
A Rademacher complexity and generalization bounds

Herein we briefly review Rademacher complexity, a widely used concept in deriving generalization
bounds, and how it applies in our analysis. For any loss function `(·, ·) and a hypothesis classH of
cost vector predictor functions, the Rademacher complexity is defined as

Rn
` (H) := Eσ,{(xi,ci)}ni=1

[
sup
g∈H

1

n

n∑
i=1

σi`(g(xi), ci)

]
,

where σi are independent Rademacher random variables and (xi, ci) are independent samples from
the joint distribution P for i = 1, . . . , n. The following theorem provides a classical generalization
bounds based on the Rademacher complexity.
Theorem A.1 (Bartlett and Mendelson [2002]). LetH be a hypothesis class from X to Rd and let
b = supĉ∈H(X ),c∈C `(ĉ, c). Then, for any δ > 0, with probability at least 1− δ, for all g ∈ H it holds
that ∣∣∣R`(g;P)− R̂n` (g)

∣∣∣ ≤ 2Rn
` (H) + b

√
2 log(1/δ)

n
.

Moreover, we define the multivariate Rademacher complexity [Maurer, 2016, Bertsimas and Kallus,
2020, El Balghiti et al., 2019] ofH as

Rn(H) = Eσ,x

[
sup
g∈H

1

n

n∑
i=1

σTi g(xi)

]
,

where σi ∈ {−1,+1}d are Rademacher random vectors for i = 1, . . . , n. In many cases of
hypothesis classes, such as linear functions with bounded Frobenius or element-wise `1 norm, the
multivariate Rademacher complexity can be bounded as Rn(H) ≤ C′√

n
where C ′ is a constant that

usually depends on the properties of the data, the hypothesis class, and mildly on the dimensions d
and p. Detailed examples of such bounds have been provided by El Balghiti et al. [2019], Bertsimas
and Kallus [2020].

When the loss function `(·, ·) is additionally L-Lipschitz continuous with respect to the 2-norm in the
first argument, namely |`(ĉ1, c)− `(ĉ2, c)| ≤ L‖ĉ1 − ĉ2‖2 for all ĉ1, ĉ2, c ∈ Rp, then by the vector
contraction inequality of Maurer [2016] we have Rn

` (H) ≤
√

2LRn(H). It is also easy to see that
the the SPO+ loss function `SPO+(·, c) is 2DS-Lipschitz continuous with respect to the 2-norm for
any c and therefore we can leverage the vector contraction inequality of Maurer [2016] in this case.
Combined with Theorem A.1, this yields a generalization bound for the SPO+ loss which, when
combined with Theorems 3.1 and 4.1 yields Corollaries 3.1 and 4.1, respectively. The full proofs of
these corollaries are included below.

Proof of Corollary 3.1 and 4.1. Let b = supĉ∈H(X ),c∈C `(ĉ, c) ≤ 2DS supg∈H,x∈X ‖g(x)‖2. For
any δ > 0, with probability at least 1− δ, for all g ∈ H, it holds that∣∣∣R`(g;P)− R̂n` (g)

∣∣∣ ≤ 4
√

2DSR
n(H) + b

√
2 log(1/δ)

n
.

Since Rn(H) ≤ C′√
n

and log(1/δ) ≥ log(2), we know that there exists some universal constant C1

such that

4
√

2DSR
n(H) + b

√
2 log(1/δ)

n
≤ C1

√
log (1/δ)

n
,

for all δ ∈ (0, 1
2 ) and n ≥ 1. Since ĝnSPO+ minimizes the empirical SPO+ risk R̂nSPO+(·), we have

R̂nSPO+(ĝnSPO+) ≤ R̂nSPO+(g∗SPO+). and therefore, with probability at least 1− δ, it holds that

RSPO+(ĝnSPO+)−R∗SPO+ ≤ 2C1

√
log (1/δ)

n
.

Recall Theorem 3.1, the biconjugate of min{ ε2

DSM
, ε} is ε2

DSM
for ε ∈ [0, DSM2 ] and ε− DSM

4 for
ε ∈ [DSM2 ,∞]. Then if the assumption in Corollary 3.1 holds, with probability at least 1− δ, it holds
that

RSPO(ĝnSPO+;P)−R∗SPO(P) ≤
C2

√
log(1/δ)

n1/4
,
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for some universal constant C2. Also, since the calibration function in Theorem C.1 is linear and thus
convex, then if the assumption in Corollary 3.1 holds, with probability at least 1− δ, it holds that

RSPO(ĝnSPO+;P)−R∗SPO(P) ≤
C3

√
log(1/δ)

n1/2
,

for some universal constant C3.

B Proofs and other technical details for Section 3

B.1 Additional definitions and notation

Recall that S is polyhedral and let ZS denote the extreme points of S. We assume, for simplicity,
that w∗(c) ∈ ZS for all c ∈ Rd, but our results can be extended to allow for other possibilities in
the case when there are multiple optimal solutions of P (c). For any i ∈ {1, . . . , d}, we use ei ∈ Rd
to represent the unit vector whose i-th entry is 1 and others are all zero. Given a vector c′ ∈ Rd−1

and a scalar ξ ∈ R, let (c′, ξ) denote the vector (c′T , ξ)T ∈ Rd. For fixed c′ and when ξ ranges from
negative infinity to positive infinity, the corresponding optimal solution w∗(c′, ξ) will sequentially
take different values in ZS , and we let Ω(c′) = (w1(c′), . . . , wk(c′)(c

′)) denote this sequence. Let
yi(c

′) denote the last element of vector wi(c′) for i = 1, . . . , k(c′). Also, for i = 1, . . . , k(c′)− 1,
we define phase transition location ζi(c′) ∈ R such that (c′, ζi(c

′))Twi(c
′) = (c′, ζi(c

′))Twi+1(c′),
and additionally, we define ζ0(c′) = −∞ and ζk(c′)(c

′) =∞. When there is no confusion, we will
omit c′ and only use k,wi, yi, ζi for simplicity.

Based on the above definition, for all ξ ∈ (ζi−1(c′), ζi(c
′)), it holds that w∗(c′, ξ) = wi(c

′). Also, it
holds that y1(c′) > · · · > yk(c′)(c

′).

B.2 Detailed derivation for Example 1

Let the feasible region be the `1 ball S = {w ∈ R2 : ‖w‖1 ≤ 1} and consider the distribution class
Pcont, symm. Let x ∈ X be fixed, ε > 0 be a fixed scalar, c1 = (9ε, 0)T and c2 = (−7ε, 0)T . Let the
conditional distribution be a mixture of normals defined by Pσ(c|x) := 1

2 (N (c1, σ
2I) +N (c2, σ

2I))

for some σ > 0. The condition mean of c is then c̄ = (ε, 0)T and the distribution Pσ(c|x) is centrally
symmetric around c̄; therefore Pσ ∈ Pcont, symm. Let ĉ = (0, ε)T and ∆ := ĉ− c̄, which yields that
the excess conditional SPO risk is E[`SPO(ĉ, c) − `SPO(c̄, c)] = c̄T (w∗(ĉ) − w∗(c̄)) = ε. Also, for
all c ∈ C, we may assume that w∗(c) ∈ ZS = {±e1,±e2} and hence (c + 2∆)T (w∗(c)− w∗(c +
2∆)) ≤ 2∆T (w∗(c) − w∗(c + 2∆)) ≤ 4ε. Therefore, using E [`SPO+(c̄+ ∆, c)− `SPO+(c̄, c)] =
E
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
, it holds that

E [`SPO+(c̄+ ∆, c)− `SPO+(c̄, c)] ≤ 4εPσ(w∗(c) 6= w∗(c+ 2∆))

≤ 4ε(1− Pσ({‖c− c1‖2 ≤ ε} ∪ {‖c− c2‖2 ≤ ε}))→ 0,

when σ → 0, and hence we have δ̂`(ε;Pcont, symm) = 0.

B.3 Proofs and useful lemmas

Lemma B.1 provides the relationship between excess SPO risk and the optimal solution of (2) with
respect to the difference ∆ = ĉ− c̄ between the predicted cost vector ĉ and the realized cost vector c̄.
Lemma B.1. Let ĉ, c̄ ∈ Rd be given and define ∆ := ĉ− c̄. Let w+ := w∗(∆) and w− := w∗(−∆),
and let y+ and y− denote the last elements of w+ and w−, respectively. If c̄T (w∗(ĉ)− w∗(c̄)) ≥ ε,
then it holds that ∆T (w− − w+) ≥ ε. Additionally, if ∆ = κ · ed for some κ > 0, then it holds that
(y− − y+)κ ≥ ε.

Proof of Lemma B.1. First we have ĉT (w∗(c̄)− w∗(ĉ)) ≥ 0, and therefore it holds that ∆T (w∗(c̄+
∆) − w∗(c̄)) ≥ c̄T (w∗(c̄ + ∆) − w∗(c̄)) ≥ ε. Also, since ∆T (w∗(c̄) − w∗(∆)) ≥ 0 and
∆T (w∗(−∆) − w∗(c̄ + ∆)) ≥ 0, we have ∆T (w− − w+) ≥ ∆T (w∗(c̄ + ∆) − w∗(c̄)) ≥ ε.
Moreover, when ∆ = κ · ed for κ > 0, we have ∆Tw− = ∆Tw1 and ∆Tw+ = ∆Twk, and
therefore, it holds that (y− − y+)κ ≥ ε.
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Lemma B.2 and B.3 provide two useful inequalities.
Lemma B.2. Suppose that a1, . . . , an, b1, . . . , bn ≥ 0 with

∑n
i=1 ai = α and

∑n
i=1 bi = β for

some α, β > 0. Then for all p ≥ 0, it holds that
n∑
i=1

bi

(
1 +

a2
i

b2i

)−p/2
≥ β

(1 + α
β )p

.

Proof. Let ψi(a, b; p) = bi(1 +
a2
i

b2i
)−p/2 and ψ(a, b; p) =

∑n
i=1 ψi(a, b; p). For all p ∈ R, we have

d2

dp2
log(ψ(a, b; p)) =

1

4ψ2(a, b; p)

(
n∑
i=1

ψi(a, b; p) ·
n∑
i=1

ψi(a, b; p) log2

(
1 +

a2
i

b2i

)

−

(
n∑
i=1

ψi(a, b; p) log

(
1 +

a2
i

b2i

))2
 ≥ 0,

for p ≥ 0. Therefore, for all p ≥ 0 it holds that

logψ(a, b; p) ≥ logψ(a, b; 0) + p · (logψ(a, b; 0)− logψ(a, b;−1)).

Also, we have ψ(a, b, 0) = β, and ψ(a, b,−1) =
∑n
i=1

√
a2
i + b2i ≤

∑n
i=1(ai + bi) = α+β. Then,

for all p ≥ 0, it holds that ψ(a, b; p) ≥ βp+1

(α+β)p = β
(1+α

β )p .

Lemma B.3. Let ĉ′ ∈ Rd−1 be given with ‖ĉ′‖2 = 1, and let {wi(ĉ′)}ki=1, {yi(ĉ′)}ki=1, and
{ζi(ĉ′)}ki=0 be the corresponding optimal solution sequence and phase transition location sequence
as described in Section B.1. Let y− = y1(ĉ′) and y+ = yk(ĉ′). Then it holds that

k−1∑
i=1

(
1 + 3ζ2

i

)− d−1
2 (yi − yi+1) ≥ ΞS,ĉ′ · (y− − y+),

where ΞS,ĉ′ = (1 + 2
√

3DS
y−−y+

)1−d.

Proof. Let w′i be the first (d− 1) element of wi. Suppose ζs−1 ≤ 0 < ζs for some s ∈ {1, . . . , k},
then it holds that ĉ′T (wi−wi+1) = −ζi(yi−yi+1) ≥ 0 for i ∈ {1, . . . , s−1} and ĉ′T (wi−wi+1) =
−ζi(yi − yi+1) < 0 for i ∈ {s, . . . , k − 1}. Therefore, we know that

k−1∑
i=1

∣∣ĉ′T (wi − wi+1)
∣∣ = ĉ′T (w1 + wk − 2ws) ≤ 2DS .

Also, we have
∑k−1
i=1 (yi − yi+1) = y− − y+ and |ζi| = −

|ĉ′T (ŵ′i−ŵ
′
i+1)|

yi−yi+1
. Therefore, by the result in

Lemma B.2, we have
k−1∑
i=1

(
1 + 3ζ2

i

)− d−1
2 (yi − yi+1) ≥ y− − y+

(1 + 2
√

3DS
y−−y+

)d−1
.

Lemma B.4 provide a lower bound of the conditional SPO+ risk condition on the first (d−1) element
of the realized cost vector.
Lemma B.4. Let c′ ∈ Rd−1 be a fixed vector and ξ̄ ∈ R, σ > 0 be fixed scalars. Let a random
variable ξ satisfying P(ξ) ≥ α · N (ξ̄, σ2) for all ξ ∈ [−

√
2D2 − ‖c′‖2,

√
2D2 − ‖c′‖2]. Let

c = (c′, ξ) ∈ Rd, and sequence {wi(c′)}ki=0, {ζi(c′)}ki=0 defined as in Section B.1. Let yi denote
the last element of vector wi for i = 1, . . . , k. Let mi =

√
1 + 3‖ζi(c′)‖2/‖c′‖2 for i = 1, . . . , k.

Suppose ∆ = κ · ed for some κ > 0, then for all κ̃ ∈ [0, κ], it holds that

Eξ
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe−

3(κ̃2+ξ̄2)

2σ2

2
·
k−1∑
i=1

e−
3ζ2i (c′)

2σ2 1{‖c′‖ ≤ D
mi
}

√
2πσ

(yi−yi+1).
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Proof of Lemma B.4. Let (w1, . . . , wk) = Ω(c′) as defined in Section B.1, and suppose w∗(c) =
ws and w∗(c + 2∆) = wt for some s ≤ t. By the definition of {ξi(c′)}k0 , we know that ξ ∈
[ζs−1(c′), ζs(c

′)] and ξ + 2κ ∈ [ζt−1(c′), ζt(c
′)]. Therefore, it holds that

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) = (c+ 2∆)T (ws − wt) =

t−1∑
i=s

(c+ 2∆)T (wi − wi+1)

=

t−1∑
i=s

(c+ 2∆− (c′, ζi(c
′)))T (wi − wi+1) =

t−1∑
i=s

(ξ + 2κ− ζi(c′)) · eTd (wi − wi+1)

=

k−1∑
i=1

1{ξ ∈ [ζi − 2κ, ζi]} · (ξ + 2κ− ζi(c′))(yi − yi+1),

where yi denotes the last element of wi for all i = 1, . . . , k. When ξ follows the normal distribution
N (ξ̄, σ2), it holds that

Eξ [1{ξ ∈ [ζi − 2κ, ζi]} · (ξ + 2κ− ζi(c′))]
≥Eξ [1{ξ ∈ [ζi − 2κ̃, ζi]} · (ξ + 2κ− ζi(c′))]

≥
∫ ζi(c

′)

ζi(c′)−2κ̃

αe−
(ξ−ξ̄)2

2σ2 1{‖c′‖ ≤ D
mi
}

√
2πσ2

· (ξ + 2κ− ζi(c′))dξ,

for all κ̃ ∈ [0, κ]. Therefore, it holds that

Eξ
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥

k−1∑
i=1

(yi − yi+1)κ̃κ ·
αe−

3(ζi(c
′)2+κ̃2+ξ̄2)

2σ2 1{‖c′‖ ≤ D
mi
}

2
√

2πσ2

=
ακ̃κe−

3(κ̃2+ξ̄2)

2σ2

2
·
k−1∑
i=1

e−
3ζ2i (c′)

2σ2 1{‖c′‖ ≤ D
mi
}

√
2πσ2

(yi − yi+1).

Lemma B.5 provide a lower bound of the conditional SPO+ risk when the distribution of c = (c′, ε)
is well behaved.

Lemma B.5. Let c̄′ ∈ Rd−1 be a fixed vector and ξ̄ ∈ R, σ > 0 be fixed scalars. Let c′ ∈ Rd−1 be a
random vector satisfying P(c′) ≥ N (c̄′, σ2Id−1) for all ‖c′‖22 ≤ 2D2, and let ξ ∈ R be a random
variable satisfying P(ξ|c′) ≥ α · N (ξ̄, σ2) for all ξ ∈ [−

√
2D2 − ‖c′‖2,

√
2D2 − ‖c′‖2]. Define

ΞS := (1 + 2
√

3DS
dS

)1−d. Suppose ∆ = κ · ed for some κ > 0, then for all κ̃ ∈ [0, κ], it holds that

Ec′,ξ
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe−

3κ̃2+3ξ̄2+‖c̄′‖22
2σ2

4
√

2πσ2
·
γ(d−1

2 , D2)

Γ(d−1
2 )

· ΞS(y− − y+).

Proof of Lemma B.5. By result in Lemma B.4, it holds that

Ec′,ξ
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe−

3(κ̃2+ξ̄2)

2σ2

2
· Ec′

k(c′)−1∑
i=1

e−
3ζ2i (c′)

2σ2 1{‖c′‖ ≤ D
mi
}

√
2πσ2

(yi(c
′)− yi+1(c′))

 .
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For any c′ ∈ Rd−1, let r = ‖c′‖2 and ĉ′ = c′

r . We know that k(c′) = k(ĉ′), ζi(c′) = rζi(ĉ
′),

wi(c
′) = wi(ĉ

′), and yi(c′) = yi(ĉ
′). Then we have

Ec′

k(c′)−1∑
i=1

e−
3ζ2i (c′)

2σ2

√
2πσ2

(yi(c
′)− yi+1(c′))


=

∫
Sd−2

∫ ∞
0

k(ĉ′)−1∑
i=1

e
− 3r2ζ2i (ĉ′)

2σ2 1{r≤ D
mi
}

√
2πσ2

(yi(ĉ
′)− yi+1(ĉ′))rd−2Pc′(rĉ′)drdĉ′,

where Sd−2 = {ĉ′ ∈ Rd−1 : ‖ĉ′‖2 = 1. For fixed ĉ′ ∈ Sd−2 with ĉ′T c̄′ ≥ 0 and i ∈ {1, . . . , k(ĉ′)−
1}, we have∫ D

mi

0

e−
3r2ζ2i (ĉ′)

2σ2

√
2πσ

rd−2Pc′(rĉ′)dr =

∫ D
mi

0

e−
3r2ζ2i (ĉ′)

2σ2

√
2πσ2

· e
− ‖rĉ

′−c̄′‖22
2σ2

(2πσ2)
d−1

2

· rd−2dr

≥
∫ D

mi

0

e−
3r2ζ2i (ĉ′)

2σ2

√
2πσ2

· e
− r

2+‖c̄′‖22
2σ2

(2πσ2)
d−1

2

· rd−2dr

=
e−
‖c̄′‖22
2σ2

√
2πσ2

·
γ(d−1

2 ,
D2(1+3ζ2

i (ĉ′))

m2
i

)

2π
d−1

2

· (1 + 3ζ2
i (ĉ′))−

d−1
2

≥ e−
‖c̄′‖22
2σ2

√
2πσ2

·
γ(d−1

2 , D2)

2π
d−1

2

· (1 + 3ζ2
i (ĉ′))−

d−1
2 ,

where γ(·, ·) is the lower incomplete Gamma function. By Lemma B.3, it holds that
k(ĉ′)−1∑
i=1

(1 + 3ζ2
i (ĉ′))−

d−1
2 (yi(ĉ

′)− yi+1(ĉ′)) ≥ ΞS,ĉ′ · (y− − y+). (5)

Therefore, it holds that

Ec′

k(c′)−1∑
i=1

e−
3ζ2i (c′)

2σ2

√
2πσ2

(yi(c
′)− yi+1(c′))


≥
∫
Sd−2

1{ĉ′T c̄′ ≥ 0} · e
− ‖c̄

′‖22
2σ2

√
2πσ2

·
γ(d−1

2 , D2)

2π
d−1

2

· ΞS,c′(y− − y+)dĉ′

≥ e−
‖c̄′‖22
2σ2

2
√

2πσ2
·
γ(d−1

2 , D2)

Γ(d−1
2 )

· ΞS(y− − y+),

and finally we get

Ec′,ξ
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥ ακ̃κe−

3(κ̃2+ξ̄2)

2σ2

2
· e
− ‖c̄

′‖22
2σ2

2
√

2πσ2
·
γ(d−1

2 , D2)

Γ(d−1
2 )

· ΞS(y− − y+)

=
ακ̃κe−

3κ̃2+3ξ̄2+‖c̄′‖22
2σ2

4
√

2πσ2
·
γ(d−1

2 , D2)

Γ(d−1
2 )

· ΞS(y− − y+).

Now we present a general version of Theorem 3.1. For given parameters M ≥ 1 and α, β,D > 0,
define PM,α,β,D := {P ∈ Pcont, symm : for all x ∈ X with c̄ = E[c|x], there exists σ ∈
[0,min{D,M}] satisfying ‖c̄‖2 ≤ βσ and P(c|x) ≥ α ·N (c̄, σ2I) for all c ∈ Rd satisfying ‖c‖22 ≤
2D2}. By introducing the constant D, we no longer require the conditional distribution P(c|x) be
lower bounded by a normal distribution on the entire vector space Rd. Instead, we only need P(c|x)
has a lower bound on a bounded `2-ball.
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Theorem B.1 (A general version of Theorem 3.1). Suppose the feasible region S is a polyhedron
and define ΞS := (1 + 2

√
3DS
dS

)1−d. Then the calibration function of the SPO+ loss satisfies

δ̂`SPO+(ε;PM,α,β,D) ≥
αΞSγ(d−1

2 , D2)

4
√

2πe
3(1+β2)

2 Γ(d−1
2 )
·min

{
ε2

DSM
, ε

}
for all ε > 0. (6)

Additionally, when D =∞, we have γ(d−1
2 , D2) = Γ(d−1

2 ) and therefore

δ̂`SPO+(ε;PM,α,β) ≥ αΞS

4
√

2πe
3(1+β2)

2

·min

{
ε2

DSM
, ε

}
for all ε > 0.

Proof of Theorem B.1. Without loss of generality, we assume dS > 0. Otherwise, the constant ΞS
will be zero and (6) will be a trivial bound. Let κ = ‖∆‖2 and A ∈ Rd×d be an orthogonal matrix
such that AT∆ = κ · ed for ed = (0, . . . , 0, 1)T . We implement a change of basis and let the new
basis be A = (a1, . . . , ad). With a slight abuse of notation, we keep the notation the same after
the change of basis, for example, now the vector ∆ equals to κ · ed. Since the excess SPO risk
of ĉ = c̄ + ∆ is at least ε, we have κ(y− − y+) ≥ ε. Let κ̃ = min{κ, σ}. Then it holds that
κ̃ exp(− 3κ̃2

2σ2 ) ≥ min{κ, σ} · exp(− 3
2 ). By Lemma B.5, we know that

RSPO(ĉ) = Ec
[
(c+ 2∆)T (w∗(c)− w∗(c+ 2∆))

]
≥
κ̃κe−

3κ̃2+3ξ̄2+‖c̄′‖22
2σ2 γ(d−1

2 , D2)

4
√

2πσ2Γ(d−1
2 )

· ΞS(y− − y+),

where c̄′ is the first (d−1) elements of c̄, ξ̄ is the last element of c̄, and 3ξ̄2 +‖c̄′‖22 ≤ 3‖c̄‖22 = 3α2σ2.
Then we can conclude that

RSPO+(ĉ)−R∗SPO+ ≥
αΞSγ(d−1

2 , D2) · ε

4
√

2πe
3(1+β2)

2 Γ(d−1
2 )
·min

{κ
σ
, 1
}
.

Furthermore, since κ
σ ≥

κ
M ≥

ε
(y−−y+)M ≥

ε
DSM

, we have

RSPO+(ĉ)−R∗SPO+ ≥
αΞSγ(d−1

2 , D2)

4
√

2πe
3(1+β2)

2 Γ(d−1
2 )
·min

{
ε2

DSM
, ε

}
.

B.4 Tightness of the lower bound in Theorem B.1.

Herein we provide an example to show the tightness of the lower bound in Theorem B.1.
Example 2. For any given ε > 0, we consider the conditional distribution P(c|x) = N (−ε′ ·ed, σ2Id)
for some constants ε′, σ > 0 to be determined. For some a, b > 0, let the feasible region S be
S = conv({w ∈ Rd : ‖w1:(d−1)‖2 = a,wd = 0} ∪ {±b · ed}). Although S is not polyhedral, it
can be considered as a limiting case of a polyhedron and the argument easily extends, with minor
complications, to the case where the sphere is replaced by an (d− 1)-gon for d sufficiently large. Let
ĉ = ε′ · ed, we have E [`SPO(ĉ, c)|x]− E [`SPO(c̄, c)|x] = 2bε′. Also, for the excess conditional SPO+
risk we have

E [`SPO+(ĉ, c)|x]− E [`SPO+(c̄, c)|x]→
∫
Rd−1

d−1∏
j=1

e−
c2j

2σ2

√
2πσ2

· e
−
a2 ∑d−1

j=1
c2j

2b2σ2

√
2πσ2

· ε
′2

2
· dc1 . . . dcd−1

=
ε′2

2
√

2πσ2

d−1∏
j=1

∫
R

e−
c2j

2σ2 · e−
a2c2j

2b2σ2

√
2πσ2

dcj

=
ε′2

2
√

2πσ2
·
(

b2

a2 + b2

)(d−1)/2

,
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when ε′ → 0. Therefore, let ε′ = ε
2b , we have E [`SPO(ĉ, c)|x]− E [`SPO(c̄, c)|x] = ε and

E [`SPO+(ĉ, c)|x]− E [`SPO+(c̄, c)|x] =
ε2

8
√

2πσ2b2
·
(

b2

a2 + b2

)(d−1)/2

≤ 1

8
√

2π
·
(
DS

dS

)1−d

· ε
2

σ
,

for some b large enough, and therefore the lower bound in Theorem B.1 is tight up to a constant.

C Proofs and other technical details for Section 4

C.1 Extension of Theorem C.1 and Lemma C.1 and C.2.

Let us first present a more general version of Assumption C.1 that allows the domain of the
strongly convex function to be a subset of Rd. In particular, we define the domain set T ⊆ Rd
by T := {w ∈ Rd : hTi w = si ∀i ∈ [m1], tj(w) < 0 ∀j ∈ [m2]}, where hi ∈ Rd and
si ∈ R for i ∈ [m1], and tj(·) : Rd → R are convex functions for j ∈ [m2]. Clearly,
when m1 = m2 = 0, the set T is the entire vector space Rd. Also, let the closure of T be
T̄ = {w ∈ Rd : hTi w = si ∀i ∈ [m1], tj(w) ≤ 0 ∀j ∈ [m2]}, and with a slight abuse of notation,
let the (relative) boundary of T be ∂T := T̄\T . For any function defined on T , we consider the
(relative) lower limit be limw→∂T = infδ>0 supw∈T :d(w,∂T )≤δ f(w), where the distance function
d(·, ·) is defined as d(w, ∂T ) = minw′∈∂T ‖w − w′‖2.

Assumption C.1 (Generalization of Assumption 4.1). For a given norm ‖ · ‖, let f : T → R be a
µ-strongly convex function on T for some µ > 0. Assume that the feasible region S is defined by S =
{w ∈ T : f(w) ≤ r} for some constant r satisfying limw→∂T f(w) > r > fmin := minw∈T f(w).
Additionally, assume that f is L-smooth on S for some L ≥ µ.

Let H denote the linear subspace defined by the linear combination of all hj , namely H =
span({hj}m2

j=1), and let H⊥ denote its orthogonal complement, namely H⊥ = {w ∈ Rd : hTj w =

0,∀j ∈ [m2]}. Also, for any c ∈ Rd, let projH⊥(c) denote its projection onto H⊥. Theorem C.1
provides an O(ε) lower bound of the calibration function of two different distribution classes, which
include the multi-variate Gaussian, Laplace, and Cauchy distribution. Theorem 4.1 is a special
instance of Theorem C.1 when m1 = m2 = 0 (and thus H⊥ = Rd).

Theorem C.1 (Generalization of Theorem 4.1). Suppose that Assumption C.1 holds with respect to
the norm ‖·‖A for some positive definite matrixA. Then, for any ε > 0, it holds that δ̂`SPO+(ε;Pβ,A) ≥

µ9/2

4(1+β2)L9/2 · ε and δ̂`SPO+(ε;Pα,β,A) ≥ αµ9/2

4(1+β2)L9/2 · ε.

Our analysis for the calibration function relies on the following two lemmas, which utilize the
property of the feasible region to strengthen the “first-order optimality” and provide a “Lipschitz-like”
continuity of the optimization oracle. We want to mention that some of the results in the following
two lemmas generalize the results in El Balghiti et al. [2019] to the cases where the feasible region S
is defined on a subspace of Rd rather than an open set in Rd. The following lemma provides both
upper and lower bound of SPO-like loss.

Lemma C.1 (Generalization of Lemma 4.1). Suppose Assumption C.1 holds with respect to a generic
norm ‖ · ‖. Then, for any c1, c2 ∈ Rd, it holds that

cT1 (w − w∗(c1)) ≥ µ

2
√

2L(r − fmin)
‖projH⊥(c1)‖∗‖w − w∗(c1)‖2, ∀w ∈ S, (7)

and

cT1 (w∗(c2)− w∗(c1)) ≤ L

2
√

2µ(r − fmin)
‖projH⊥(c1)‖∗‖w∗(c1)− w∗(c2)‖2. (8)

The two constants are the same since Theorem 12 in Journée et al. [2010] showed that set S is a
µ√
2Lr

-strongly convex set. The following lemma provides a lower bound in the difference between
two optimal decision based on the difference between the two normalized cost vector.

19



Lemma C.2 (Generalization of Lemma 4.2). Suppose that Assumption 4.1 holds with respect to a
generic norm ‖ · ‖. Let c1, c2 ∈ Rd be such that projH⊥(c1), projH⊥(c2) 6= 0, then it holds that

‖w∗(c1)− w∗(c2)‖ ≥
√

2µ(r − fmin)

L
·
∥∥∥∥ projH⊥(c1)

‖projH⊥(c1)‖∗
− projH⊥(c2)

‖projH⊥(c2)‖∗

∥∥∥∥
∗
,

and

‖w∗(c1)− w∗(c2)‖ ≤
√

2L(r − fmin)

µ
·
∥∥∥∥ projH⊥(c1)

‖projH⊥(c1)‖∗
− projH⊥(c2)

‖projH⊥(c2)‖∗

∥∥∥∥
∗
.

C.2 Proofs and useful lemmas

From now on, for any vector c ∈ Rd, we will use c̃ to represent the projection projH⊥(c) for simplicity.
Likewise, when c = ∇f(w) we shorten this notation even further to ∇̃f(w).

First we provide some useful properties in the following lemma.

Lemma C.3. If f(·) is µ-strongly convex on S, the for all w ∈ S, it holds that

‖∇̃f(w)‖2∗ ≥
√

2µ(f(w)− fmin).

Proof. First, for all c ∈ Rd and w,w′ ∈ S, it holds that

cT (w − w′)− c̃T (w − w′) = (c− c̃)T (w − w′) =

m2∑
j=1

αjhj(w − w′) = 0.

Since f(·) is µ-strongly convex, it holds that f(w′) ≥ f(x) +∇f(w)T (w′ − w) + µ
2 ‖w

′ − w‖2 for
all w′ ∈ S. Therefore, it holds that

inf
w′∈S

f(w′) ≥ inf
w′∈S

{
f(w) +∇f(w)T (w′ − w) +

µ

2
‖w′ − w‖2

}
= inf
w′∈S

{
f(w) + ∇̃f(w)T (w′ − w) +

µ

2
‖w′ − w‖2

}
≥ inf
w′∈Rd

{
f(w) + ∇̃f(w)T (w′ − w) +

µ

2
‖w′ − w‖2

}
= f(w)− 1

2µ
‖∇̃f(w)‖2∗.

Lemma C.4. If f(·) is L-smooth on S, then for all w ∈ S, it holds that

‖∇̃f(w)‖2∗ ≤
√

2L(f(w)− fmin).

Proof. If ∇̃f(w) = 0, then the statement holds. Otherwise, there exists u ∈ Rd such that ‖u‖ = 1

and ∇̃f(w)Tu = ‖∇̃f(w)‖∗. Let v = ‖∇̃f(w)‖∗u, we have ‖v‖ = ‖∇̃f(w)‖∗ and ∇̃f(w)T v =

‖∇̃f(w)‖2∗. Let
α = supα′, s.t. f(w − α′ṽ) ≤ r.

Since gi(·) is continuous and gi(w) < 0 for all i ∈ [m1], we have α > 0 and since f(·) is continuous,
we have f(w − αṽ) = r. Since f(·) is L-smooth on S, it holds that

f(w − αṽ) ≤ f(w)− α∇f(w)T ṽ +
α2L

2
‖ṽ‖2 = f(w)− α∇̃f(w)T ṽ +

α2L

2
‖ṽ‖2

= f(w)− α∇̃f(w)T v +
α2L

2
‖ṽ‖2 ≤ f(w)− α∇̃f(w)T v +

α2L

2
‖v‖2

= f(w)− 2α− α2L

2
‖∇̃f(w)‖2∗.
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Therefore, we have 2α− α2L ≤ 0. Moreover, since α > 0, then it holds that α ≥ 2
L . Now we know

that w − ṽ
L ∈ S, and

fmin ≤ f
(
w − ṽ

L

)
≤ f(w)− 1

2L
‖∇̃f(w)‖2∗.

Therefore, it holds that ‖∇̃f(w)‖∗ ≤
√

2L(f(w)− fmin).

Now we provide the proofs of Lemma C.1 and C.2.

Proof of Lemma C.1. Let w1 = w∗(c1) and w2 = w∗(c2). Since f(·) is µ-strongly convex on S, it
holds that

f(w)− f(w1)−∇f(w1)T (w − w1) ≥ µ

2
‖w − w1‖2.

Since the Slater condition holds, the KKT necessary condition indicates that there exists scalar u ≥ 0
such that c̃1 +u∇̃f(w1) = 0 and u(f(w1)− r) = 0. When c̃1 6= 0, we additionally have f(w1) = r.
Therefore, it holds that

cT1 (w − w1) = c̃T1 (w − w1) = u ·
(
−∇̃f(w1)T (w − w1)

)
= u ·

(
−∇f(w1)T (w − w1)

)
≥ u ·

(
f(w1)− f(w) +

µ

2
‖w − w1‖2

)
≥ uµ

2
‖w − w1‖2,

where the last inequality holds since f(w1) = r ≥ f(w). Therefore, it holds that

cT1 (w − w1) ≥ µ‖c̃1‖∗‖w − w1‖2

2‖∇̃f(w1)‖∗
. (9)

Since f(·) is L-smooth on S, it holds that ‖∇̃f(w1)‖∗ ≤
√

2L(r − fmin), and hence we have

‖c̃1‖∗
‖∇̃f(w1)‖∗

≥ ‖c̃1‖∗√
2L(r − fmin)

.

By applying the above inequality to (9), we can conclude that

cT (w − w1) ≥ µ

2
√

2L(r − fmin)
‖c̃1‖∗‖w − w1‖2.

On the other hand, it holds that

cT1 (w2 − w1) = c̃T1 (w2 − w1) = u ·
(
−∇̃f(w1)T (w2 − w1)

)
= u ·

(
−∇f(w1)T (w2 − w1)

)
≤ u ·

(
f(w1)− f(w2) +

L

2
‖w2 − w1‖2

)
=
uL

2
‖w − w1‖2,

where the last inequality holds since f(w1) = r = f(w2). Therefore, it holds that

cT1 (w2 − w1) ≤ L‖c̃1‖∗‖w2 − w1‖2

2‖∇̃f(w1)‖∗
. (10)

Since f(·) is µ-strongly convex on S, it holds that ‖∇̃f(w1)‖∗ ≥
√

2µ(r − fmin), and hence we
have

‖c̃1‖∗
‖∇̃f(w1)‖∗

≤ ‖c̃1‖∗√
2µ(r − fmin)

.

By applying the above inequality to (10), we can conclude that

cT (w − w1) ≤ L

2
√

2µ(r − fmin)
‖c̃1‖∗‖w2 − w1‖2.
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Proof of Lemma C.2. Without loss of generality we assume ‖c̃1‖∗ = ‖c̃2‖∗ = 1. Let w1 = w∗(c1)
and w2 = w∗(c2). By KKT condition there exists u1, u2 > 0 such that ∇f(wi) = −uici and
f(wi) = r for i = 1, 2. Also, since f(·) is µ-strongly convex, it holds that

‖∇̃f(wi)‖∗ ≥
√

2µ(f(xi)− fmin) =
√

2µ(r − fmin),

for i = 1, 2. Then, it holds that

‖∇̃f(w1)− ∇̃f(w2)‖∗ ≥ min
u′1,u

′
2≥
√

2µ(r−fmin)

‖u′1c̃1 − u′2c̃2‖∗ =
√

2µ(r − fmin) · ‖c̃1 − c̃2‖∗.

Moreover, since f(·) is L-smooth, it holds that

‖w1 − w2‖ ≥
1

L
· ‖∇f(w1)−∇f(w2)‖∗ ≥

1

L
· ‖∇̃f(w1)− ∇̃f(w2)‖∗ ≥

√
2µr

L
· ‖c̃1 − c̃2‖∗.

In the rest part of this section, without loss of generality we assume fmin = 0. Also, since w ∗ (c) =
w∗(c̃) and cT (w∗(c′)−w∗(c)) = c̃T (w∗(c′)−w∗(c)) for all c, c′ ∈ Rd, we will ignore the˜notation
and assume all c, c′ ∈ H⊥. In Theorem C.2 we provide a lower bound of an SPO-like loss.
Theorem C.2. When c 6= 0 and c+ 2∆ 6= 0, it holds that

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ2r1/2

21/2L5/2
· ‖c+ 2∆‖∗ ·

∥∥∥∥ c

‖c‖∗
− c+ 2∆

‖c+ 2∆‖∗

∥∥∥∥2

∗
.

When the norm we consider is A-norm defined by ‖x‖A =
√
xTAx for some positive definite matrix

A, additionally we have

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ2r1/2

21/2L5/2

(
‖c+ 2∆‖A−1 − cTA−1(c+ 2∆)

‖c‖A−1

)
.

Moreover, if P(c = 0) = P(c = −2∆) = 0, it holds that

`SPO+(∆) ≥ µ2r1/2

21/2L5/2
· Ec

[
‖c+ 2∆‖A−1 − cTA−1(c+ 2∆)

‖c‖A−1

]
.

Proof of Theorem C.2. Apply c1 = c and c2 = c+ 2∆ to Lemma C.2, we have

‖w∗(c)− w∗(c+ 2∆)‖ ≥
√

2µr ·
∥∥∥∥ c

‖c‖∗
− c+ 2∆

‖c+ 2∆‖∗

∥∥∥∥
∗
.

By applying the above inequality to (7) we have

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ

2
√

2Lr
· ‖c+ 2∆‖∗ · ‖w∗(c)− w∗(c+ 2∆)‖2

≥ µ

2
√

2Lr
· ‖c+ 2∆‖∗ ·

(√
2µr

L
·
∥∥∥∥ c

‖c‖∗
− c+ 2∆

‖c+ 2∆‖∗

∥∥∥∥
∗

)2

=
µ2r1/2

21/2L5/2
· ‖c+ 2∆‖∗ ·

∥∥∥∥ c

‖c‖∗
− c+ 2∆

‖c+ 2∆‖∗

∥∥∥∥2

∗
.

When the norm we consider is A-norm, then it holds that

(c+ 2∆)T (w∗(c)− w∗(c+ 2∆)) ≥ µ2r1/2

21/2L5/2
· ‖c+ 2∆‖2 ·

∥∥∥∥ c

‖c‖A−1

− c+ 2∆

‖c+ 2∆‖A−1

∥∥∥∥2

A−1

=
µ2r1/2

21/2L5/2

(
‖c+ 2∆‖A−1 − cTA−1(c+ 2∆)

‖c‖A−1

)
.

Moreover, if P(c = 0) = P(c = −2∆) = 0, by taking the expectation of c we get

`SPO+(∆) ≥ µ2r1/2

21/2L5/2
· Ec

[
‖c+ 2∆‖A−1 − cTA−1(c+ 2∆)

‖c‖A−1

]
.

22



The following lemma provides a necessary condition on ∆ such that the excess SPO loss of ĉ = c̄+∆
is at least ε.
Lemma C.5. Suppose the excess SPO loss of ĉ = c̄+∆ is at least ε, that is, c̄T (w∗(c̄+∆)−w∗(c̄)) ≥
ε. Then it holds that ∥∥∥∥ c̄

‖c̄‖∗
− c̄+ ∆

‖c̄+ ∆‖∗

∥∥∥∥2

∗
≥ 21/2µ5/2ε

L2r1/2‖c̄‖∗
.

When the norm we consider is A-norm defined by ‖x‖A =
√
xTAx for some positive definite matrix

A, additionally we have

1− c̄TA−1(c̄+ ∆)

‖c̄‖A−1 · ‖c̄+ ∆‖A−1

≥ µ5/2

21/2L2r1/2‖c̄‖A−1

· ε.

Proof of Lemma C.5. In Lemma C.1 we show that

cT1 (w∗(c2)− w∗(c1)) ≤ L

2
√

2µr
‖c1‖∗‖w∗(c1)− w∗(c2)‖2.

Let c1 = c̄ and c2 = ĉ, it holds that

‖w∗(c̄)− w∗(c̄+ ∆)‖2 ≥ 2
√

2µr

L‖c̄‖∗
· c̄T (w∗(c̄+ ∆)− w∗(c̄)) ≥ 2

√
2µrε

L‖c̄‖∗
.

Theorem 3 in El Balghiti et al. [2019] shows that for c1, c2 ∈ Rd, it holds that

‖c1 − c2‖∗ ≥
µ√
2Lr

·min{‖c1‖∗, ‖c2‖∗} · ‖w∗(c1)− w∗(c2)‖.

By applying c1 = c̄
‖c̄‖∗ and c2 = c̄+∆

‖c̄+∆‖∗ , we have∥∥∥∥ c̄

‖c̄‖∗
− c̄+ ∆

‖c̄+ ∆‖∗

∥∥∥∥2

≥ µ2

2Lr
·
∥∥∥∥w∗( c̄

‖c̄‖∗

)
− w∗

(
c̄+ ∆

‖c̄+ ∆‖∗

)∥∥∥∥2

=
µ2

2Lr
· ‖w∗(c̄)− w∗(c̄+ ∆)‖2∗ ≥

21/2µ5/2ε

L2r1/2‖c̄‖∗
.

When the norm we consider is 2-norm, it holds that

1− c̄TA−1(c̄+ ∆)

‖c̄‖A−1 · ‖c̄+ ∆‖A−1

=
1

2

∥∥∥∥ c̄

‖c̄‖A−1

− c̄+ ∆

‖c̄+ ∆‖A−1

∥∥∥∥2

A−1

≥ µ5/2ε

21/2L2r1/2‖c̄‖A−1

.

From Theorem C.2 and Lemma C.5, we know that `SPO+(c,∆) have a lower bound C1(µ,L, r) ·
`SPO+(c,∆), where C1(µ,L, r) = µ2r1/2

21/2L5/2 and

`SPO+(c,∆) = ‖c+ 2∆‖A−1 − cTA−1(c+ 2∆)

‖c‖A−1

.

Moreover, the excess SPO risk of ĉ = c̄ + ∆ is at least ε implies that RSPO(∆) ≥ C2(µ,L, r) · ε
where C2(µ,L, r) = µ5/2

21/2L2r1/2 and

RSPO(∆) = ‖c̄‖A−1 − c̄TA−1(c̄+ ∆)

‖c̄+ ∆‖A−1

.

Let RSPO+(∆) = Ec[`SPO+(c,∆)]. We know that the calibration function δ(ε) has a lower bound
δ′(ε) which defined as

δ′(ε) := min
∆

C1(µ,L, r) ·RSPO+(∆)

s.t. RSPO(∆) ≥ C2(µ,L, r) · ε.
(11)

Here we first provide two properties of random variable c when P ∈ Prot symm.
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Proposition C.1. Suppose P ∈ Prot symm. If ‖c̄+ ζ‖A−1 = ‖c̄‖A−1 for some ζ ∈ Rp, it holds that

Ec [‖c+ ζ‖A−1 ] = Ec [‖c‖A−1 ] .

Proposition C.2. Suppose P ∈ Prot symm. When d ≥ 2, for any constant t ≥ 0, it holds that

Ec
[
c̄TA−1c

‖c‖A−1

∣∣∣∣ ‖c− c̄‖A−1 = t

]
≥
‖c‖2A−1 min{‖c‖A−1 , t}

t2 + ‖c̄‖A−1t
.

Proof of Proposition C.2. For simplicity we just assume ‖c − c̄‖A−1 = t from now on and ignore
the conditional probability. Let ω = c− c̄. Since p(c) = p(2c̄− c), we have

Ec
[
c̄TA−1c

‖c‖A−1

]
=

1

2
· Ec

[
c̄TA−1c

‖c‖A−1

+
c̄TA−1(2c̄− c)
‖2c̄− c‖A−1

]
=

1

2
· Eω

[
c̄TA−1(c̄+ ω)

‖c̄+ ω‖A−1

+
c̄TA−1(c̄− ω)

‖c̄− ω‖A−1

]
.

By the fact that c̄TA−1c̄(‖c̄−w‖A−1 +‖c̄+w‖A−1) ≥ 2‖c̄‖2A−1‖w‖A−1 ≥ c̄TA−1w(‖c̄−w‖A−1−
‖c̄+w‖A−1), it holds that c̄TA−1(c̄+w)‖c̄−w‖A−1 + c̄TA−1(c̄−w)‖c̄−w‖A−1 ≥ 0 and hence

c̄TA−1(c̄+ ω)

‖c̄+ ω‖A−1

+
c̄TA−1(c̄− ω)

‖c̄− ω‖A−1

≥ 0.

Therefore, we further get

Ec
[
c̄TA−1c

‖c‖A−1

]
≥ 1

2
· Eω

[
c̄TA−1(c̄+ ω)

‖c̄+ ω‖A−1

+
c̄TA−1(c̄− ω)

‖c̄− ω‖A−1

∣∣∣∣ c̄Tω ∈ C] · P(c̄Tω ∈ C),

where C = [−‖c̄‖2A−1 , ‖c̄‖2A−1 ]. For any ω such that c̄Tω ∈ C, we have

c̄TA−1(c̄+ ω)

‖c̄+ ω‖A−1

+
c̄TA−1(c̄− ω)

‖c̄− ω‖A−1

≥ c̄TA−1(c̄+ ω)

‖c̄‖A−1 + ‖ω‖A−1

+
c̄TA−1(c̄− ω)

‖c̄‖A−1 + ‖ω‖A−1

=
2c̄TA−1c̄

‖c̄‖A−1 + ‖ω‖A−1

.

Also, when d ≥ 2, we have P(c̄Tω ∈ C) ≥ min{‖c̄‖,t}
t . Then we can conclude that

Ec
[
c̄TA−1c

‖c‖A−1

]
≥
‖c̄‖2A−1 min{‖c̄‖A−1 , t}

t2 + ‖c̄‖A−1t
.

By first-order necessary condition we know that ∆ is an optimal solution to (11) only if

∇RSPO+(∆)− α∇RSPO(∆) = 0 (12)

for some α ≥ 0. Also, for any fixed ∆, it holds that

∇RSPO+(∆) = Ec
[
A−1(c+ 2∆)

‖c+ 2∆‖A−1

− A−1c

‖c‖A−1

]
,

and

∇RSPO(∆) =
c̄TA−1(c̄+ ∆) ·A−1∆−∆TA−1(c̄+ ∆) ·A−1c̄

‖c̄+ ∆‖3A−1

.

The following lemma simplifies∇`SPO+(∆).
Lemma C.6. Suppose P ∈ Prot symm. Then there exists a unique function ζ(·) : [0,∞] → [0,∞]

such that for all ∆ ∈ Rd, it holds that

Ec
[

c+ ∆

‖c+ ∆‖A−1

]
= ζ(‖c̄+ ∆‖A−1)(c̄+ ∆).

Also, α · ζ(α) is a non-decreasing function.
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Proof. Let h(∆) denote Ec[ c+∆
‖c+∆‖ ]. First we show that h(∆) has the same direction as c̄+ ∆. Let

φ∆(·) denote the affine transform φ∆(·) : ξ → 2(c̄+∆)TA−1ξ
‖c̄+∆‖2

A−1
(c̄+ ∆)− ξ. We have φ∆(φ∆(ξ)) = ξ

and ‖ξ‖A−1 = ‖φ∆(ξ)‖A−1 for all ξ ∈ Rd. It leads to p(ξ) = p(φ∆(ξ)) and hence

h(∆) =
1

2
Ec
[

c+ ∆

‖c+ ∆‖A−1

+
φ∆(c+ ∆)

‖φ∆(c+ ∆)‖A−1

]
=

1

2
Ec
[

(c+ ∆) + φ∆(c+ ∆)

‖c+ ∆‖A−1

]
= Ec

[
(c̄+ ∆)TA−1(c+ ∆)

‖c+ ∆‖A−1 · ‖c̄+ ∆‖2A−1

]
(c̄+ ∆).

Now we let

ζ̂(c̄+ ∆) = Ec
[

(c̄+ ∆)TA−1(c+ ∆)

‖c+ ∆‖A−1 · ‖c̄+ ∆‖2A−1

]
,

and we want to show that ζ̂(c̄+∆) = ζ̂(c̄+∆′) if ‖c̄+∆‖A−1 = ‖c̄+∆′‖A−1 . Since ‖c̄+∆‖A−1 =
‖c̄ + ∆′‖A−1 , there exists a matrix R ∈ Rd×d such that A−1/2(c̄ + ∆′) = RA−1/2(c̄ + ∆) and
RRT = RTR = I . Let c′ be a random variable depending on c where c′ = A1/2RA−1/2(c− c̄) + c̄.
It holds that A−1/2(c′ − c̄) = RA−1/2(c− c̄), which implies that ‖c′ − c̄‖A−1 = ‖c− c̄‖A−1 and
therefore p(c− c̄) = p(c′ − c̄). Also, we have A−1/2(c′ + ∆′) = RA−1/2(c+ ∆), which implies
that ‖c′ + ∆′‖A−1 = ‖c+ ∆‖A−1 and therefore

(c̄+ ∆′)TA−1(c′ + ∆′)

‖c′ + ∆′‖A−1

=
(c̄+ ∆)TA−1/2RTRA−1/2(c+ ∆)

‖c+ ∆‖A−1

=
(c̄+ ∆)TA−1(c+ ∆)

‖c+ ∆‖A−1

.

Moreover, since det(A1/2RA−1/2) = 1, it holds that

Ec
[

(c̄+ ∆′)TA−1(c+ ∆′)

‖c+ ∆′‖A−1

]
= Ec

[
(c̄+ ∆′)TA−1(c′ + ∆′)

‖c′ + ∆′‖A−1

]
= Ec

[
(c̄+ ∆′)TA−1(c+ ∆′)

‖c+ ∆′‖A−1

]
.

Therefore,

ζ̂(c̄+ ∆) =
1

‖c̄+ ∆‖2A−1

· Ec
[

(c̄+ ∆′)TA−1(c+ ∆′)

‖c+ ∆′‖A−1

]
=

1

‖c̄+ ∆′‖2A−1

· Ec
[

(c̄+ ∆′)TA−1(c+ ∆′)

‖c+ ∆′‖A−1

]
= ζ̂(c̄+ ∆′).

Therefore, we know that ζ(·) : R→ R is a well-defined function based on the above property of ζ̂(·).
Now we are going to prove that α · ζ(α) is a non-decreasing function. Pick arbitrary α′1 > α′2 > 0,
we have ζ(α′1) = ζ̂(α1 · c̄) and ζ(α′2) = ζ̂(α2 · c̄), where αi = α′i/‖c̄‖A−1 for i = 1, 2. Therefore,

α′1 · ζ(α′1) ≥ α′2 · ζ(α′2)⇔ α1 · ζ̂(α1 · c̄) ≥ α2 · ζ̂(α2 · c̄)

⇔α1Ec
[

(α1 · c̄)TA−1((c− c̄) + α1 · c̄)
‖(c− c̄) + α1 · c̄‖A−1 · ‖α1 · c̄‖2A−1

]
≥ α2Ec

[
(α2 · c̄)TA−1((c− c̄) + α2 · c̄)
‖(c− c̄) + α2 · c̄‖A−1 · ‖α2 · c̄‖2A−1

]
⇔Ec

[
c̄TA−1((c− c̄) + α1 · c̄)
‖(c− c̄) + α1 · c̄‖A−1

]
≥ Ec

[
c̄TA−1((c− c̄) + α2 · c̄)
‖(c− c̄) + α2 · c̄‖A−1

]
.

It is sufficient to show that
c̄TA−1(ζ + α1 · c̄)
‖ζ + α1 · c̄‖A−1

≥ c̄TA−1(ζ + α2 · c̄)
‖ζ + α2 · c̄‖A−1

, (13)

for all ζ ∈ Rd when α1 > α2 > 0. We divide the proof into three cases. When c̄TA−1(ζ +α1 · c̄) >
c̄TA−1(ζ + α2 · c̄) ≥ 0, (13) is equivalent to(

c̄TA−1(ζ + α1 · c̄)
)2 · ‖ζ + α2 · c̄‖2A−1 ≥

(
c̄TA−1(ζ + α2 · c̄)

)2 · ‖ζ + α1 · c̄‖2A−1

⇔(α1 − α2)
(
c̄TA−1(ζ + α1 · c̄) + c̄TA−1(ζ + α2 · c̄)

) (
c̄TA−1c̄ · ζTA−1ζ − (c̄TA−1ζ)2

)
≥ 0.

When c̄T (ζ + α1 · c̄) ≥ 0 ≥ c̄T (ζ + α2 · c̄), we know that left hand side of (13) is non-negative and
right hand side is non-positive. When 0 > c̄T (ζ + α1 · c̄) ≥ c̄T (ζ + α2 · c̄), (13) is equivalent to(

c̄TA−1(ζ + α1 · c̄)
)2 · ‖ζ + α2 · c̄‖2A−1 ≤

(
c̄TA−1(ζ + α2 · c̄)

)2 · ‖ζ + α1 · c̄‖2A−1

⇔(α1 − α2)
(
c̄TA−1(ζ + α1 · c̄) + c̄TA−1(ζ + α2 · c̄)

) (
c̄TA−1c̄ · ζTA−1ζ − (c̄TA−1ζ)2

)
≤ 0.
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Following the results in Lemma C.6 we have

Ec
[

c

‖c‖A−1

]
= ζ(‖c̄‖A−1)c̄, Ec

[
c+ 2∆

‖c+ 2∆‖A−1

]
= ζ(‖c̄+ 2∆‖A−1)(c̄+ 2∆).

Hence, (12) is equivalent to

ζ(‖c̄+ 2∆‖A−1)(c̄+ 2∆)− ζ(‖c̄‖A−1)c̄ = α · c̄
TA−1(c̄+ ∆) ·∆−∆TA−1(c̄+ ∆) · c̄

‖c̄+ ∆‖3A−1

.

Since c̄ and ∆ are linearly independent, (12) is further equivalent to

2ζ(‖c̄+ 2∆‖A−1)

c̄TA−1(c̄+ ∆)
=

α

‖c̄+ 2∆‖3A−1

=
ζ(‖c̄+ 2∆‖A−1)− ζ(‖c̄‖A−1)

−∆TA−1(c̄+ ∆)
,

which is also equivalent to

(c̄+ 2∆)TA−1(c̄+ ∆) · ζ(‖c̄+ 2∆‖A−1) = c̄TA−1(c̄+ ∆) · ζ(‖c̄‖A−1). (14)

Lemma C.7. Suppose P ∈ Prot symm and ∆̂ is a solution to (12), then it holds that

‖c̄+ 2∆̂‖A−1 = ‖c̄‖A−1 ,

and
(c̄+ 2∆̂)TA−1(c̄+ ∆̂) = c̄TA−1(c̄+ ∆̂).

Proof. Suppose ‖c̄ + 2∆̂‖A−1 6= ‖c̄‖A−1 . Without loss of generality we assume ‖c̄ + 2∆̂‖A−1 >
‖c̄‖A−1 . Following results in Lemma C.6 we know that

‖c̄+ 2∆‖A−1 · ζ(‖c̄+ 2∆‖A−1) ≥ ‖c̄‖A−1 · ζ(‖c̄‖A−1).

Also, it holds that

∆̂TA−1(c̄+ ∆̂) =
1

4

(
‖c̄+ 2∆̂‖2A−1 − ‖c̄‖2A−1

)
> 0.

Since (c̄+ 2∆̂)TA−1(c̄+ ∆̂) = (c̄+ ∆̂)TA−1(c̄+ ∆̂) + ∆̂TA−1(c̄+ ∆̂) > 0, it holds that

(c̄+ 2∆̂)TA−1(c̄+ ∆̂)

‖c̄+ 2∆̂‖A−1

>
c̄TA−1(c̄+ ∆̂)

‖c̄‖A−1

⇔(c̄+ 2∆̂)TA−1(c̄+ ∆̂) · ‖c̄‖A−1 > c̄TA−1(c̄+ ∆̂) · ‖c̄+ 2∆̂‖A−1

⇐
(

(c̄+ 2∆̂)TA−1(c̄+ ∆̂)
)2

· ‖c̄‖2A−1 >
(
c̄TA−1(c̄+ ∆̂)

)2

· ‖c̄+ 2∆̂‖2A−1

⇔
(

∆̂TA−1(c̄+ ∆̂)
)
·
(
‖c̄+ ∆̂‖2A−1 · ‖∆̂‖2A−1 − (∆̂TA−1(c̄+ ∆̂))2

)
> 0.

Therefore, we have

(c̄+ 2∆)TA−1(c̄+ ∆) · ζ(‖c̄+ 2∆‖A−1) > c̄TA−1(c̄+ ∆) · ζ(‖c̄‖A−1),

which contradicts with (14). Therefore, we have ‖c̄ + 2∆̂‖A−1 = ‖c̄‖A−1 and hence (c̄ +

2∆̂)TA−1(c̄+ ∆̂) = c̄TA−1(c̄+ ∆̂).

Based on the above property, we provide a lower bound of calibration function.

Theorem C.3. Suppose Assumption C.1 holds and P ∈ Prot symm, then the calibration function δ(·)
satisfies

δ(ε) ≥ Ec
[

min{‖c̄‖A−1 , ‖c− c̄‖A−1}
‖c− c̄‖2A−1 + ‖c̄‖A−1‖c− c̄‖A−1

]
· µ

9/2‖c̄‖A−1

2L9/2
· ε,

for all ε > 0.
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Proof. First we know that δ(ε) ≥ δ′(ε). Also, Lemma C.7 shows that for optimal ∆, it holds that
‖c̄‖A−1 = ‖c̄+ 2∆‖A−1 . By the definition of RSPO+, we have

RSPO+(∆) = Ec[`SPO+(c,∆)] = Ec
[
‖c+ 2∆‖A−1 − cTA−1(c+ 2∆)

‖c‖A−1

]
= Ec [‖c+ 2∆‖A−1 ]− Ec [‖c‖A−1 ]− Ec

[
2cTA−1∆

‖c‖A−1

]
.

Since ‖c̄ + 2∆‖A−1 = ‖c̄‖A−1 , Proposition C.1 shows that Ec [‖c+ 2∆‖A−1 ] = Ec [‖c‖A−1 ].
Therefore, it holds that

RSPO+(∆) = −Ec
[

2cTA−1∆

‖c‖A−1

]
= −Ec

[
(c+ φ0(c))TA−1∆

‖c‖A−1

]
= Ec

[
c̄TA−1c

‖c̄‖2A−1

· c̄
TA−1∆

‖c‖A−1

]
= Ec

[
c̄TA−1c

‖c‖A−1

]
· −c̄

TA−1∆

‖c̄‖2A−1

= Ec
[
c̄TA−1c

‖c‖A−1

]
· ∆TA−1∆

‖c̄‖2A−1

,

where the last inequality holds since (c̄+ ∆)TA−1∆ = 0. Based on the result in Proposition C.2,
we have

Ec
[
c̄TA−1c

‖c‖A−1

]
≥ Ec

‖c‖2A−1 min{‖c‖A−1 , ‖c− c̄‖A−1}
‖c− c̄‖2A−1 + ‖c̄‖A−1‖c− c̄‖A−1

.

Also, let ε′ = C2(µ,L, r) · ε. In the constraint we have

‖c̄‖A−1 − c̄TA−1(c̄+ ∆)

‖c̄+ ∆‖A−1

≥ ε′,

and hence ‖c̄‖A−1−‖c̄+∆‖A−1 ≥ ε′. Since ‖c̄‖A−1 ≥ ε′, it holds that (‖c̄‖A−1−ε′)2 ≥ ‖c̄+∆‖2A−1 .
This implies that ∆TA−1∆ ≥ 2‖c̄‖A−1ε′ − ε′2 ≥ ‖c̄‖A−1ε′ = ‖c̄‖A−1C2(µ,L, r)ε. Therefore, we
conclude that

δ(ε) ≥ Ec
[

min{‖c̄‖A−1 , ‖c− c̄‖A−1}
‖c− c̄‖2A−1 + ‖c̄‖A−1‖c− c̄‖A−1

]
· µ

9/2‖c̄‖A−1

2L9/2
· ε.

We are now ready to complete the proof of Theorem C.1.

Proof of Theorem C.1. From Theorem C.3, we know that

δ(ε;x,P) ≥ Ec|x
[

min{‖c̄‖A−1 , ‖c− c̄‖A−1} · ‖c̄‖A−1

‖c− c̄‖2A−1 + ‖c̄‖A−1‖c− c̄‖A−1

]
· µ

9/2ε

2L9/2
.

Also, by min{c1,c2}·c1
c22+c1c2

≥ c21
2(c21+c22)

for all c1, c2 6= 0, we have

δ(ε;x,P) ≥ Ec|x
[

‖c̄‖2A−1

2(‖c̄‖2A−1 + ‖c− c̄‖2A−1)

]
· µ

9/2ε

2L9/2
. (15)

Moreover, for all P ∈ Pα,β , it holds that

Ec|x
[

‖c̄‖2A−1

‖c̄‖2A−1 + ‖c− c̄‖2A−1

]
≥ Ec|x

[
‖c̄‖2A−1

‖c̄‖2A−1 + ‖c− c̄‖2A−1

∣∣∣∣ ‖c− c̄‖A−1 ≤ β · ‖c̄‖A−1

]
· Pc|x(‖c− c̄‖A−1 ≤ β · ‖c̄‖A−1)

≥ α

1 + β2
,

and for all P ∈ Pβ , it holds that

Ec|x
[

‖c̄‖2A−1

‖c̄‖2A−1 + ‖c− c̄‖2A−1

]
≥

‖c̄‖2A−1

‖c̄‖2A−1 + Ec|x[‖c− c̄‖2A−1 ]
≥ 1

1 + β2
.

By applying the above two inequalities to (15) we complete the proof.

27



Moderate Noise

Predictor: Linear

100 200 400 800 1600 3200 6400 12800

0.01

0.10

1.00

Training Sample Size

N
or

m
al

iz
ed

 E
xc

es
s 

R
is

k

Feasible Region Strongly−Convex Level−Set Polyhedron

Normalized Excess Risk v.s. Training Sample Size

Figure 3: Normalized test set excess risk for the SPO+ methods on instances with polyhedron and
level-set feasible regions. For each value of the sample size in the above plots we run 50 independent
trials.

D Experimental details

For both problems, we ran each instance on one core of Intel Xeon Skylake 6230 @ 2.1 GHz.

D.1 Excess risk comparison

In Figure 3, we provide the empirical excess risk comparison of the cases with polyhedral and
level-set feasible regions. The case with polyhedral feasible region are the cost-sensitive multi-class
classification instances with simplex feasible region, and the case with level-set feasible region are
the entropy constrained portfolio optimization problems. The main metric we use in Figure 3 is the
normalized excess risk, which for each case, is defined as the excess risk over the averaged excess
risk with sample size n = 100. For each type of feasible region, the excess risk is calculated by the
difference between the SPO risk of the predictions given by the trained model and the true model.
Also, we set polynomial degree equals to one with moderate noises, which means the true model is
in the hypothesis class. The main purpose of this plot is not checking if the order of the calibration
matches the theoretical results, as these are only worst case guarantees, but qualitatively comparing
the convergence of excess risk with different types of feasible regions.

D.2 Additional plots on the cost-sensitive multi-class classification instances

In Figure 4, we provide a complete comparison of all the method on the cost-sensitive multi-class
classification instances. We can observe a similar pattern as in Figure 1.

D.3 Technical details

In Lemma D.1 we show that the optimization oracle w∗(·) is differentiable when the projection of
the predicted cost vector ĉ is not zero for the entropy constrained portfolio optimization example.

Lemma D.1. Let T = {w ∈ Rd : w > 0,1Tw = 1} denote the interior of the probability simplex.
For any vector c ∈ Rd, let c̃ denote the projection of c onto T . Let f(w) =

∑d
i=1−wi log(wi) denote

the entropy function. For some scalar r ∈ (fmin, limw→∂T f(w)), let S = {w ∈ T : f(w) ≤ r}.
Let w∗(c) = arg minw∈S c

Tw. Then it holds that w∗(c) is differentiable when c̃ 6= 0 where c̃ is the
projection of c onto the subspace {w ∈ Rd : 1Tw = 0}.

Proof. Let softmax(·) : Rd → Rd denote the softmax function, namely

softmax(c) =

[
exp(c1)∑d
i=1 exp(ci)

, . . . ,
exp(cd)∑d
i=1 exp(ci)

]T
.
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Figure 4: Test set SPO loss for the SPO+, least squares, and absolute loss methods on cost-sensitive
multi-class classification instances. For each value of the polynomial degree in the above plots we
run 50 independent trials.

Using KKT condition, we know that for any c ∈ Rd such that c̃ 6= 0, there exists some scalar
u(c) ≥ 0 such that c = −u(c) · ∇f(w∗(c)), and therefore w∗(c) = softmax(−c̃/u(c)). Since the
softmax function is differentiable and c̃ is differentiable with respect to c, we only need to show that
the function u(c) is also differentiable with respect to c. Indeed, when c̃ 6= 0, we have f(w∗(c)) = r,
which is equivalent to f(softmax(−c̃/u(c))) = r. Let φ(c, u) = f(softmax(−c̃/u)). Since φ(c, u)

is a decreasing function for u > 0, by inverse function theorem we have du
dc = − ∂φ/∂c

∂φ/∂u , and hence
u(c) is also differentiable with respect to c.

In the cost-sensitive multi-class classification problem, we consider the SPO+ method using a
log barrier approximation to the unit simplex. For the choice of the threshold r, according to
Assumption C.1 we will need r > fmin and r < limw→∂T f(w). In this log barrier scenario, we
have fmin = d log d and limw→∂T f(w) = ∞. Therefore, we pick the threshold r = 2d log d. Of
course, one may consider a more careful tuning of this hyper-parameter. Nevertheless, even with
our simplistic approach for setting it we observe benefits of the SPO+ loss that uses a log barrier
approximation to the unit simplex.

D.4 Data generation processes

In the next two paragraphs we discuss the detailed data generation process of each problem.

Portfolio allocation problems. Let us describe the process used for generating the synthetic data
sets for portfolio allocation instances. In this experiment, we set the number of assets d = 50 and
the dimension of feature vector p = 5. We first generate a weight matrix B ∈ Rd×p, whereby each
entry of B is a Bernoulli random variable with the probability P(Bij = 1) = 1

2 . We then generate
the training data set {(xi, ci)}ni=1 and the test data set {(x̃i, c̃i)}mi=1 independently according to the
following procedure.

1. First we generate the feature vector x ∈ Rp from the standard multivariate normal distribu-
tion, namely x ∼ N (0, Ip).

2. Then we generate the true cost vector c ∈ Rd according to cj =

[
1 +

(
1 +

bTj x√
p

)deg
]
εj for

j = 1, . . . , d, where bj is the j-th row of matrix B. Here deg is the fixed degree parameter
and εj , the multiplicative noise term, is a random variable which independently generated
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from the uniform distribution [1− ε̄, 1 + ε̄] for a fixed noise half width ε̄ ≥ 0. In particular,
ε̄ is set to 0 for “no noise” instances and 0.5 for “moderate noise” instances.

Cost-sensitive multi-class classification problems. Let us describe the process used for generating
the synthetic data sets for cost-sensitive multi-class classification instances. In this experiment, we
set the number of class d = 10 and the dimension of feature vector p = 5. We first generate a
weight vector b ∈ Rp, whereby each entry of b is a Bernoulli random variable with the probability
P(bj = 1) = 1

2 . We then generate the training data set {(xi, ci)}ni=1 and the test data set {(x̃i, c̃i)}mi=1
independently according to the following procedure.

1. First we generate the feature vector x ∈ Rp from the standard multivariate normal distribu-
tion, namely x ∼ N (0, Ip).

2. Then we generate the score s ∈ (0, 1) according to s = σ
(
(bTx)deg · sign(bTx) · ε

)
, where

σ(·) is the logistic function. Here ε, the multiplicative noise term, is a random variable
which independently generated from the uniform distribution [1− ε̄, 1 + ε̄] for a fixed noise
half width ε̄ ≥ 0. In particular, ε̄ is set to 0 for “no noise” instances and 0.5 for “moderate
noise” instances.

3. Finally we generate the true class label lab = d10se ∈ {1, . . . , 10} and the true cost vector
c = (c1, . . . , c10) is given by cj = |j − lab| for j = 1, . . . , 10.
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