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A EQUIVARIANCE PROPERTY OF SEQUENCE AND STRUCTURE TRANSLATION

We first quickly recap the process of sequence and structure translation in each translation layer. At
(t + 1)"™ layer, the decoder takes protein P* = {(s}, =}, O})} L, and context features {m!}, {z};}
as the input. It encodes sequence-structure interplay and integrates all interactions into updated
context features using SeqIPA adapted from Invariant Point Attention (IPA) ( , )
in a way that its roto-translation invariant property is kept. The updates of C, positions, frame
orientations, and type distributions are then predicted based on updated context features. The whole
process can be summarized as follows:

sit05 = MLP,(s!), (12)
mi Tt 2 = SealPA({mi}, {=];}, {s;""7}, {={}. {O}}), (13)
&t = MLP,(m!™' m?), 2!t =z! + Azl = ! + O!a!, (14)

O! = convert (MLP,(m}™",m?)), OI'= 0:0!, (15)

st = softmax (A MLP(m!t m?, sf+0'5)). (16)

To derive the equivariance property of each translation step, we use three functions X', O, S to denote
the network that predicts the C,, position translation, orientation translation, and sequence translation
described above, respectively. Formally, we have:

Azt = X (P, (17)
Ot = O(Ph), (18)
sith = S(Ph. (19)

Note that X', O, S also take {m} and {z{,} as input and we omit these context features for simplicty,
as they remain invariant to global rigid transformations. X', O, S are not separate networks, and they
share the same input and the same SeqIPA, but are equipped with different MLPs. With the above
definitions, we can derive the following proposition:

Proposition 1 (Roto-Translation Equivariance). Let Tg , denote any SE(3) transformation (rigid
transformation) operating on the protein object Pt = {(sﬁ, a:lf, Of) f;l, with a rotation matrix
R € SO(3) and a translation vector r € R3. The function X, O, S satisfy the following equivariance
properties:

X o T (P') = RX(PY), (20)
O o Tr.(P') = RO(P), 21
SoTrr(P") = S(PY), (22)

where Tr»(P!) = {(st, ! + r, RO} }N ,.

Intuitively, the proposition states that in each translation step, the updates of C,, positions and
frame orientations are equivariant with respect to input protein structures, and the updates of type
distributions are invariant.

Proof. We first prove that Eq. 20 holds. Notice that SeqIPA is aware of the orientations of the input
structure, and the updated context features are invariant (Eq. 13). Therefore, the predicted deviation
of C,, positions, i.e., if, is invariant (Eq. 14). Then, we have:

X o Trr(P") = RO&! = RX(P"). (23)
The Eq. 21 and Eq. 22 can be proved in a similar way. O
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B MODEL DETAILS

B.1 PSEUDO CODE

Algorithm 1 PROTSEED

Require Initial single features {m;} € RV*“n and pair features {z;;} € RV*Nx¢:

1: m{, z); < Linear(m;), Linear(z;;) >m) € R% z); € R
2: forl<0OtoL—1do

3. mitt « MHA({m!}, {z};}) > Eq. 1
4: zH'O = zl + Linear(mlJrl ® mH'l) > Eq. 2
5: zH'O = zH'O  + TriangleUpdate; ({ z;; [r0.5yy >Eq. 4
6: le — zHO s + TriangleUpdatez ({2;; l+0 ™)} >Eq.5
7: end for

8: mY, zZ — mlL , zZL > Initialize context features for decoder
9: PO+ {(s9,20 00) Y1+ {(5 - 1,(0,0,0), I3)} Y, > Initialize protein P°
10: fort<—0toT—1do
11: s« MLP.(st) > sit0% e Re
122 m{t 2 SeqIPA({m!}, {2}, {s{T7°}, {x!}, {O}}) > Eq. 6 and Section B.2
13 &f «+ MLP (Mt m?) > Deviation of C,, positions in local frame
14: 2zt + Olal > Deviation of C,, positions in global frame
15: O} + convert ( MLP (mlt! ,mY)) > Convert a quaternion to a rotation matrix

16: O§+1 — OfOf

17: 8!t « softmax (A - MLPs(m/!™!, m{, s!70%))

18 P (s 2l O N > Eq. 9
19: end for

Return: The trajectory of the protein translation {P*}7_,.

B.2 PARAMETERIZATION OF SEQIPA

SeqIPA is adapted from the Invariant Point Attention (IPA) ( , ), which takes residue
types as the additional input to capture the interactions between current decoded sequences, structures,
and the context features. We ensure that the additional input does not affect the invariance property
of the IPA to make full use of its capacity. Specifically, we propose the following two strategies to
parameterize the SeqIPA.

SeqIPA-Addition. Given that {s!"%} share the same dimensionality with {m!}, a very simple
strategy is to just add embeddings of residue types onto single representations. Following the original
implementation of IPA, we leave the pair features unchanged in this approach.

1 ttl t t+0.5 t t
mi 2 = SeqlPA({mi}, {=];}, {si""°}, {zi}, {O}}) 24)
= IPA({m; + 5"}, {z};}. {xi}, {O}}). (25)
SeqIPA-Attention. Another more complicated strategy is to construct a new set of single representa-
tions and pair representations based on the embeddings of the current residue types Then, we adopt

a lightweight encoder similar to the encoder introduced in Section 3.2 to update m! and z ., which
are then fed into the vanilla IPA module. We summarize the computation flow as follows

m;, Zij = Linear(s!™0%), Linear(si™%° + st+0 %) (26)

m;, Z;; = Encoder({m;}, {Zi;}), (27)
mit0S 205 =l oy, 2!+ 2, (28)
mt*1 41 — SoqIPA({m}, {24}, {s010%). (o'}, {0'}) 29)

= IPA({m; "7}, {27}, {2}, {O}}). (30)
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Figure 5: Superimposition of three generated proteins and their most similar proteins found in the
PDB by FoldSeek. left: a novel protein with loop extended. middle: a novel S—barrel. right: a novel
helical complex.

In practice, we find both strategies work well and their performance is on par with each other. To
make the whole model lightweight, we adopt the first strategy across all the experiments in this
work. We emphasize that the parameterization of the SeqIPA is quite flexible, as long as it can
model interactions between sequences, structures, and context features, and is invariant to the global
transformation of input structures.

B.3 HYPER-PARAMETERS

PROTSEED is implemented in Pytorch. The trigonometry-aware context encoder is implemented with
L = 8 layers, and the sequence-structure decoder is implemented with 7' = 8 layers. The hidden
dimension is set as 256 across all modules. For training, we use a learning rate of 0.001 with 2000
linear warmup iterations. The model is optimized with Adam optimizer on four Tesla V100 GPU
cards. For inference, the temperature of the sequence distribution, i.e., A, is set as 1. We will release
the source code of this work upon acceptance.

C EXPERIMENTAL DETAILS

C.1 CASE STUDY

We conduct three case studies to evaluate PROTSEED’s capability to perform de novo protein design,
including extending the loop of existing proteins, designing novel S—barrels, and designing novel
helical complexes. Specifically, we manually curate a set of secondary structure annotations and
contact features, and ask the model trained in the second task (Section 4.2) to generate novel proteins
based on these context features. We elaborate the way we design context features for each setting.

Extending the Loop. In this setting, we start by calculating the secondary structure annotations and
the contact matrix of an existing protein. We then insert n consecutive “C” (“C” is the secondary
structure annotation for the loop) letters into the original secondary structure annotations at the
position where we want to extend the loop. Similarly, we insert n consecutive rows and columns
filled with zero into the original contact matrix. For a new-inserted residue indexed by 7, we let it to
be in contact with ¢ — 2,4 — 1,4, + 1,7 + 2.

Designing Novel Beta Barrels. In this setting, we grab a simple pattern of S—barrel proteins and
then repeat this pattern multiple times to construct the contact features. The secondary structure
annotations are also calculated by repeating the annotations of the pattern multiple times.

Designing Novel Helical Complexes. Similar to the second case, in this setting, we also take a
simple pattern of helical complexes and construct the contact features by repeating it multiple times.
The secondary structure annotations are all set to be “H”.

In Figure 5, we show the superimposition of three novel proteins designed by PROTSEED against the
most similar proteins in the PDB, one for each setting, which confirms the novelty of the designed
proteins.
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