd] with j chosen at random from [d/2] (2)

where each gi ∈ Rd̃ is drawn uniformly at random from the unit ball. For simplicity, we take d
to be even so that d/2 is an integer. We can think of each x as a concatenation of d d̃-dimensional
blocks {x1, . . . , xd}. The first d/2 blocks, {1, . . . , d/2}, are task-relevant, as every example (x, y)
contains an instance-specific signal block xi = yu∗ + ηgi for some i ∈ [d/2] that is informative
of its label y. Given instance x, we use j∗(x) to denote the unique instance-specific signal block
such that xj∗(x) = yu∗ + ηgj∗(x). On the other hand, noise blocks {d/2 + 1, . . . , d} do not contain
task-relevant signal for any instance x. At a high level, the instance-specific signal block j∗(x) and
noise blocks {d/2 + 1, . . . , d} in instance x correspond to the discriminative MNIST digit and the null
square patch in BlockMNIST images respectively. For example, each row in Figure 5(a) illustrates an
instance x where d = 10, d̃ = 1, η = 0 and u∗ = 1.

Model: We consider one-hidden layer MLPs with ReLU nonlinearity in the infinite-width limit. More
concretely, for a given width m, the network is parameterized by R ∈ Rm×d̃·d, b ∈ Rm and w ∈ Rm.
Given an input instance (x, y) ∈ Rd̃d × {±1}, the output score (or logit) f and cross-entropy (CE)
loss L are given by:

f((w,R, b), x):=〈w, φ (Rx+ b)〉, L((w,R, b), (x, y)):= log (1 + exp (−y · f((w,R, b), x))) .

where φ(t):= max(0, t) denotes the ReLU function. A remarkable set of recent results [44, 45, 46, 47]
show that as m→∞, the training procedure is equivalent to gradient descent (GD) on an infinite
dimensional Wasserstein space. In the Wasserstein space, the network can be interpreted as a
probability distribution ν over R×Rd̃·d ×R with output score f and cross entropy loss L defined as:

f(ν, x):=E(w,r,b)∼ν [wφ (〈r, x〉+ b)] , L(ν, (x, y)):= log (1 + exp (−y · f(ν, x))) . (3)

Theoretical analysis: Our approach leverages the recent result in Chizat and Bach [48], which shows
that if GD in the Wasserstein spaceW2

(
R× Rd̃d × R

)
on ED [L(ν, (x, y))] converges, it does so

to a max-margin classifier given by:

ν∗:= arg max
ν∈P(Sdd̃+1)

min
(x,y)∼D

y · f(ν, x), (4)

where Sdd̃+1 denotes the surface of the Euclidean unit ball in Rd̃d+2, and P
(
Sdd̃+1

)
denotes the

space of probability distributions over Sdd̃+1. Intuitively, our main result shows that on any data
point (x, y) ∼ D, the input gradient magnitude of the max-margin classifier ν∗ is equal over all
task-relevant blocks {1, . . . , d/2} and zero on the remaining noise blocks {d/2 + 1, . . . , d}.
Theorem 1. Consider distribution D (2) with η < 1

10d . There exists a max-margin classifier
ν∗ for D in Wasserstein space (i.e., training both layers of FCN with m → ∞) given by (4),
such that for all ∀ (x, y) ∼ D: (i)

∥∥∥(∇xL(ν∗, (x, y)))j

∥∥∥ = c > 0 for every j ∈ [d/2] and (ii)∥∥∥(∇xL(ν∗, (x, y)))j

∥∥∥ = 0 for every j ∈ {d/2 + 1, · · · , d}, where (∇xL(ν∗, (x, y)))j denotes the

jth block of the input gradient ∇xL(ν∗, (x, y)).

Theorem 1 guarantees the existence of a max-margin classifier such that the input gradient magnitude
for any given instance is (i) a non-zero constant on each of the first d/2 task-relevant blocks, and
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Figure 5: Input gradients of linear models and standard & robust MLPs trained on data from eq. (2)
with d = 10, d̃ = 1, η = 0 and u∗ = 1. (a) Each row in corresponds to an instance x, and the
highlighted coordinate denotes the signal block j∗(x) & label y. (b) Linear models suppress noise
coordinates but lack the expressive power to highlight instance-specific signal j∗(x), as their input
gradients in subplot (b) are identical across all examples. (c) Despite the expressive power to highlight
instance-specific signal coordinate j∗(x), input gradients of standard MLPs exhibit feature leakage
(see Theorem 1) and violate (A) as well. (d) In stark contrast, input gradients of adversarially trained
MLPs suppress feature leakage and starkly highlight instance-specific signal coordinates j∗(x).

(ii) equal to zero on the remaining d/2 noise blocks that do not contain any information about the
label. However, input gradients fail at highlighting the unique instance-specific signal block over the
remaining task-relevant blocks. This clearly demonstrates feature leakage, as input gradients for any
given instance also highlight task-relevant features that are, in fact, not specific to the given instance.
Therefore, input gradients of standard one-hidden-layer MLPs do not highlight instance-specific
discriminative features and grossly violate assumption (A). In Appendix F, we present additional
results that demonstrate that adversarially trained one-hidden-layer MLPs can suppress feature
leakage and satisfy assumption (A).

Empirical results: Now, we supplement our theoretical results by evaluating input gradients of linear
models as well as standard & robust one-hidden-layer ReLU MLPs with width 10000 on the dataset
shown in Figure 5. Note that all models obtain 100% test accuracy on this linearly separable dataset,
a simplified version of BlockMNIST that is obtained via eq. 2 with d = 10, d̃ = 1, η = 0 and u∗ = 1.
Due to insufficient expressive power, linear models have input-agnostic gradients that suppress all five
noise coordinates, but do not differentiate the instance-specific signal coordinate from the remaining
task-relevant coordinates. Consistent with Theorem 1, even standard MLPs, which are expressive
enough to have input gradients that correctly highlight instance-specific coordinates, apply equal
weight on all five task-relevant coordinates and violate (A) due to feature leakage. On the other
hand, Figure 5(c) shows that the same MLP architecture, if robust to `∞ adversarial perturbations
with norm 0.35, satisfies (A) by clearly highlighting the instance-specific signal coordinate over all
other noise and task-relevant coordinates

7 Discussion and conclusion

In this work, we took a three-pronged approach to investigate the validity of a key assumption
made in several popular post-hoc attribution methods: (A) coordinates with larger input gradient
magnitude are more relevant for model prediction compared to coordinates with smaller input gradient
magnitude. Through (i) evaluation on real-world data using our DiffROAR framework, (ii) empirical
analysis on BlockMNIST data that encodes information of ground-truth discriminative features, and
(iii) a rigorous theoretical study, we present strong evidence to suggest that standard models do not
satisfy assumption (A). In contrast, adversarially robust models satisfy (A) in a consistent manner.
Furthermore, our analysis in Section 5 and Section 6 indicates that feature leakage sheds light
on why input gradients of standard models tend to violate (A). We provide additional discussion
in Appendix B.

This work exclusively focused on “vanilla" input gradients due to their fundamental significance in
feature attribution. A similarly thorough investigation that analyzes other commonly-used attribution
methods is an interesting avenue for future work. Another interesting avenue for further analyses is
to understand how adversarial training mitigates feature leakage in input gradient attributions.
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Appendices
The supplementary material is organized as follows. We first discuss additional related work Section 2.
Appendix B provides additional discussion. Appendix C describes additional experiments based on
the DiffROAR framework to analyze the fidelity of input gradient attributions on real-world datasets.
In Appendix D, we provide additional experiments on feature leakage using BlockMNIST-based
datasets. Then, Appendix E contains the proof of Theorem 1 and Appendix F discusses the effect of
adversarial training on input gradients of models that are adversarially trained on a simplified version
of BlockMNIST data. We plan to open-source our trained models, code primitives, and Jupyter
notebooks soon, which can be used to reproduce our empirical results.

A Additional related work

In this section, we briefly describe works that analyze two properties of post-hoc instance-specific
explanations that are related to explanation fidelity or “correctness”. In particular, we outline recent
works that study the robustness and practical utility of instance-specific explanation methods.

Robustness of explanations: Several commonly used instance-specific explanation methods lack ro-
bustness in practice. Ghorbani et al. [49] show that instance-specific explanations and exempler-based
explanations are not robust to imperceptibly small adversarial perturbations to the input. Heo et al.
[50] show that instance-specific explanations are highly vulnerable to adversarial model manipulations
as well. Dombrowski et al. [51] show that explanations lack robustness to to arbitrary manipulations
and show that non-robustness stems from geometric properties of neural networks. Bansal et al. [52]
show that explanation methods are considerably sensitive to method-specific hyperparameters such as
sample size, blur radius, and random seeds. Recent works promote robustness in explanations using
smoothing [51] or variants of adversarial training [53, 54]

Utility of explanations: A recent line of work propose evaluation frameworks to assess the practical
utility of post-hoc instance-specific explanation methods via proxy downstream tasks. Chu et al. [55]
employ a randomized controlled trial to show that using explanation methods as additional information
does not improve human accuracy on classification tasks. More generally, Poursabzi-Sangdeh et al.
[56] analyze the effect of model transparency (e.g., number of input features, black-box vs. white-
box) on the accuracy of human decisions with respect to the task and model. Similarly, Adebayo
et al. [5] conduct a human subject study to show that subjects fail to identify defective models
using attributions and instead primarily rely on model predictions. [57] formalize the “value”
of explanations as the explanation utility (i.e., as side information) in a student-teacher learning
framework. In contrast to the works above, we propose an evaluation framework, DiffROAR, to
evaluate the fidelity, or “correctness”, of explanations in classification tasks. In particular, using
benchmark image classification tasks and synthetic data, we empirically and theoretically characterize
input gradient attributions of standard as well as adversarially robust models.

Stability of explanations. Explanation stability and explanation correctness (also known as expla-
nation fidelity) are two distinct desirable properties of explanations [20]. That is, stability does
not imply fidelity. For example, an input-agnostic constant explanation is stable but lacks fidelity.
Conversely, fidelity does not imply stability—if the underlying model is itself unstable, then any
correct high-fidelity explanation of that model must also be unstable. Bansal et al. [52] and Chen
et al. [58] identify and explain why input gradients of adversarially trained models are more stable
compared to those of standard models. In contrast, our work focuses on identifying and explaining
why input gradients of adversarially trained models have more fidelity compared to those of standard
models. Furthermore, we also take the first step towards theoretically showing that adversarial
robustness can provably improve input gradient fidelity in Appendix E.
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B Additional discussion

Translation invariance in BlockMNIST models. Intuitively, CNNs are translation-invariant only
if the object of interest is not closer to the boundary than the receptive field of the final layer;
In BlockMNIST, the digits are either close to the top boundary or the bottom boundary. Given
that the receptive field of Resnets is quite large, translation invariance would not hold in this
case. This is further supported by recent work [59], which demonstrates that “CNNs can and will
exploit the absolute spatial location by learning filters that respond exclusively to particular absolute
locations by exploiting image boundary effects”. We observe this phenomenon empirically in our
BlockMNIST-Top experiments as well. That is, while models trained on BlockMNIST-Top data
(i.e., MNIST digit in top block) attain 100% test accuracy on BlockMNIST-Top images, the accuracy
of these models degrades to approximately 55% (i.e., 5% better than random chance) when evaluated
on BlockMNIST-Bottom images, wherein the MNIST digit (signal) is placed in the bottom block.

Choice of removal operator in DiffROAR framework. Recall that in DiffROAR, the predictive
power of a new model retrained on the unmasked dataset (i.e, data points after removal operation)
is used to evaluate the fidelity of post-hoc explanation methods. Note that this approach employs
retraining to account for and nullify distribution shifts induced by feature removal operators such
as gaussian noise, zeros etc. Since the same removal operation is applied to unmask every image
(across classes), the choice of removal operator has no effect on our DiffROAR results in Section 4.
To verify this, we evaluated DiffROAR on CIFAR-10 with another removal operator in which pixels
are masked/replaced by random gaussian noise (instead of zeros) and observed that the results do not
change (i.e., same as in Figure 3).

Counterfactual changes vis-a-vis feature leakage. As evidenced in the BlockMNIST experiments,
input gradient attributions of standard models incorporate counterfactual changes in the null block.
While this phenomenon seems natural and “intuitive” in hindsight, it can be misleading in the
context of feature attributions. For example, consider the typical use case for feature attributions: to
highlight regions within the given instance/image that are most relevant for model prediction. Now,
in the BlockMNIST setting, if input gradients leak digit-like features into the null block, then the
feature attributions in the null block can be easily (mis)interpreted as the non-discriminative null
patch being highly relevant for model prediction.

Comparison to results in Kim et al. [33]. Kim et al. [33] use the ROAR framework to conjecture
that adversarial training “tilts” input gradients to better align with the data manifold. First, in contrast
to Kim et al. [33], we thoroughly establish our DiffROAR results across datasets/architectures/hyper-
parameters, revealing a significantly larger gap between the attribution quality of standard and
adversarially robust models. Second, motivated by the boundary tilting hypothesis [60], Kim et al.
[33] use a two-dimensional synthetic dataset to empirically show that the decision boundary of
robust models aligns better with the vector between the two class-conditional means. However, this
empirical evidence might be misleading, as Ilyas et al. [61] theoretically demonstrates that “this exact
statement is not true beyond two dimensions” (pg. 15). Furthermore, several recent works have also
provided concrete evidence to support alternative hypotheses [61, 37, 62, 63] for the existence of
adversarial examples that counter the boundary tilting hypothesis that Kim et al. build upon. This
discrepancy in these results motivates the need for a multipronged approach, which we adopt to
empirically identify the feature leakage hypothesis using BlockMNIST and theoretically verify the
hypothesis in Section 6.

Connections between adversarial robustness and data manifold: In the recent past, there have
been several results showing unexpected benefits of adversarially trained models beyond adversarial
robustness such as visually perceptible input gradients [29] and feature representations that transfer
better [64]. One reason for this phenomenon widely considered in the literature [65, 66] is that
the input data lies on a low dimensional manifold and unlike standard training, adversarial training
encourages the decision boundary to lie on this manifold (i.e. alignment with data manifold). Our
experiments and theoretical results on feature leakage suggest that this reasoning is indeed true for
both the BlockMNIST and its simplified version presented in Section 6. Furthermore, we believe that
the simplified version of BlockMNIST in eq. (2) can be used as a tool to thoroughly investigate both
the benefits and potential drawbacks of adversarially trained models.
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Why focus on input gradient attributions?. As discussed in Section 1, several feature attributions
such as guided backprop [16] and integrated gradients [22] that output visually sharper saliency maps
fail basic sanity checks such as model randomization and label randomization [12, 13, 20]. We focus
on vanilla input gradient attributions for two key reasons: (i) vanilla input gradients pass both sanity
checks mentioned above and (ii) the input gradient operation is the key building block of several
feature attribution methods. Our experiments and theoretical analysis are specifically designed to
identify and verify feature leakage in input gradient attributions of standard models.

Comparing ROAR and DiffROAR. The following questions below illustrate key differences between
ROAR [14] and our work:

• Does the framework verify assumption (A)? In Hooker et al. [14], the ROAR framework essentially
computes the top-k predictive power only, which is not sufficient to test assumption (A). In our
paper, DiffROAR directly compares the top-k and bottom-k predictive power to test whether the
given attribution method satisfies assumption (A).

• Are the results in the paper conclusive? Both, ROAR and DiffROAR, make a key assumption: models
retrained on unmasked datasets learn the same features as the model trained on the original dataset.
Although empirically supported [34, 35, 37], this assumption makes it difficult to conclusively
test assumption (A). Therefore, we empirically (Section 5) and theoretically (Section 6) verify our
DiffROAR findings in settings wherein ground-truth features are known a priori.

• Does the work identify why standard input gradients violate (A)? Hooker et al. [14] do not discuss
why input gradients lack explanation fidelity. In our paper, we hypothesize feature leakage as the
key reason for ineffectiveness of input gradients, and validate it with empirical as well as theoretical
analysis on BlockMNIST-based data

Limitations of ROAR and DiffROAR. The major limitation of ROAR and DiffROAR is the key assump-
tion that models retrained on unmasked datasets learn the same features as the model trained on the
original dataset. In the absence of ground-truth features, this assumption is empirically supported
by findings that suggest that different runs of models sharing the same architecture learn similar
features [34, 35, 37]. Another limitation is that ROAR-based frameworks are not useful in the following
setting. Consider a redundant dataset where features are either all negative (in which case label y = 0)
or all positive (in which case label y = 1). In such cases, no feature is more or less informative than
any other, so no information can be gained by ranking or removing input coordinates/features.
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C Experiments on real-world datasets using DiffROAR
In this section, we first provide additional details about datasets, training, and performance of trained
models vis-a-vis generalization and robustness. We also present top-k and bottom-k predictive
power of input gradient unmasking schemes obtained via standard and robust models. Next, we
show that our results on image classification benchmarks are robust to CNN architectures and SGD
hyperparameters used during retraining. Then, we use DiffROAR to show that our results hold
with input loss gradients, but signed input logit gradients do not satisfy assumption (A) for standard
or robust models. Finally, we discuss DiffROAR results obtained without retraining and provide
additional example images that are masked using input gradients of standard & robust models.

C.1 Additional details about DiffROAR experiments and trained models

We first provide additional details about standard and adversarial training, and describe the perfor-
mance of trained models vis-a-vis generalization and robustness to `2 & `∞ perturbations.

Recall that we use DiffROAR to analyze input gradients of standard and adversarially robust two-
hidden-layer MLPs on SVHN & Fashion MNIST, Resnet18 on ImageNet-10, and Resnet50 on CIFAR-
10 in Figure 3. In these experiments, we train models using stochastic gradient descent (SGD), with
momentum 0.9, batch size 256, `2 regularization 0.0005 and initial learning rate 0.1 that decays by
a factor of 0.75 every 20 epochs; We obtain `2 and `∞ ε-robust models with perturbation budget ε
using PGD adversarial training [15]. In PGD adversarial training, we use learning rate ε/4, 8 steps
of PGD and no random initialization in order to compute ε-norm `2 and `∞ perturbations. In both
cases, we use standard data augmentation and train models for at most 500 epochs, stopping early if
cross-entropy (standard or adversarial) loss on training data goes below 0.001. Unless mentioned
otherwise, we set the depth and width of MLPs trained on real datasets to be 2 and 2× the input
dimension respectively.

Figure 6 depicts standard test accuracy (i.e., when perturbation budget ε = 0) and ε-robust test
accuracy (for multiple values of ε) of standard as well as `2 and `∞ robust models trained on SVHN,
Fashion MNIST, CIFAR-10 and ImageNet-10. Note that to estimate ε-robust test accuracy, we use
PGD-based adversarial test examples, computed using 2× the number of PGD steps used during
training. As expected, we observe that (i) compared to standard models, adversarially trained MLPs
and CNNs attain significantly better robust test accuracy, (ii) models trained with larger perturbation
budget are more robust to larger-norm adversarial perturbations at test time, and (iii) standard test
accuracies (when ε = 0) of adversarially trained models are worse than those of standard models.
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Figure 6: Standard and ε-robust test accuracies of MLPs trained on SVHN and Fashion MNIST,
Resnet50 trained on CIFAR-10, and Resnet18 trained on ImageNet10. Details in Appendix C.1.

C.2 Top-k and bottom-k predictive power of input gradient attributions

Now, we describe the top-k and bottom-k predictive power curves for unmasking schemes of input
gradients of standard and robust models. Recall that top-k predictive power simply estimates the
test accuracy of models that are retrained on datasets wherein only coordinates with top-k (%) of
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the coordinates are unmasked in every image. The top and bottom rows in Figure 7 show how
top-k and bottom-k predictive power of input gradient attributions of standard and robust models
vary with unmasking fraction k respectively. The subplots in Figure 7 show that (i) decreasing the
unmasking fraction k decreases top-k and bottom-k predictive power, and (ii) models retrained on
attribution-masked datasets attain non-trivial unmasked test dataset accuracy even when a significant
fraction of coordinates with the top-most and bottom-most attributions are masked.

As described in Section 3, for a given attribution scheme and unmasking fraction or level k,
DiffROAR (see equation (1)) is positive when the top-k predictive power is greater than the bottom-k
predictive power. The subplots in the first column indicate that standard models trained on Fashion
MNIST do not satisfy assumption (A) because the top-k and bottom-k unmasking schemes are equally
ineffective at masking discriminative features. Conversely, the difference between the top-k and
bottom-k predictive power of input gradient attributions of robust models is significant. For example,
in the second column, for the SVHN model adversarially trained with `∞ perturbations and budget
ε = 2/255 (purple line), top-k predictive power is roughly 40% more than the bottom-k predictive
power when k = 5%. Furthermore, as shown in the third and fourth columns, the top-k and bottom-k
curves of standard CNNs trained on CIFAR-10 and ImageNet-10 are “inverted”, thereby explaining
why DiffROAR is negative when unmasking fraction is roughly less than 40%.
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Figure 7: Predictive power of top-k and bottom-k input gradient unmasking schemes vs. un-
masking fraction, or level, k for standard and adversarially robust models trained on 4 image
classification benchmarks. Please see Appendix C.2 for details.

C.3 Effect of model architecture on DiffROAR results
Recall that in Section 4, we used the DiffROAR metric to evaluate whether input gradient attributions
of models trained on real-world datasets satisfy or violate assumption (A). For CNNs, we evaluated
input gradient attributions of standard Resnet50 and Resnet18 models trained on CIFAR-10 and
Imagenet-10 respectively. In this section, we show that our empirical findings based on these
architectures extend to three other commonly-used and well-known CNN architectures: Densenet121,
InceptionV3, and VGG11.

As shown in Figure 8, the DiffROAR results support key empirical findings made using input gradients
of Resnet models in Section 4: (i) standard models perform poorly, often no better or even worse than
the random attribution baseline, and (ii) DiffROAR curves of adversarially robust models are positive
and significantly better than that of the standard model. For example, for Densenet121, InceptionV3,
and VGG11, when unmasking fraction k = 20%, standard training yields input gradient attributions
that attain DiffROAR scores roughly −5%, 2% and 1% respectively, whereas `∞ adversarial training
with budget ε = 6/255 results in input gradients with DiffROAR metric roughly 15%.

C.4 Effect of SGD Hyperparameters on DiffROAR results
In this section, we show that DiffROAR results for input gradient attribu of standard and robust
models are not sensitive to the choice of SGD hyperparameters used during retraining. In particular,
we show that DiffROAR curves on CIFAR-10 are not sensitive to the learning rate, weight decay, or
the momentum used in SGD to train models on top-k or bottom-k attribution-masked datasets. The
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Figure 8: DiffROAR results on input gradients of additional CNN architectures.
DiffROAR curves for three well-known NN architectures—Densenet121, InceptionV3, and VGG11—
indicate that empirical findings vis-a-vis input gradients of standard and robust models (Section 4)
are robust to choice of CNN architecture. Please see Appendix C.3 for details.
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Figure 9: DiffROAR robust to SGD hyperparameters in retraining. DiffROAR curves for input
gradients of standard and robust models trained on CIFAR-10 data show that our empirical findings
presented in Section 4 are robust to SGD hyperparameters that are used in retraining. Specifically,
we show that our findings vis-a-vis DiffROAR are not sensitive to changes in SGD hyperparameters
such as learning rate, momentum, and weight decay that are used to retrain models on unmasked
CIFAR-10 data. For example, the subplots above show that across multiple SGD hyperparameter
values, when the fraction of unmasked pixels k < 30-40%, standard models violate (A) whereas
robust models satisfy (A). See Appendix C.4 for details.

four subplots in Figure 9 collectively show that decreasing learning rate from 0.1 to 0.01, weight
decay from 0.0001 to 0, and momentum from 0.9 to 0 does not alter our findings: (i) input gradient
attributions of standard models do not satisfy (A) when unmasking fraction k is roughly less than
30-40%; (ii) models that are robust to `2 and `∞ perturbations consistently satisfy (A); (iii) increasing
perturbation budget ε during PGD adversarial training increases DiffROAR metric for most values of
unmasking fraction k. To summarize, our results based on the DiffROAR evaluation framework are
robust to SGD hyperparameters used to retrain models on top-k and bottom-k unmasked datasets.

C.5 Evaluating input loss gradient attributions using DiffROAR

Recall that our experiments in Section 4 evaluate whether input gradients taken w.r.t. the logit of the
predicted label satisfy or violate assumption (A) on image classification benchmarks. In this section,
we show that our empirical findings generalize to input loss gradients—input gradients w.r.t loss
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Figure 10: DiffROAR results for input loss gradient attributions. DiffROAR plots for input loss
gradient attributions of standard and adversarially Resnet50 on CIFAR-10 and Resnet18 on ImageNet-
10. In both subplots, standard models violate (A) when the fraction of unmasked pixels k < 30%. That
is, input coordinates that have the largest gradient magnitude are not as important performance-wise
as the coordinates with smallest gradient magnitude. Conversely, {`2, `∞}-adversarially trained
models satisfy (A), as the DiffROAR metric is positive for all k < 100%. Similar to our results with
input logit gradients, we observe that increasing the perturbation budget ε during adversarial training
amplifies the magnitude of DiffROAR for every k across all four image classification benchmarks.

(e.g., cross-entropy)—of standard and robust models evaluated on image classification benchmarks.
Specifically, we apply DiffROAR to input loss gradients of standard and robust ResNet models
trained on CIFAR-10 and ImageNet-10.

Figure 10 illustrates DiffROAR curves for input loss gradient attributions on CIFAR-10 and ImageNet-
10 data. In both cases, we observe that (i) input loss gradient attributions of robust models, unlike
those of standard models, satisfy (A) and (ii) PGD adversarial training with larger perturbation
budget ε increases the DiffROAR metric in a consistent manner. Recall that the magnitude in
DiffROAR quantifies the extent to which the attribution order separates discriminative and task-
relevant features from features that are unimportant for model prediction; see Section 3 for more
information about DiffROAR.

C.6 Evaluating signed input gradient attributions using DiffROAR

In addition to input loss gradient magnitude attributions and input logit gradient magnitude attributions,
our results vis-a-vis DiffROAR evaluation on image classification benchmarks extend to signed input
logit gradients as well. In signed input gradient attributions, input coordinates are ranked based on
sgnxi · gi where sgn(xi) is the sign of input coordinate xi and gi is the signed input gradient value
for input coordinate xi.
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Figure 11: DiffROAR results for signed input logit gradients. DiffROAR results for attributions
based on signed input gradients of standard and robust MLPs & CNNs trained on Fashion MNIST &
CIFAR-10. See Appendix C.6 for details.
Figure 11 shows DiffROAR curves for attributions based on signed input gradients taken with respect
to the logit of the predicted label. The left and right subplot evaluate DiffROAR for standard and
robust (i) MLP trained on Fashion MNIST and (ii) Resnet18 models trained on CIFAR-10. Consistent
with our findings in Section 4, while standard MLPs trained on Fashion MNIST fare no better than
random attributions, signed input gradients of robust MLPs attain positive DiffROAR scores for all
k < 100% and perform considerably better than gradients of standard MLPs. Similarly, based on
the DiffROAR metric, when k < 50%, while signed input gradients of standard Resnet18 models
perform better than absolute logit and loss gradients, signed input gradients of robust Resnet18
models continue to fare better than standard models.
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C.7 The role of retraining in DiffROAR evaluation

Figure 12 shows the results on DiffROAR without retraining on the masked datasets. As we can see
from the figures, the trends are not consistent across model architectures and datasets, possibly due to
varying levels of distribution shift. For this reason, we employ DiffROAR with retraining as described
in Section 3.
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Figure 12: DiffROAR results without retraining. While we observe that standard models violate
(A) while adversarially trained models satisfy (A) for the Resnet models, we see that both standard and
adversarially trained models satisfy (A) for MLP models, showing that this evaluation methodology
does not yield consistent results across model architectures/datasets. Further, the DiffROAR metric
may be unrealiable for small unmasking fractions since this incurs heavy distribution shift. Conse-
quently, we employ DiffROAR after retraining on the new unmasked data.

C.8 Imagenet-10 images unmasked using input gradients attributions of Resnet18 models
Recall that in Section 4, we showed that unlike input gradients of standard models, robust models
consistently satisfy assumption (A). That is, input gradients of robust models highlight discriminative
features, whereas input gradients of standard models tend to highlight non-discriminative features
and suppress discriminative task-relevant features. In this section, we qualitatively substantiate these
findings by visualizing ImageNet-10 images that are unmasked using top-k and bottom-k input
gradient attributions of standard and robust Resnet18 models. Please note that the following visual
assessments are only meant to qualitatively support findings made in Section 4 using the evaluation
framework described in Section 3. As discussed in Section 3, if input gradients attain high-magnitude
DiffROAR score, images unmasked using top-k attributions should highlight discriminative features,
whereas images unmasked using bottom-k should highlight non-discriminative features.

We make two observations using Figure 13 that qualitatively support our empirical findings in Sec-
tion 4. First, we observe that images unmasked using top-k gradient attributions of robust models tend
to highlight salient aspects of images (e.g., shape of fruit or face of monkey in Figure 13), whereas
bottom-k attributions often mask salient aspects of images either completely or partially. Second,
images unmasked using top-k and bottom-k attributions using input gradients of standard models
exhibit visual commonalities, supporting the fact that for standard models, DiffROAR is close to 0
for multiple values of k.
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Figure 13: ImageNet10 images unmasked using input gradient attributions. Visualizing
ImageNet-10 images that are unmasked using unmasking fraction, or level, k = 15% using in-
put gradient attributions of standard and `∞-robust Resnet18 models. Top-k unmasked images (i.e.,
images in which only “top” gradient attributions are unmasked) and bottom-k unmasked images,
attained via input gradients of standard models, share visual commonalities, suggestive of poor
attribution quality. Unlike bottom-k unmasked images, images unmasked using top-k attributions of
robust models’ input gradients highlight salient aspects of images. See Appendix C.8 for details.

23



D Additional experiments on feature leakage and BlockMNIST data

In this section, we first provide additional evidence that supports the feature leakage hypothesis in the
setting used in Section 5: BlockMNIST data with MNIST digits 0 and 1 corresponding to the signal
block in class 0 and class 1 respectively. Then, we show that our results vis-a-vis feature leakage
and BlockMNIST are robust to the choice of MNIST digits used in the signal block as well as the
number of classes in the BlockMNIST classification task. Finally, we end with a brief description of
experiments that we conducted in order to test another hypothesized cause to understand why input
gradients of standard models tend to violate (A).

D.1 Additional analysis to demonstrate feature leakage in BlockMNIST data

In this section, we provide (i) additional examples of BlockMNIST images and inputs gradients of
standard and robust models, (ii) additional examples of BlockMNIST-Top images and input gradients,
and (iii) describe a proxy metric to measure feature leakage in BlockMNIST-based data.

Figure 14 shows 40 BlockMNIST images in the first row and their corresponding input gradients
for standard and robust MLPs and Resnet18 models in the subsequent rows. We observe that input
gradient attributions of standard MLP and Resnet18 models consistently highlight the signal block
as well as the non-discriminative null block for all images. On the other hand, input gradient
attributions of `2 robust MLP and Resnet18 models exclusively highlight MNIST digits in the signal
block and clearly suppress the square patch in the null block. These results further substantiate
our results in Figure 3 by showing that unlike standard models, adversarially robust models satisfy
(A) on BlockMNIST data. Figure 17 provides 20 BlockMNIST-Top images in the first row and the
corresponding input gradients of standard MLP and Resnet models in the subsequent rows. As
shown in Figure 16, in this setting, in contrast to results on BlockMNIST, input gradients of standard
Resnet18 and MLP models trained on BlockMNIST-Top satisfy assumption (A).

We further substantiate these findings using a proxy metric to quantitatively measure feature leakage
in BlockMNIST-based datasets. As discussed in Section 5, in the BlockMNIST setting, we can
restate assumption (A) as follows: Do input gradient attributions highlight the signal block over
the null block? We measure the extent to which input gradients of a given trained model satisfies
assumption (A) by evaluating the fraction of top-k attributions that are placed in the null block.
In Figure 16, we show that the fraction of top-k attributions in the null block, when averaged over
all images in the test dataset, is significantly greater for standard MLPs & CNNs than for robust
MLP & CNNs. In Figure 17, we show that input gradient attributions of standard models trained
on BlockMNIST-Top place significantly fewer attributions in the null block, compared to attributions
of standard models trained on BlockMNIST. In both cases, the proxy metric further validates our
findings vis-a-vis input gradients of standard & robust models and feature leakage.

D.2 Effect of choice and number of classes in BlockMNIST data

In this section, we show that our analysis on BlockMNIST-based datasets in Section 5 is robust to
the choice and number of classes in BlockMNIST data. In particular, we reproduce our empirical
findings vis-a-vis feature leakage and input gradient attributions of standard vs. robust models on
three additional BlockMNIST-based tasks. In Figure 18 and Figure 19, we evaluate input gradients of
standard and robust models trained on BlockMNIST and BlockMNIST-Top data, wherein the MNIST
digits in class 0 and class 1 correspond to digits 2 and 4 (in the signal block) respectively. Similarly,
in Figure 20 and Figure 21, we reproduce our empirical findings from Section 5 on BlockMNIST and
BlockMNIST-Top data in which the MNIST digits in class 0 and class 1 correspond to digits 3 and
7 (in the signal block) respectively. In Figure 22 and Figure 23, we show that (i) input gradients of
standard models violate assumption (A) due to feature leakage and (ii) adversarial training mitigates
feature leakage on 10-class BlockMNIST and BlockMNIST-Top data, wherein each class i{0, . . . , 9}
corresponds to MNIST digit i in the signal block.

D.3 Does randomness in initialization explain why input gradients violate (A)?

In this section, we investigate whether the poor quality of input gradients in standard models is
due to randomness retained from the initialization. Figure 24 shows scatter plots of input gradient
values over all pixels in all images before (x-axis) and after (y-axis) standard training on four image
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classification benchmarks. The results indicate that (i) the scale of gradients after training is at least
an order of magnitude larger than those before training and (ii) the gradient values before and after
training are uncorrelated. Together, these results suggest that random initialization does not have
much of a role in determining the input gradients after training.

D.4 Do other feature attribution methods exhibit feature leakage?

In this section, we evaluate feature leakage in five feature attribution methods: Integrated Gradi-
ents [22], Layer-wise Relevance Propagation (LRP) [24], Guided Backprop [16], Smoothgrad [2]
(with standard deviation σ ∈ {0.1, 0.3, 0.5}), and Occlusion [67] (with patch size ρ ∈ {5, 10}).
First, we evaluate the aforementioned feature attribution methods on standard models trained on
BlockMNIST data. As shown in Figure 25 and Figure 26, in addition to vanilla input gradients, all
five feature attribution methods evaluated on standard MLPs and Resnet18 models highlight the
MNIST signal block as well as the null block. Conversely, Figure 27 and Figure 28 show that when
standard MLPs and Resnet18 models are trained on BlockMNIST-Top data, all feature attribution
methods exclusively highlight the MNIST signal block. These results collectively indicate that similar
to vanilla input gradient attributions, multiple feature attribution methods exhibit feature leakage.
Furthermore, consistent with our findings on adversarial robustness vis-a-vis feature leakage, Fig-
ure 29 and Figure 30 show that feature attribution method evaluated on adversarially robust MLPs
and Resnet18 model do not exhibit feature leakage on BlockMNIST data.
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BlockMNIST images

Input gradients of standard MLP

Input gradients of standard Resnet18

Input gradients of `2 robust MLP (ε = 2)

Input gradients of `2 robust Resnet18 (ε = 4)

Figure 14: BlockMNIST 0 vs. 1. 40 BlockMNIST (MNIST 0 vs. 1) images and their corresponding
input gradients. Recall that every image consists of a signal and null block, each randomly placed at
the top or bottom. The signal block, containing the MNIST digit 0 or 1, determines the image class, 0
or 1. The null block, containing the square patch, does not encode any information of the image class.
The second, third, and fourth rows show input gradients of standard Resnet18, standard MLP, `2
robust Resnet18 (ε = 2) and `2 robust MLP (ε = 4) respectively. The plots clearly show that input
gradients of standard BlockMNIST models incorrectly highlight the non-discriminative null block as
well, thereby violating (A). In contrast, input gradients of robust models highlight the signal block,
suppress the null block, and satisfy (A). See Appendix D.1 for details.

BlockMNIST-Top images

Input gradients of standard MLP

Input gradients of standard Resnet18

Figure 15: BlockMNIST-Top 0 vs. 1. 20 BlockMNIST-Top (MNIST 0 vs. 1) images and input
gradients of standard MLP and Resnet18 models. As shown in the first row, the signal & null blocks
are fixed at the top & bottom respectively in BlockMNIST-Top images. In contrast to results on
BlockMNIST in fig. 1, input gradients of standard models trained on BlockMNIST-Top highlight the
signal block, suppress the null block, and satisfy (A). Please see Appendix D.1 for details.
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Figure 16: Proxy metric to compare input gradients of standard and robust models trained on
BlockMNIST (0 vs. 1) data. The proxy metric measures the fraction of top-k attributions that are
placed in the null block of images in the test dataset. The left and right subplots evaluate this metric on
input gradient attributions of standard and robust Resnet18 models and MLPs respectively. Compared
to input gradients of standard models, adversarially trained models place significantly fewer top-k
attributions in the null block for multiple values of unmasking fraction k. Details in Appendix D.1.
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Figure 17: Proxy metric to compare input gradients of standard models trained on
BlockMNIST and BlockMNIST-Top (0 vs. 1) data. The proxy metric measures the fraction of top-k
attributions that are placed in the null block of images. The left and right subplots evaluate this metric
on input gradient attributions of standard Resnet18 models and MLPs trained on BlockMNIST and
BlockMNIST-Top data respectively. Compared to input gradients of models trained on BlockMNIST,
standard models trained on BlockMNIST-Top place significantly fewer top-k attributions in the null
block for multiple values of unmasking fraction k. Details in Appendix D.1.

BlockMNIST images (MNIST digits 2 vs. 4)

Input gradients of standard MLP

Input gradients of standard Resnet18

Input gradients of `2 robust MLP (ε = 2.5)

Input gradients of `2 robust Resnet18 (ε = 2.5)

Figure 18: BlockMNIST 2 vs. 4. 40 BlockMNIST (MNIST 2 vs. 4) images and their corresponding
input gradients. The signal block, containing the MNIST digit 2 or 4, determines the image class, 0 or
1. The second, third, and fourth rows show input gradients of standard Resnet18, standard MLP, `2
robust Resnet18 (ε = 2.5) and `2 robust MLP (ε = 2.5) respectively. The plots clearly show that
input gradients of standard BlockMNIST models incorrectly highlight the non-discriminative null
block as well, thereby violating (A). In contrast, input gradients of robust models highlight the signal
block, suppress the null block, and satisfy (A). See Appendix D.1 for details.

BlockMNIST-Top images (MNIST digits 2 vs. 4)

Input gradients of standard MLP

Input gradients of standard Resnet18

Figure 19: BlockMNIST-Top 2 vs. 4. 20 BlockMNIST-Top (MNIST 2 vs. 4) images and correspond-
ing input gradients of standard MLP and Resnet18 models. As shown in the first row, the signal & null
blocks are fixed at the top & bottom respectively in BlockMNIST-Top images. In contrast to results
on BlockMNIST in fig. 1, input gradients of standard models trained on BlockMNIST-Top highlight
the signal block, suppress the null block, and satisfy (A). Please see Appendix D.1 for details.
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BlockMNIST images (MNIST digits 7 vs. 3)

Input gradients of standard MLP

Input gradients of standard Resnet18

Input gradients of `∞ robust MLP (ε = 0.15)

Input gradients of `∞ robust Resnet18 (ε = 0.15)

Figure 20: BlockMNIST 3 vs. 7. 40 BlockMNIST (MNIST 3 vs. 7) images and their corresponding
input gradients. The signal block, containing the MNIST digit 3 or 7, determines the image class, 0 or
1. The second, third, and fourth rows show input gradients of standard Resnet18, standard MLP, `∞
robust Resnet18 (ε = 0.15) and `∞ robust MLP (ε = 0.15) respectively. The plots clearly show that
input gradients of standard BlockMNIST models incorrectly highlight the non-discriminative null
block as well, thereby violating (A). In contrast, input gradients of robust models highlight the signal
block, suppress the null block, and satisfy (A). See Appendix D.1 for details.

BlockMNIST-Top images (MNIST digits 7 vs. 3)

Input gradients of standard MLP

Input gradients of standard Resnet18

Figure 21: BlockMNIST-Top 3 vs. 7. 20 BlockMNIST-Top (MNIST 3 vs. 7) images and input
gradients of standard MLP and Resnet18 models. As shown in the first row, the signal & null blocks
are fixed at the top & bottom respectively in BlockMNIST-Top images. In contrast to results on
BlockMNIST in fig. 1, input gradients of standard models trained on BlockMNIST-Top highlight the
signal block, suppress the null block, and satisfy (A). Please see Appendix D.1 for details.
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BlockMNIST images (multiclass MNIST-10)

Input gradients of standard MLP

Input gradients of standard Resnet18

Input gradients of `2 robust MLP (ε = 3)

Input gradients of `2 robust Resnet18 (ε = 3)

Figure 22: Multiclass BlockMNIST. 40 BlockMNIST (all MNIST classes) images and their corre-
sponding input gradients. dataset. In this setting, the signal block, containing an MNIST digit sampled
from a class chosen uniformly at random, determines the image class y ∈ {0, . . . , 9}. The second,
third, and fourth rows show input gradients of standard Resnet18, standard MLP, `2 robust Resnet18
(ε = 3) and `2 robust MLP (ε = 3) respectively. The plots clearly show that input gradients of
standard BlockMNIST models incorrectly highlight the non-discriminative null block as well, thereby
violating (A). In contrast, input gradients of robust models highlight the signal block, suppress the
null block, and satisfy (A). See Appendix D.1 for details.

BlockMNIST-Top images (Multiclass MNIST)

Input gradients of standard MLP

Input gradients of standard Resnet18

Figure 23: Multiclass BlockMNIST-Top. 40 BlockMNIST-Top (all MNIST classes) images and cor-
responding input gradients of standard MLP and Resnet18 models. As shown in the first row, the signal
& null blocks are fixed at the top & bottom respectively in BlockMNIST-Top images. In contrast to re-
sults on BlockMNIST in fig. 1, input gradients of standard models trained on BlockMNIST-Top high-
light the signal block, suppress the null block, and satisfy (A). Please see Appendix D.1 for details.
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Figure 24: Does random initialization affect input gradients after training? The scatter plots
above show the gradient values at the beginning of training and after end of training on y-axis and
x-axis respectively. We can see that the scale of gradients is much larger at the end of training
compared to that at the beginning of training and both of them are uncorrelated. This suggests that
the poor quality of input gradients of standard trained models is a result of the training process, and
not because of random initialization.
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BlockMNIST data Input Gradients

BlockMNIST data Integrated Gradients

BlockMNIST data Layer­wise Relevance Propagation (LRP)

BlockMNIST data Guided Backprop

BlockMNIST data SmoothGrad (std. dev.: 0.1)

BlockMNIST data SmoothGrad (std. dev.: 0.3)

BlockMNIST data SmoothGrad (std. dev.: 0.5)

BlockMNIST data Occlusion (size: 5)

BlockMNIST data Occlusion (size: 10)

Standard MLP

Figure 25: Multiple instance-specific feature attribution methods evaluated using a standard two-layer
MLP trained on BlockMNIST data. All feature attribution methods exhibit feature leakage, as the
attributions highlight the non-predictive null block in addition to the MNIST signal block.
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BlockMNIST data Input Gradients

BlockMNIST data Integrated Gradients

BlockMNIST data Layer­wise Relevance Propagation (LRP)

BlockMNIST data Guided Backprop

BlockMNIST data SmoothGrad (std. dev.: 0.1)

BlockMNIST data SmoothGrad (std. dev.: 0.3)

BlockMNIST data SmoothGrad (std. dev.: 0.5)

BlockMNIST data Occlusion (size: 5)

BlockMNIST data Occlusion (size: 10)

Standard ResNet18

Figure 26: Multiple instance-specific feature attribution methods evaluated using a standard ResNet18
trained on BlockMNIST data. All feature attribution methods exhibit feature leakage, as the attribu-
tions highlight the non-predictive null block in addition to the MNIST signal block. Surprisingly, in
some cases, LRP (third row) exclusively highlights the null block.
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BlockMNIST­Top data Input Gradients

BlockMNIST­Top data Integrated Gradients

BlockMNIST­Top data Layer­wise Relevance Propagation (LRP)

BlockMNIST­Top data Guided Backprop

BlockMNIST­Top data SmoothGrad (std. dev.: 0.1)

BlockMNIST­Top data SmoothGrad (std. dev.: 0.3)

BlockMNIST­Top data SmoothGrad (std. dev.: 0.5)

BlockMNIST­Top data Occlusion (size: 5)

BlockMNIST­Top data Occlusion (size: 10)

Standard FCN

Figure 27: Multiple instance-specific feature attribution methods evaluated using a standard two-layer
MLP trained on BlockMNIST-Top images, in which the MNIST signal block is fixed at the top. On
this dataset, feature attributions of all five methods highlight discriminative features in the signal
block, suppress the null block, and satisfy (A).
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BlockMNIST­Top data Input Gradients

BlockMNIST­Top data Integrated Gradients

BlockMNIST­Top data Layer­wise Relevance Propagation (LRP)

BlockMNIST­Top data Guided Backprop

BlockMNIST­Top data SmoothGrad (std. dev.: 0.1)

BlockMNIST­Top data SmoothGrad (std. dev.: 0.3)

BlockMNIST­Top data SmoothGrad (std. dev.: 0.5)

BlockMNIST­Top data Occlusion (size: 5)

BlockMNIST­Top data Occlusion (size: 10)

Standard ResNet18

Figure 28: Multiple instance-specific feature attribution methods evaluated using a standard ResNet18
trained on BlockMNIST-Top data, in which the MNIST signal block is fixed at the top. On this dataset,
feature attributions of all five methods highlight discriminative features in the signal block, suppress
the null block, and satisfy (A). Surprisingly, LRP attributions (third row) highlight the null patch of
BlockMNIST-Top images as well.

33



BlockMNIST data Input Gradients

BlockMNIST data Integrated Gradients

BlockMNIST data Layer­wise Relevance Propagation (LRP)

BlockMNIST data Guided Backprop

BlockMNIST data SmoothGrad (std. dev.: 0.1)

BlockMNIST data SmoothGrad (std. dev.: 0.3)

BlockMNIST data SmoothGrad (std. dev.: 0.5)

BlockMNIST data Occlusion (size: 5)

BlockMNIST data Occlusion (size: 10)

2 Robust MLP

Figure 29: Multiple instance-specific feature attribution methods evaluated using a `2 robust two-layer
MLP trained on BlockMNIST data. Consistent with our findings on adversarial robustness vis-a-vis
feature leakage, feature attributions of all methods of robust models do not exhibit feature leakage.
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BlockMNIST data Input Gradients

BlockMNIST data Integrated Gradients

BlockMNIST data Layer­wise Relevance Propagation (LRP)

BlockMNIST data Guided Backprop

BlockMNIST data SmoothGrad (std. dev.: 0.1)

BlockMNIST data SmoothGrad (std. dev.: 0.3)

BlockMNIST data SmoothGrad (std. dev.: 0.5)

BlockMNIST data Occlusion (size: 5)

BlockMNIST data Occlusion (size: 10)

2 Robust ResNet18

Figure 30: Multiple instance-specific feature attribution methods evaluated using a `2 robust ResNet18
trained on BlockMNIST data. Consistent with our findings on adversarial robustness vis-a-vis feature
leakage, feature attributions of all methods (except LRP) of robust models do not exhibit feature
leakage.
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E Proof of Theorem 1

We first begin with the definition of a function, ψ : R2 → R which will prove useful in the analysis:

ψ(a, b):=φ(a+ b)− φ(−a+ b) =


a− b if a ≤ − |b|

0 if b ≤ 0, |a| ≤ |b|
2a if b ≥ 0, |a| ≤ |b|
a+ b if a ≥ |b|

, (5)

where we recall that φ(a) = max(a, 0) is the ReLU nonlinearity.

Proof of Theorem 1 in the rich regime. We first claim that the max-margin classifier (4) is given

by ν∗ = 1
2δθ∗1 + 1

2δθ∗2 , where θ1:=

(
1√
2
, 1√

2((d/2)+(1−(ηd/2)2)
z, (1−(ηd/2))√

2((d/2)+(1−(ηd/2))2)

)
and

θ2:=

(
−1√
2
, −1√

2((d/2)+(1−(ηd/2))2)
z, (1−(ηd/2))√

2((d/2)+(1−(ηd/2))2)

)
with z ∈ Rd̃·d denoting the concate-

nation of d/2 copies of u∗ ∈ Rd̃ and d/2 copies of 0 vectors of dimension d̃ each. To do so, we
use [48, Proposition 12] which requires us to verify that there exists a probability distribution p∗ over
the training data points such that:

Support(ν∗) ∈ arg max
(w,r,b)∈Sdd̃+1

E(x,y)∼p∗ [y · (wφ (〈r, x〉+ b))] , and (6)

Support(p∗) ∈ arg min
(x,y)∈D

y · E(w,r,b)∼ν∗ [wφ (〈r, x〉+ b)] , (7)

where Sdd̃+1 denotes the unit sphere in Rdd̃+2. In order to verify this condition, we use p∗ =
1
d

∑
j∈[d/2]
y∈{±1}

δ(yũj ,y), where ũj ∈ Rd̃·d is defined as the concatenation of d vectors, each in Rd̃, with

the jth one being u∗, the remaining [d/2] \ {j} being −ηu∗ and the last [d/2] being all zero vectors.

We first prove (7). Consider the point (û, y = 1) in the support of the training distribution with
û = (u∗ + ηg1, ηg2, · · · , ηgd/2, 0, · · · , 0). We see that:

y · E(w,r,b)∼ν∗ [wφ (〈r, û〉+ b)]

=
1

2
· 1√

2

(
φ

(
〈z, û〉√

2 ((d/2) + (1− (ηd/2))2)
+

1− (ηd/2)√
2 ((d/2) + (1− (ηd/2))2)

)

−φ
(

−〈z, û〉√
2 ((d/2) + (1− (ηd/2))2)

+
1− (ηd/2)√

2 ((d/2) + (1− (ηd/2))2)

))
Since 〈z, û〉 = 1 + η

∑
i∈[d/2]〈gi, u∗〉 ≥ 1− (ηd/2) > 0. Consequently, using (5), we have that:

y · E(w,r,b)∼ν∗ [wφ (〈r, û〉+ b)] ≥ 1

2
√

2
· 2 (1− (ηd/2))√

2 ((d/2) + (1− (ηd/2))2)
= y · E(w,r,b)∼ν∗ [wφ (〈r, yũj〉+ b)] .

This proves (7).

We now prove (6). For θ = (w, r, b), denote L(θ):=ED [y · (wφ (〈r, x〉+ b))]. We have L(θ1) =

L(θ2) = 1
d ·
∑
j∈[d/2]

1√
2

2(1−(ηd/2))√
2((d/2)+(1−(ηd/2))2)

= 1−(ηd/2)
2
√

(d/2)+(1−(ηd/2))2
. We will now show that

maxθ∈Sd+1 L(θ) = 1−(ηd/2)
2
√

(d/2)+(1−(ηd/2))2
. For a given θ = (w, r, b), we first show that it is sufficient

to consider the case where r is the concatenation of αiu∗ for some α1, · · · , αd. In order to do this,
given any θ = (w, r, b), let αi:=〈ri, u∗〉 for i ∈ [d/2] denote the inner product of the ith-block vector
of r with u∗ and let ᾱ:= 1

d/2

∑
i∈[d/2] αi be the mean of αi. The function L(θ) can be simplified as:

L(θ) =
w

d

∑
i∈[d/2]

(φ (αi − (ηd/2)ᾱ+ b)− φ (−αi + (ηd/2)ᾱ+ b)) .

We can now consider r′ to be the concatenation of 〈ri, u∗〉u∗ for i ∈ [d/2] and the remaining
coordinates equal to zero, which ensures that L(θ) = L(θ′) for θ′ = (w, r′, b) and ‖θ‖ ≥ ‖θ′‖. We
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can then choose |w′| ≥ |w| such that ‖(w′, r′, b)‖ = 1 and L((w′, r′, b)) > L(θ). So it suffices to
consider L(θ) for θ = (w, r, b) where r is the concatenation of αiu∗ for some αi for i ∈ [d/2] and
the remaining coordinates being set to zero. Let us consider two situations separately:

Case I, b ≥ 0: Recall from (5) the definition ψ(a, b):=φ(a + b) − φ(−a + b). First note from (5)
that, |ψ(a, b)− ψ(a′, b)| ≤ 2 |a− a′| and ψ(a, b) − ψ(a′, b) ≥ a − a′ for every a > a′. If αj < 0
for some j, then choosing r′j = rj − 2αiw

∗ with r′i = ri for all i 6= j gives us a corresponding θ′
satisfying

L(θ′) ≥ w

d

∑
i 6=j

(φ (αi − (ηd/2)ᾱ+ b)− φ (−αi + (ηd/2)ᾱ+ b))− 2η(d/2− 1) |αi|

+
w

d
(φ (αi − (ηd/2)ᾱ+ b)− φ (−αi + (ηd/2)ᾱ+ b)) + (1− η) |αi|

≥ L(θ) +
w

d
· (1− ηd) · |αi| .

So, it suffices to restrict our attention to θ such that αi ≥ 0 for all i in order to prove (6). We will
now show that making all αi equal will further increase the value of L. In order to see this, let
α1 = mini∈[d/2] αi and α2 = maxi∈[d/2] αi. Then constructing r′ from r by replacing α1 and α2

with α′:=α1+α2

2 ensures that ‖r′‖ ≤ ‖r‖ while at the same time L((w, r′, b))− L((w, r, b)) since
α1 ≥ 0 implies α1 − (ηd/2)ᾱ > − (α2 − (ηd/2)ᾱ). If αi = αj for all i, j ∈ [d], then from (5),

L(θ) =
w

d

∑
i∈[d]

αi − (ηd/2)ᾱ+ min (αi − (ηd/2)ᾱ, b) = (1− (ηd/2))w

(
ᾱ+ min

(
ᾱ,

b

1− (ηd/2)

))
.

The maximizer of the above expression under the constraint ‖θ‖2 = w2 + (d/2)ᾱ2 + b2 = 1 can
be seen to be when w = ± 1√

2
, ᾱ = 2√

(d/2)+(1−(ηd/2))2
and b = 1−(ηd/2)√

2((d/2)+(1−(ηd/2))2)
achieving

value 1−(ηd/2)
2
√

(d/2)+(1−(ηd/2))2
.

Case II, b < 0: In this case, we have from (5) that

L(θ) ≤ |w|
d

∑
i∈[d]

αi − (ηd/2)ᾱ = (1− (ηd/2)) |w| ᾱ ≤ (1− (ηd/2)) |w| ‖r‖√
d/2

≤ 1− (ηd/2)

2
√
d/2

<
1− (ηd/2)√

(d/2) + (1− (ηd/2))2
,

where we used η < 1
10d in the last step. This shows that ν∗ = 1

2δθ∗1 + 1
2δθ∗2 is a max-margin classifier

satisfying (4).

Gradient magnitude: For any input (x, y), we note that the input gradient is of the form
∇xL(ν∗, (x, y)) = αz for some α 6= 0. Consequently, the claim about the gradient magnitudes in
different coordinates follows from the structure of z proved above.
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F Effect of adversarial training

Consider training a model that is adversarially robust in an `p ball of radius ε. Assuming that the inner
iterations of adversarial training find the optimal perturbations, it can be shown that if adversarial
training converges asymptotically (i.e., in the rich regime), it does so to an appropriate max-margin
classifier [68]:

ν∗:= arg max
ν∈P(Sdd̃+1)

min
(x,y)∈Bp(D,ε)

y · f(ν, x), (8)

where Bp(D, ε):=
{

(x, y) : (x̃, y) ∼ D, ‖x− x̃‖p ≤ ε
}

. This implies that using the techniques of
previous section, we should be able to analyze the input gradient. However, such analysis requires
an explicit form of the max-margin classifier defined above. In contrast to the standard training
studied above, computing explicit form of the max-margin classifier is significantly non-trivial in the
adversarially training case even for the simple special case of d̃ = 1, η = 0 and u∗ = 1. While we
are unable to explicitly compute the max-margin classifier even for this case, we make the following
conjecture about the max-margin classifier.

Conjecture 1. Let data distribution D follow (2) with d̃ = 1, η = 0 and u∗ = 1. Then, the classifier
ν̃ defined below is a max-margin classifier for adversarial training (8) for p =∞ and ε close to 0.5:

ν̃:=
1

d

∑
i∈[d/2]

δθi + δθ′i , (9)

with θi:=( 1√
2
, 3√

20
ei,
−1√
20

), θ′i:=(−1√
2
, −3√

20
ei,
−1√
20

) where ei ∈ Rd denotes ith standard basis vector.

Figure 31 empirically verifies two consequences of this conjecture. In Figure 31(a), we show that
first-layer weights with large alignment with standard basis vectors also have large second-layer
weights, indicating that axis-aligned first-layer weights are highly influential in the final model’s
prediction. Figure 31(b) shows that the biases in first-layer ReLU units are predominantly negative.
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(a) Alignment of 1st layer FCN weights with standard basis vectors
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(b) Univariate distribution over 1st layer FCN bias
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`1 Adversarial Training Dynamics on Synthetic Data, ✏ = 0.45

1st layer weights aligned with standard 
basis vectors have large 2nd layer weights

Figure 31: Adversarial training dynamics for training one-hidden-layer FCNs with width 50, 000
on 10-dimensional synthetic data. Subplot (a) shows that first-layer neurons aligned with standard
basis vectors have large second-layer weights. Given a normalized 1st layer weight vector (i.e.,
rescaled so that it has unit `2 norm), the x-axis in (a) plots the coordinate with largest magnitude in
this normalized vector. Note that the gap around origin is due to that fact that the largest magnitude
coordinate in a unit `2 norm vector in d = 10 dimensions is at least 1√

d
≈ 0.32. Subplot (b) shows

that `∞ adversarial training results in first-layer bias terms that are predominantly negative. These
observations support Conjecture 1 and indicate that adversarial training quickly enters the rich regime.
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The following lemma shows that the input gradients of ν̃ in (9) indeed highlight j∗(x).

Lemma 1. Let data distribution D follow (2) with d̃ = 1, η = 0 and u∗ = 1 and let ν̃ be as defined
in (9). Then, for any (x, y) ∼ D, we have: ∇xL(ν̃, (x, y)) = c · ej∗(x), where c 6= 0 is a constant.

Assuming Conjecture 1, this lemma shows that for the special case d̃ = 1 and η = 0, adversarially
trained models have input gradients that reveal instance-specific features important for classification.
Conjecture 1 and Lemma 1 also explain several other empirically observed properties of adversarial
training such as visually perceptible input gradients and adversarial examples [29]. In this section,
we prove Lemma 1.

Proof of Lemma 1. Given the classifier ν̃ and a data point (x, y), the input gradient is given by

∇xL(ν̃, (x, y)) = c · ∇xf(ν̃, x)

= c · E(w,r,b)∼ν̃ [wφ′ (〈r, x〉+ b) r] ,

where c = −y exp(−y·f(ν̃,x))
1+exp(−y·f(ν̃,x)) . Recall from (9) that

ν̃ =
1

d

∑
i∈[d/2]

δθi + δθ′i ,

where θi:=( 1√
2
, 3√

20
ei,
−1√
20

) and θ′i:=(−1√
2
, −3√

20
ei,
−1√
20

), ei denotes the ith standard basis vector in
Rd. If (x, y) = (yej∗(x), y) and (w, r, b) ∼ δθi or (w, r, b) ∼ δθ′i , then Pr [φ′ (〈r, x〉+ b) 6= 0] > 0

if and only if i = j∗(x). Consequently, the only contribution the input gradient comes from δθj∗(x)
and δθ′

j∗(x)
. So,

∇xL(ν̃, (x, y)) = c · E(w,r,b)∼ν̃ [wφ′ (〈r, x〉+ b) r]

= c′ ·
(
E(w,r,b)∼δθj∗(x)

[wφ′ (〈r, x〉+ b) r] + E(w,r,b)∼δθ′
j∗(x)

[wφ′ (〈r, x〉+ b) r]

)
= c′′ · ej∗(x).

This proves the result.
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