A Rademacher complexity and generalization bounds

Herein we briefly review Rademacher complexity, a widely used concept in deriving generalization
bounds, and how it applies in our analysis. For any loss function ¢(-, -) and a hypothesis class H of
cost vector predictor functions, the Rademacher complexity is defined as

Ry (H) = E,, {(@i,ci) ¥,y [Sugnzaz )aci)] )
i=1

where o; are independent Rademacher random variables and (x;, ¢;) are independent samples from
the joint distribution P for ¢ = 1, ..., n. The following theorem provides a classical generalization
bounds based on the Rademacher complexity.
Theorem A.1 (Bartlett and Mendelson|[2002]). Let H be a hypothesis class from X to R? and let
b = SUPsey(x),cec L(¢, ¢). Then, for any 6 > 0, with probability at least 1 — 6, for all g € H it holds
that
21log(1/0)

Relg;P) — 7 (9)| < 208 () + by [ =5

Moreover, we define the multivariate Rademacher complexity [Maurer, 2016, |Bertsimas and Kallus,
2020, [El Balghiti et al., [2019]] of H as

R"(H) =Eq, |sup o; g(zi)],
EHnEZ )
where o; € {—1,+1}¢ are Rademacher random vectors for i = 1,...,n. In many cases of

hypothesis classes, such as linear functions with bounded Frobenius or element-wise ¢; norm, the
multivariate Rademacher complexity can be bounded as R" (H) < % where C’ is a constant that
usually depends on the properties of the data, the hypothesis class, and mildly on the dimensions d

and p. Detailed examples of such bounds have been provided by [El Balghiti et al.[[2019], Bertsimas
and Kallus| [2020].

When the loss function #(-, -) is additionally L-Lipschitz continuous with respect to the 2-norm in the
first argument, namely |£(¢1, ¢) — £(¢éo, )| < L||é1 — é2||2 for all éq, éo, ¢ € RP, then by the vector
contraction inequality of Maurer|[2016] we have R} (H) < v/2L9R™(H). It is also easy to see that
the the SPO+ loss function fspo. (-, ¢) is 2Dg-Lipschitz continuous with respect to the 2-norm for
any c and therefore we can leverage the vector contraction inequality of |Maurer| [2016] in this case.
Combined with Theorem [A.1] this yields a generalization bound for the SPO+ loss which, when
combined with Theorems [3.1and 1] yields Corollaries [3.T|and [4.1] respectively. The full proofs of
these corollaries are included below.

Proof of Corollary[3.1|and@.1} Let b = supscyx),cec £(¢:¢) < 2Dssupyey zex 19()||2. For
any § > 0, with probability at least 1 — 4, for all g € H, it holds that

’Re (9:P) — Ry (9 )\34\/§Dsmn(m+b 21%(1/5)

Since R"(H) < % and log(1/d) > log(2), we know that there exists some universal constant C;

such that
4V2ZDgR™ (H) +b\/21%<1/5) < CM/M,

forall § € (0,1) and n > 1. Since §lpp, minimizes the empirical SPO+ risk R0, (+), we have
R0, (0%0.) < Ribo. (9%p0.)- and therefore, with probability at least 1 — 4, it holds that

n . log (1/6
Rspo+(9spo+) — Répos < 2CH %

Recall Theorem the biconjugate of min{D;—2M7 €} is DZZM for € € [0, 23] and € — 23 for
ec B %M ,00|. Then if the assumption in Corollaryholds, with probability at least 1 — 4, it holds

that
. Ca+/log(1/6
Ripo(P) < 27(/)
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for some universal constant C5. Also, since the calibration function in Theorem[C.1]is linear and thus
convex, then if the assumption in Corollary [3.1]holds, with probability at least 1 — ¢, it holds that

C3+/10g(1/9)

Rspo(dgpo+; P) — Rgpo(P) < /2 )

for some universal constant Cs.

B Proofs and other technical details for Section

B.1 Additional definitions and notation

Recall that S is polyhedral and let Zg denote the extreme points of .S. We assume, for simplicity,
that w*(c) € Zg for all ¢ € R%, but our results can be extended to allow for other possibilities in
the case when there are multiple optimal solutions of P(c). Forany i € {1,...,d}, we use ¢; € R?
to represent the unit vector whose i-th entry is 1 and others are all zero. Given a vector ¢/ € R4~1
and a scalar £ € R, let (¢/, £) denote the vector (¢'T,€)T € R?. For fixed ¢’ and when & ranges from
negative infinity to positive infinity, the corresponding optimal solution w*(¢’, ) will sequentially

take different values in Zg, and we let Q(c’) = (wi(c'), ..., wy()(c")) denote this sequence. Let
yi(¢') denote the last element of vector w;(¢’) fori = 1,...,k(c'). Also, fori =1,... k(') — 1,
we define phase transition location (;(¢’) € R such that (¢’, ;(¢'))Tw;(¢') = (¢, ¢i() T wir1 (<),
and additionally, we define (o(c’) = —oo and () (c’) = co. When there is no confusion, we will

omit ¢’ and only use k, w;, y;, ¢; for simplicity.

Based on the above definition, for all £ € ({;—1(c"), (;(¢")), it holds that w*(¢’, &) = w;(¢’). Also, it
holds that 1 () > - -+ >y ().

B.2 Detailed derivation for Example

Let the feasible region be the ¢; ball S = {w € R? : ||w||; < 1} and consider the distribution class
Peont, symm- Let € X be fixed, € > 0 be a fixed scalar, ¢; = (9¢,0)” and co = (—7¢,0)%. Let the
conditional distribution be a mixture of normals defined by P, (c|z) := § (N (c1,0%) + N (c2, 0%1))
for some o > 0. The condition mean of c is then & = (¢, 0)7 and the distribution P, (c|x) is centrally
symmetric around ¢; therefore P, € Peont, symm. Let é = (0, €)T and A := ¢ — ¢, which yields that
the excess conditional SPO risk is E[lspo (¢, ¢) — Lspo(C, ¢)] = &X' (w*(¢) — w*(€)) = €. Also, for
all ¢ € C, we may assume that w*(c) € Zs = {£e1, tea} and hence (¢ + 2A)" (w*(¢) — w*(c +
2A)) < 2AT (w*(e) — w*(c + 2A)) < 4e. Therefore, using E [lspo+ (¢ + A, ¢) — lspo+ (¢, ¢)] =
E [(c+ 2A)T (w*(c) — w*(c + 2A))], it holds that

J;
E [lspos (¢ + A, ¢) — Lspo+ (G, ¢)] < 4Py (w* () # w™ (c 4 24))
<4e(1 =P,({l|lc — c1]l2 < e} U{|lc — e2]l2 < €})) — 0,

when o — 0, and hence we have 5@(6; Peont, symm) = 0.

4elP
4e

B.3 Proofs and useful lemmas

Lemma [B.T|provides the relationship between excess SPO risk and the optimal solution of (Z) with
respect to the difference A = ¢ — ¢ between the predicted cost vector ¢ and the realized cost vector ¢.
Lemma B.1. Let ¢,¢ € R? be given and define A := ¢ —¢. Let w, := w*(A) and w_ := w*(—A),
and let y, and y_ denote the last elements of w and w_, respectively. If ¢* (w*(¢) — w*(¢)) > ¢,
then it holds that AT (w_ — w,) > e. Additionally, if A = k - eq for some r > 0, then it holds that
(y- —y4)s > €

Proof of Lemma First we have ¢7 (w*(¢) — w*(¢)) > 0, and therefore it holds that AT (w* (¢ +
A) — w*(e)) > é'(w*(c + A) — w*(e)) > e. Also, since AT (w* (E) — w*(A))

w*(—=A) — w*(e + A)) > 0, we have AT(w_ —wy) > AT(w*(c + A) — w*
Moreover, when A = k - eg for K > 0, we have ATw_ = ATw; and ATw, = ATwy, an
therefore, it holds that (y_ — y4 )k > €. O
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Lemma [B.2]and [B:3| provide two useful inequalities.

Lemma B.2. Suppose that ay,...,an,b1,...,by > 0with Y.\ ja; = aand ., b, = B for
some «, 3 > 0. Then for all p > 0, it holds that

> (”b?)_m > T

=1

Proof. Let;(a,b;p) = b;(1 + 2—2)_”/2 and ¢(a,b;p) = Y., ¥i(a, b; p). Forall p € R, we have

2

d 2
a2 los(¥ (@, bip)) = 41/12abp (szabp waa,b;p)log?(ulﬂ)

2
(Zwlabp log<1+b2)> >0,

for p > 0. Therefore, for all p > 0 it holds that

log ¥(a, b;p) > log ¥ (a, b; 0) +p- (logw(a b;0) — log ¢ (a, b; —1)).
Also, we have 1(a, b,0) = 3, and 9 (a, b, — Vai+b2 <3 (a;+b;) = a+ B. Then,
for all p > 0, it holds that ¢ (a, b; p) > [ f+;) = T O

Lemma B3 Let & € R~ be given with ||¢'||la = 1, and let {w; (&)}, {y:(&)}r_,, and

{¢G(¢é ) "o be the corresponding optimal solution sequence and phase transition location sequence
as described in Section|B.1| Let y_ = y1(¢') and y+ = yi(&'). Then it holds that

k—1

a1
Z (143¢) 2 (yi—yit1) > Ese - (Y- —y4),

i=1

= (14 2/3Dsyi-d

where Zg o =
S,¢ Y——Y+

Proof. Let w) be the first (d — 1) element of w;. Suppose (s—1 < 0 < (; forsome s € {1,...,k},

then it holds that é’T(wi—wiH) = _Ci(yi_yi+1) > 0for: € {1, .. .,8—1} and é’T(wi—wiH) =
—Ci(yi — yip1) < Ofori € {s,...,k — 1}. Therefore, we know that
k—1

A/T

2l

wi+1)| = é/T(’LUl + wg — 2ws) <2Dg.

|&" (] —7 ;)

Also, we have Zf:_f(yi —Yi+1) = y— —yy4 and |(;| = — = | . Therefore, by the result in

Lemma|[B.2] we have

E

-1

_d-1
(1+3¢7) 7 (i —yi1) >
1

Y- — Y+
(1+2fDS)

Yy——y+

%

O

Lemmaprovide a lower bound of the conditional SPO+ risk condition on the first (d — 1) element
of the realized cost vector.

Lemma B4. Let ¢ € R be a fixed vector and £ € R, o > 0 be fixed scalars. Let a random
variable & satisfying P(€) > a - N'(§,02) for all ¢ € [—/2D2? — | |]2,\/2D2 — |||]2]. Let
c=(c,&) € RY, and sequence {w;(c')}¥_,, {¢i(')}r_ defined as in Section Let y; denote
the last element of vector w; fori = 1,... k. Let m; = \/1+3||G;(¢)[]2/|||2 fori = 1,...,k.
Suppose A = & - eq for some k > 0, then for all k € [0, k], it holds that

3(&? +£ )

aFme 207 A 1{||¢ L
Ee [(c+28)" (w*(c) —w*(c+24))] > ; \/{”7” = }(yi—yi+1)~
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Proof of Lemma[B4] Let (w1, ...,w;) = Q(c) as defined in Section [B.1] and suppose w*(c) =
w, and w*(c + 2A) = w; for some s < t. By the definition of {&;(¢')}£, we know that ¢ €
[Cs—1(c"),Cs()] and € + 2k € [Ci—1(¢), (:(c)]. Therefore, it holds that

t—1
(c+28)T (w*(c) —w*(c+ 2A)) = (e +280)T (wy —we) = D (e +28)7 (w; — wiy)
i=s
t—1 t—1
=Y (e 28— (¢, G(EN) (wi = wirn) = Y (€ +2k = G()) - ef (wi — wiga)
k—1
=) MG —26,Gl} - (€426 — G())(Yi — yit1),
i=1
where y; denotes the last element of w; foralli = 1,..., k. When £ follows the normal distribution

N (€,02), it holds that

Ee [1{€ € [¢ — 2k, G} - (€ + 25 — Gi(c))]
>Ee [1{E € [¢ — 2R, G} - (€ + 25 — Gi(c))]

, _ (=92
/Ci(c) ae 202 ]l{HC/H < mﬂ}
¢

i(c')—27 V2ro?

for all & € [0, x]. Therefore, it holds that

>

(€ + 26 = G(d))dE,

E¢ [(c+ 2A)T (w*(c) — w*(c + 2A))]

_3(¢i(eH2+R%+£2)

- k_l( Vi ae 252 {||d]| < mg}
Pp— . /{/K . 2
= ra Yi Yi+1 9 /7271_0_2
22, 72 3¢2(c)
B T vem 2 | < )

5 2 Noroe (Yi — Yiv1)-

O

Lemma|[B.5|provide a lower bound of the conditional SPO+ risk when the distribution of ¢ = (c/, €)
is well behaved.

Lemma B.5. Let & € RY™! be a fixed vector and € € R, o > 0 be fixed scalars. Let ¢ € R*"! be a
random vector satisfying P(c') > N(¢,0%14_1) for all ||||3 < 2D?, and let £ € R be a random
variable satisfying P(£|c) > a - N'(§,02) for all £ € [—/2D? — ||¢/||?, \/2D? — ||¢'||?]. Define
Eg:=(1+ 2\/5%)1*'1. Suppose A = k - eq for some k > 0, then for all i € |0, k], it holds that

3r2 438211213

SO o . el L d-1 12
B e 2807 (0() = (e 28] = S HE D 2y )

Proof of Lemma|B.5] By result in Lemma|[B.4] it holds that

Ee ¢ [(c+28)" (w"(c) — w*(c +24))]

L _3E24E2) k(=1 3i¢
o, QRke” 0 E (Cz): e” 2o LI{||[| < mg}(y () = yipa ()
>——F Ko — i(¢) = Yit1
2 (& Pt 27.(-0-2 K3 K3
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Forany ¢ € R¥! letr = ||/[|» and & = <. We know that k(c/) = k(¢), (<)) = rG(&),
w;(¢") = w; (&), and y;(¢’) = y;(¢’). Then we have
k(c)— 1 34 (C)

Eo z; Nore=3 (yi(c') = yiy1(c))

k(c -1 2y ny
* A d—2 Al ~
i (é ; Po (ré")drde,
S AD> () = e @R

where S92 = {¢' € Rd L ||é’||2 = 1. For fixed & € S%=2 with ¢T¢ > 0andi € {1,...,k(&) —
1}, we have
D 731243‘2(&’) D 73r2<$2<e’> _ nre/—g’u%
mi € 2o d—2 N mi € 20 € 2 d—2
; Vo r¢ Py (ré)dr = | s . (ZWJQ)% T4 dr
p_3r¥eE) _ 243
> e > & > 924y

~—Jo V2ro? (2mo2) =

NEAT d—1 D?(1+43¢2(&)

e W5 2 ’T) (1_’_3C2(A/))—%
= . T - . i C

V2mo? o3

—/
e’ 13

e 22 ’Y(dT,DQ) 2 Ay — &L
> . — (1+ 3Cz ¢ )
oo (143G(E)
where (-, -) is the lower incomplete Gamma function. By Lemma it holds that
k(e')—1

S (3@ T @)~y (@) > Bse - (y- —yy)- 5)

i=1
Therefore, it holds that

k(c)— 1 3( (c)

E 21 Nore3 (yi(c) = yir1(c))

Hu 13

d=1 12
T 15D A
> /Sd . 1{¢ T > 0} — . 22 D7) 2y (g — g )de
w2
le" 13

- d—1 12

e 202 ’y( 3 7D ) _
> . cos(y— — ,
Z o org? F(dgl) s(y Y+)

and finally we get
Ec e [(c + 20T (w* (¢) — w*(c + QA))}
7242 Iz 13
afke” 3 T (4R DY)
> d—1 ":‘S(y— 7y+)
2 2v/ 2mo? F(T)
72438242113
_ oz/?me*3 e V(%5 D?)

. z -2y — .
oro? T( 51) s(y Ys)
O]

Now we present a general version of Theorem [3.1] For given parameters A/ > 1 and «, 5, D > 0,
define Parapp = {P € Peonysymm : forallz € X withé = E[c|z], there exists o €
[0, min{ D, M}] satisfying ||¢||2 < Bo and P(c|z) > a-N(¢,021) for all ¢ € RY satisfying ||c||3 <
2D?}. By introducing the constant D, we no longer require the conditional distribution IP(c|x) be

lower bounded by a normal distribution on the entire vector space R?. Instead, we only need P(c|z)
has a lower bound on a bounded /5-ball.
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Theorem B.1 (A general version of Theorem [3.1). Suppose the feasible region S is a polyhedron
and define Eg := (1 + 2‘[D 2v3Ds)1=d Thep the calibration function of the SPO+ loss satisfies

- aus’Y( L, D?) . e
Y +(6;P1\/I,Q,B,D) > -minq§ ———, €, foralle > 0. (6)
SPO 4\/%83(1%[12)11(%) DSM

Additionally, when D = oo, we have y(“5t, D?) = I'(“51) and therefore

= 2
N azg . €
1) s Pua > —_ lle>0.
fspm(@ M, ,5) = 4\/2763(14552) Inln{DSn[ 6} Jorall e

Proof of Theorem[B.1] Without loss of generality, we assume dg > 0. Otherwise, the constant =g
will be zero and (6) will be a trivial bound. Let & = ||Al|2 and A € R?*4 be an orthogonal matrix
such that ATA = k- eq for ey = (0,...,0,1)7. We implement a change of basis and let the new
basis be A = (ay,...,aq). With a shght abuse of notation, we keep the notation the same after
the change of basis, for example, now the vector A equals to » - e4. Since the excess SPO risk
of ¢ = ¢+ Ais at least €, we have k(y— — y+) > e. Let & = min{k,oc}. Then it holds that

R exp(— ‘2‘02) > min{k, o} - exp(—3). By Lemrna | we know that
Rspolé) = Ee [(c + 28)T (w (¢) — w*(c + 2A))]

38243824213 d-1 12
Rke 257 =1 D?)

> 4\/ﬁf‘( I -Es(y— —y4),

where & is the first (d— 1) elements of G, £ is the last element of ¢, and 362+ ||&||3 < 3||¢]|2 = 3a20?
Then we can conclude that

Q

d—1 2
R . aZsy(5, D7) - € i {F
RSPO+(C) - RSPO+ > 3(1+5 ) d—1 s {77 1} '
42me 2 T (%) 7

we have

€ > €
(y——y4)M = DsM~

R . aEsy (%5, D? : e
Rspo+(¢) — Rspoy > 3((1+L3 7) L. mm{ 6} :
4/2me” 2 (L)

B.4 Tightness of the lower bound in Theorem

Herein we provide an example to show the tightness of the lower bound in Theorem [B.T]

Example 2. For any given € > 0, we consider the conditional distribution P(c|z) = N'(—€ - eq, 021,)
for some constants €’,0 > 0 to be determined. For some a,b > 0, let the feasible region S be
S =conv({w € R? : ||wy,(a—1)ll2 = a,wq = 0} U {b - eq}). Although S is not polyhedral, it
can be considered as a limiting case of a polyhedron and the argument easily extends, with minor

ompllcatlons to the case where the sphere is replaced by an (d 1)-gon for d sufficiently large. Let
¢ =¢€ - eq, we have E [lspo (¢, ¢)|x] — E [€spo (€, ¢)|z] = 2b€’. Also, for the excess conditional SPO+
risk we have

2 a2yd-lc2
372(32 e zbéijé] 6/2
E [¢spo+ (¢, c E [¢spo+(C, ¢)|x] — . - — +dey .. deg—q
fore i) =Blisorteoled = | 55 =03
a2e2

e 20‘ e 20252

/
————dc¢;
2v/ 27r02 H / V2ro? !

o PRENCEIE
- 2V 2mwo? . <a2 +b2) 7
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when € — 0. Therefore, let ¢’ = =, we have E [lspo (¢, ¢)|z] — E [¢spo (€, ¢)|z] = € and

%,
€2 b2 (d—1)/2
E [lspo+ (¢, ¢)|x] — E [lspos (€, ) |z] = SVoroT (az +b2)

T O8V27 ds o’

for some b large enough, and therefore the lower bound in Theorem is tight up to a constant.

C Proofs and other technical details for Section 4|

C.1 Extension of Theorem and Lemma and

Let us first present a more general version of Assumption [C.I] that allows the domain of the
strongly convex function to be a subset of R%. In particular, we define the domain set 77 C R?
by T := {w € R : hTw = s; Vi € [m1],t;(w) < 0Vj € [ma]}, where h; € R? and
s; € Rfori € [my], and ¢;(-) : R — R are convex functions for j € [ms]. Clearly,
when m; = mgy = 0, the set T is the entire vector space Re.  Also, let the closure of T be
T ={weR?: hTw =s,; Vi € [m1],t;(w) < 0Vj € [m2]}, and with a slight abuse of notation,
let the (relative) boundary of 7" be 9T := T\T. For any function defined on 7', we consider the
(relative) lower limit be lim,,, _, 57 = infs5>0 SUPyer.a(w,om)<s f(w), where the distance function
d(-,-) is defined as d(w, 0T) = miny eor ||w — w'||2.

Assumption C.1 (Generalization of Assumption[d.1). For a given norm || - ||, let f : T — R be a
u-strongly convex function on T for some 1 > 0. Assume that the feasible region S is defined by S =
{w e T : f(w) < r} for some constant r satisfying lim,,_, 57 f(w) > r > fin := minger f(w).
Additionally, assume that f is L-smooth on S for some L > .

Let H denote the linear subspace defined by the linear combination of all h;, namely H =
span({h;}7' ), and let H* denote its orthogonal complement, namely H+ = {w € R? : h]w =
0,Vj € [ma]}. Also, for any ¢ € RY, let proj. (c) denote its projection onto H-. Theorem C.1
provides an O(e) lower bound of the calibration function of two different distribution classes, which

include the multi-variate Gaussian, Laplace, and Cauchy distribution. Theorem [4.1]is a special
instance of Theorem|C.1]when m; = my = 0 (and thus H- = R?).

Theorem C.1 (Generalization of Theorem[.1). Suppose that Assumption holds with respect to
the norm |- || 4 for some positive definite matrix A. Then, for any € > 0, it holds that 04, (¢; Pg,4) >

2 9/2
— . op
1(1+B82)L972 € and 5£sp0+(€7 Pa,ﬁ,A) > A0+BI2 €.

Our analysis for the calibration function relies on the following two lemmas, which utilize the
property of the feasible region to strengthen the “first-order optimality” and provide a “Lipschitz-like”
continuity of the optimization oracle. We want to mention that some of the results in the following
two lemmas generalize the results in [EI Balghiti et al.|[2019] to the cases where the feasible region .S
is defined on a subspace of R? rather than an open set in R?. The following lemma provides both
upper and lower bound of SPO-like loss.

Lemma C.1 (Generalization of Lemma[d.T). Suppose Assumption|C.1|holds with respect to a generic

norm || - ||. Then, for any cy,co € RY, it holds that
e w =" (@)) 2 g—mmeslproligs ()l = W@, YweS, @)
and
ci (w*(ez) — w*(er)) < ;Hprojm (e lllw (er) = w*(e2)]I. ®)
2¢/2u(r — fmin)
Th:: two constants are the same since Theorem 12 in Journée et al.|[2010]] showed that set S is a

\/m-strongly convex set. The following lemma provides a lower bound in the difference between
two optimal decision based on the difference between the two normalized cost vector.
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Lemma C.2 (Generalization of Lemma.2). Suppose that Assumption .1 holds with respect to a

generic norm || - ||. Let ¢1, ca € RY be such that proj . (c1), proj . (ca) # 0, then it holds that
* * \/ fnnn 1(¢] C TOj C
HU/ (01)—w (CQ)HZ ( ||p ‘]HL 1) o p JHL( 2)
projpre(en)ll« IIprojgo (ca)ll« |,
and
. . V2L(r — fmin) 101 (¢ r0j ;71 (c
||’LU (cl)—w (62)” S ( H p ‘]HL 1) _ p ‘]HL( 2)
[Iprojg. (e[« llprojg (c2)ll I,

C.2 Proofs and useful lemmas

From now on, for any vector ¢ € R%, we will use ¢ to represent the projection proj ;. (¢) for simplicity.
Likewise, when ¢ = V f(w) we shorten this notation even further to V f (w).

First we provide some useful properties in the following lemma.

Lemma C.3. If f(-) is u-strongly convex on S, the for all w € S, it holds that
IV £ )2 = v/2u(f(w) — fanin)-

Proof. First, for all ¢ € R? and w, w’ € S, it holds that

w—w) = (w—uw)=(c—&)(w—-w)= Zajhj(w —w') =0.
j=1

Since f(-) is p-strongly convex, it holds that f(w') > f(z) 4+ V f(w)" (v’ — w) + & |Jw" — w]|? for
all w’ € S. Therefore, it holds that

inf f(u) > inf {f(w)+ V()@ —w)+ L’ —w]?}

w'es w
= inf {£(w) + V@) (@ —w) + 5w’ —w|?}
> nf {fw)+ V@)@~ w) + o —w]? |

= flw) - iuww)ni.

Lemma Cd4. If f(-) is L-smooth on S, then for all w € S, it holds that

IV F(@)]F < V2L(f(w) = fuin)-

Proof. 1f Vf(w) = 0, then the statement holds. Otherwise, there exists u € R< such that [|ul| =1
and Vf(w)"u = [V f(w)ll.. Letv = [V f(w)|l.u, we have [[v]| = [V f(w)]. and Vf(w)"v =
IVf (w)]|?. Let

a=supc’, st flw—a'?d)<r

Since g;(+) is continuous and g;(w) < 0 for all ¢ € [m4], we have o > 0 and since f(-) is continuous,
we have f(w — a®) = r. Since f(-) is L-smooth on .5, it holds that

=) < fw) —a¥ 1)+ L1 = flw) - 0¥ )5+ Lol
_ 2 B 2

= F(w) — a¥ ()"0 + E o2 < Fw) — ¥ fw)To + L ol

— flw) -

2

—o?L -
LRV w2,
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Therefore, we have 2a — o® L < 0. Moreover, since « > 0, then it holds that o > % Now we know
that w — % € S, and

v

o < 1 (=) < £l0) = S IFT@E
Therefore, it holds that |V f(w)]|« < \/2L(f(w) — fuin)- O

Now we provide the proofs of Lemma|[C.1]and[C.2]

Proof of Lemma([C.1} Let wy = w*(¢1) and wy = w*(¢2). Since f(-) is p-strongly convex on S, it
holds that

J(w) = Fln) = Vfun) (w = w1) 2 Fllw - wi ]

Since the Slater gondition holds, the KKT necessary condition indicates that there exists scalar . > 0
such that ¢, +uV f(w;) = 0 and u(f(wy) —r) = 0. When é&; # 0, we additionally have f(w;) = r.
Therefore, it holds that

c{(w —wy) = E?(w —wy)=u- (—@f(wl)T(w — w1)> =u- (—Vf(wl)T(w — wl))
U
> - (fwn) = fw) + Slhw—wi]?) = ZFw—w |,
where the last inequality holds since f(w;) = r > f(w). Therefore, it holds that

pll il flw — wa |12

T
 (w—wp) > = )
2|V £ (wi)ll«
Since f(-) is L-smooth on S, it holds that ||V f(w;) ||« < \/2L(r — fmin)» and hence we have
el leall
||Vf(w1)||* B V 2L(T’ - fmin)
By applying the above inequality to (9), we can conclude that
T H ~ 2
c(w—wy) 2 —————||c1 ||« ||w — w1 ]||”.
( )23 2L(r—fmin)H ]l 1l
On the other hand, it holds that
c; (wy —wy) =¢f (wg —wy) =u- (*6.][.(’101)71(11}2 — wl)) =u- (=Vf(w)" (wz —wy))
ul
< () - flum) + Fhoe - wn?) = o = wn P
where the last inequality holds since f(wq) = r = f(ws). Therefore, it holds that
L« — 2
C,{'(wQ _ wl) S ||Cl|| ||U)2 w1|| (10)

2V £ (wy)]]«

Since f(-) is p-strongly convex on S, it holds that |V f (w1)||« > +/2(r — fmin)» and hence we
have ~ B
el €0l

IV F@)ll ™ V200 = fuin)

By applying the above inequality to (I0), we can conclude that

L
T(w —wy) < — e ||&1 || Jwa — w12
2 QH(T - fmin)

c
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Proof of Lemma|[C.2] Without loss of generality we assume ||¢1]|« = ||é2]|« = 1. Let wy = w*(¢q)

and we = w*(c2). By KKT condition there exists u1,us > 0 such that V f(w;) = —u;c; and
f(w;) = rfori=1,2. Also, since f(-) is u—strongly convex, it holds that
va(wz H > \/2,u fmln \/2N fmm
for i = 1, 2. Then, it holds that
IV f(w1) = V f (ws)]l« > min [uié1 — usloll = /20(r — fuin) - [|&1 — E2 -

u17u2_ QN(T fmin)

Moreover, since f(-) is L-smooth, it holds that

“|[é1 — el

O

s = wall 2 T [V (w) = VS (wa)ll 2 7 97 (wn) = ¥ () 2 Y

In the rest part of this section, without loss of generality we assume fy,;, = 0. Also, since w * (¢) =
w* () and T (w*(c') —w*(c)) = &7 (w*(c') —w*(c)) forall ¢, ¢’ € R?, we will ignore the notation
and assume all ¢, ¢’ € H*. In Theorem we provide a lower bound of an SPO-like loss.
Theorem C.2. When ¢ # 0 and ¢ + 2A # 0, it holds that

2..1/2

2A)7 (w* o)) > L 24 - ||
(c+28)"(w' (¢) = w* (e +28)) 2 Sy - lle+ "“d

c+2A 2

. lle+2a].

When the norm we consider is A-norm defined by ||x||4 = VT Ax for some positive definite matrix
A, additionally we have

2,.1/2

% T
(e +28)T (w*(c) — @+2A»;%Lw20¢+2ALkl_

Moreover, if P(c = 0) = P(c = —2A) = 0, it holds that

A=Y+ 2A))

llefla-s

2172

fSPO+(A) - 21/2[/5/2 .

T A1 2A
cbw+2Awa_C@+q

lefl -

Proof of Theorem|[C.2] Apply ¢1 = c and ¢y = ¢ + 2A to Lemma|[C.2] we have
2A
() — w*(c + 28)|| > /2ur ’ er

llele — lle+ 24
By applying the above inequality to (/) we have

T * * 1 * * 2
(c+2A)" (w*(c) —w*(c+24A)) > 2@-||c+2A||*~||w () —w*(ec+2A)|

*

2ur c c+2A 2
> M wc+2Am~<V"'\ -l
2V2Lr L el .
2,.1/2 2
wer c+2A
= gy le+ 2480k
217215 o~ Ter 28T .,
When the norm we consider is A-norm, then it holds that
2,.1/2 2
uer c c+2A
2A) T (w*(¢) — w* 2A)) > . 2A|5 - —
(C+ ) (’LU (C) w (C+ )) - 21/2L5/2 ||C+ ||2 HHCHAl ||C+2A||A—1 B
2..1/2 T A1 2A
uer c c+
= (e oaf, - CACF22)Y
2125/ lella s

Moreover, if P(¢c = 0) = P(c = —2A) = 0, by taking the expectation of ¢ we get
A (e + 2A)}

lefl o

2..1/2

wer
ESPO+(A) = W 'Ec |:||C+2A||A1 —
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The following lemma provides a necessary condition on A such that the excess SPO loss of ¢ = ¢+ A
is at least e.

Lemma C.5. Suppose the excess SPO loss of ¢ = ¢+Ais at least €, that is, ¢* (w* (6+A)—w*(¢)) >
€. Then it holds that

When the norm we consider is A-norm defined by ||x||4 = VxT Az for some positive definite matrix
A, additionally we have

2 21/2H5/2€

L LA 2lel.

c c+ A

el lle+ Al

AN e+D) P/

1— :
lella—r e+ Allas — 272020 2e 4 ¢

Proof of Lemma|[C.5] In Lemma[C.I|we show that
LﬁH el (er) — w*(e2)|?
1 l]|w*(er) — w*(e2)||*.
SN 1 2

cf (w*(e2) — w*(er)) <

Let ¢c; = ¢ and ¢; = ¢, it holds that

(@) — w*(c+ A2 > QL@ (W e+ A) — w(@) > QLV”i‘ﬁ”.

Theorem 3 in |El Balghiti et al.|[2019]] shows that for ¢y, co € R9, it holds that

12 . * *
ller = eafls = T -min{|[e1l«, [Jeal«} - [[w"(e1) — w™(e2)]].

By applying ¢; = \Iéﬁl* and ¢y = ﬁ, we have
‘c c+A | ,uQ‘*<c> *<c+A>2
= T AT Z o7 ||w T | W -
el lle+ Al 2Lr Il e+ Al
2 1/2,,5/2
14 . ./ 2440l %e
= 5 [w*(e) —w (C+A)Hi > m
‘When the norm we consider is 2-norm, it holds that
. FA N e+A) 1 ’ ¢ c+A | /2
lella-r - lle+Alla-r 2 [leflar e+ Alla-1 [l 40 — 2Y2L2r12|jef 40

O

From Theorem and Lemma we know that fspo.(c, A) have a lower bound C;(u, L, 7) -

2.1/2
Lspos(c, A), where Cy(u, L, ) = ks and

T AL 2A
Lspor (6, A) = |le+2A] 41 — CHCTZ—t)

Moreover, the excess SPO risk of ¢ = ¢ + A is at least € implies that Rspo(A) > Ca(u, L,7) - €
5/2
where Ca(p1, L,7) = 57875175 and

efA7(e+A)
e+ Alla-

Let Rgpo, (A) = Ec[lgpo, (¢, A)]. We know that the calibration function () has a lower bound
d'(€) which defined as

Rspo(A) = |lel|a—1 —

5/(6) :=min  Ci(p, L,7) - Rgpo, (D)
A (1)
s.t. Rspo(A) > OQ(/JJ, L, 7“) ‘€.

Here we first provide two properties of random variable ¢ when PP € Pro symm-
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Proposition C.1. Suppose P € Pyt symm. If ||C + (|| a—1 = ||¢]| a-1 for some { € RP, it holds that
Ee [lle + ¢lla-2] = Ec [[lefla-1] .-
Proposition C.2. Suppose P € Prot symm. When d > 2, for any constant t > 0, it holds that
[ el A 1le

llefl =

lelf -2 min{]le] a-1, 2}
t2 4 [|ef a-rt

o ellar =1 2

Proof of Proposition|C.2] For simplicity we just assume ||c — ¢|| 4—1 = ¢ from now on and ignore
the conditional probability. Let w = ¢ — &. Since p(c) = p(2¢ — ¢), we have

E [CTA_lc} g [cTA—lc CTA_l(Qc—c)]
Llella=r] 2 7 Lllela-r 1126 = ¢fla
g {cTA—l(cﬂu) CTA_l(c—w)]
2 7L fletwlla 1€ = wlla-

By the fact that ¥ A1 ¢(||e—w|| a—1 + [|c+w] 4-1) > 2|[e]|% -1 [Jw]ja-1 > T A7 w(||e—w| a-1 —
|é 4wl 4-1), it holds that eT A= (¢ 4+ w)||¢ — w|| 4-1+ + T A~(¢ — w)]||¢ — w|| 4-1 > 0 and hence
A e+w) AN e—w)

e+ wlla- e —wlla-

> 0.

Therefore, we further get

|:CTA16:| Sl |:CTA1(C+OJ) c'A=Ye—w)

we C’} P(ETw e C),

lellar ] =2 e+ wlla- e —wlla-s
where C' = [—||¢||%_1, ||¢]|% -1]. For any w such that ¢"w € C, we have
A l(e+w) Al (e—w) A7 e+ w) c'A7l(e - w)
1€+ wlla-s le—wlla—r 7 llella-r + llwlla-r  llella-r + [[w]la—
2eT A le

ey + llwfla-r
Also, when d > 2, we have P(¢Tw € C) > w Then we can conclude that

. [cTA-lc} Nl mingel 4o, 6}
“ el 2+ [ellait

By first-order necessary condition we know that A is an optimal solution to (TT) only if
VESPO+(A) - OéVRspo(A) =0 (12)
for some o > 0. Also, for any fixed A, it holds that

AN e+2A)  ATle
“Llle+2A0a-r lella-s

VRgpo, (A) = E

and
TA Y e+ A)-ATTA - ATA e+ A)- A le
e+ All%- '

VRspo(A) =

The following lemma simplifies V{spo(A).

Lemma C.6. Suppose P € Proisymm. Then there exists a unique function ¢(-) : [0,00] — [0, o0]
such that for all A € R?, it holds that

A
B [ | = <o Al )

Also, « - () is a non-decreasing function.
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Proof. Let h(A) denote E.[<E2-]. First we show that h(A) has the same direction as ¢ + A. Let

lle+All
oA (+) denote the affine transform ¢a (-) : £ — %(64— A) — £ We have oA (da(§)) =€
and [|€[|a-1 = [|pa(€)]| a1 forall ¢ € RY It leads to ;(5) = p(¢a(£)) and hence
h(A):l { c+A palc+A) }:1E [(C+A)+¢A(C+A)
27 lle+Allar  ldale+A)aa]  27° lle+ Alla-s

B [ (e+A)TA e+ A)
“Llle+ Alla-r - lle+ All% -

} (c+A).

Now we let

é(c—i—A):EC{ (e+A)TA (c+A) ]7

lle+ Alla-1 - le+ All% -

and we want to show that {(é+A) = C(e+A)if e+ Al 4=1 = ||é+ A’ 4. Since ||c+ Al 4=1 =
|& 4+ A’|| 41, there exists a matrix R € R?*? such that A='/2(¢ 4+ A’) = RA=Y/2(¢ + A) and
RRT = RTR = I. Let ¢ be a random variable depending on ¢ where ¢’ = A'/2RA~1/2(c —¢) + .
It holds that A=1/2(¢/ — &) = RA~'/2(c — ¢), which implies that ||¢' — &||4-1 = [|c — ¢/ 41 and
therefore p(c — &) = p(c’ — €). Also, we have A~Y/2(¢/ + A’) = RA™'/2(c + A), which implies
that ||¢’ + A’||4-1 = ||c + Al| 4~ and therefore

e+ AVTATH( +A)  (e+A)TAV2RTRATV2(c+ A)  (e+A)TA Y e+ A)

¢ + Al 4 - e+ Alla-1 B llc+ Al 41
Moreover, since det(A'/2RA~1/2) = 1, it holds that

(c+ANTA e+ A) (c+ANTA( +A) (+A)TA e+ A)
E AT =E. / "o, =E. ",
llc+ A4 ¢/ + A" 42 e+ Al 4-1
Therefore,
.\ 1 (e+ANTA Y e+ A)
C c+A) = T ETE i V) {
R FRON Tet A
1 (c—&-A’)TA_l(c—i—A’)} s
= EC - C + A .
et AP [ Tt Aams et a)

Therefore, we know that ((-) : R — R is a well-defined function based on the above property of {(-).
Now we are going to prove that « - {(«) is a non-decreasing function. Pick arbitrary oy > o} > 0,

we have ((o)) = ((aq - ) and ((ad) = ((az - €), where o; = o /||¢|| 4-1 for i = 1, 2. Therefore,
af - ¢(ah) = ab - C(ah) & a1 - ((ar-€) > az - {(az - )
(a1-&)TAY(c— &)+ ay - ©) ] o E [ (ag-&)TA Y (c—¢) +az-@)
e =o) +ar-cllar - far-elZ ] =7 [llle =) + ag - ella—r - [l -l
E FTAl((c &) +ag- 5)} _— FTAl((c —¢)+ay- 5)]
L= +ar-elar | = le=8) +az-cllas |
It is sufficient to show that
A Y (¢ +ar-@) S c'A Y (¢ Haz-¢)
[(+ar-clar = [[(+az-ella
for all ¢ € R? when a; > ap > 0. We divide the proof into three cases. When " A= (¢ +ay - €) >
e'A7L(¢ + ag - €) > 0, (13) is equivalent to
(A CHar-9) I+ az el > F AT C+az9) - ¢+ an-alhe
Sl —a) ("A N (C+ar- o)+ A ((+az-0) (e"A e (TAT ¢ — (e"A71¢)?) > 0.
When ¢ (¢ 4+ ;- €) > 0> ¢(¢ + g - €), we know that left hand side of (T3) is non-negative and
right hand side is non-positive. When 0 > &7 ({ + aq - €) > & ( + az - €), (13) is equivalent to
(AN CHar-0)  IC+az-ais < (A (CHaz-2)" ¢+ a3
Slar—a) ("A ((+a-e)+ A ((+az-0) (A e-(TATI( = (e"471¢)?) <.
O

SaE,. |:

13)
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Following the results in Lemma[C.6] we have

c+ 2A

EEER ] (e 280401) (e 2.

c - —_
B || = ctlela e, B
Hence, (I2) is equivalent to

e+ 284 )(e+28) — (el o) = o TATET A A= L7ATEHA) E

le+ Al -
Since ¢ and A are linearly independent, (I2)) is further equivalent to
2¢(lle+2A00a-1) _ a _ e+ 2A04-1) — ¢(lella-1)
clA-Y(e+ A) I+ 2A]13% —ATA-1(c+ A) ’
which is also equivalent to
(€+2A8)TA7 e+ A) - (e + 24 4-1) =" A7 e+ A) - ¢(llel|.a-). (14)

Lemma C.7. Suppose P € Py symm and A is a solution to (T2), then it holds that
e+ 2] 4-1 = le] a1,
and

(e+20)TA Y e+ A)=c"A7 e+ A).

Proof. Suppose ||¢ + 2A|| 4=1 # ||&||a—:. Without loss of generality we assume ||¢ + 2A[[4-1 >
||€]| 4-1. Following results in Lemma|C.6| we know that

1€+ 24 a-1 - ¢(lle + 240 4-1) = el a-r - C(l[ella-1)-
Also, it holds that

~ L ~ 1 B ~ N
ATAT e+ A) = 5 (lle+ 28115 ~ 23 ) > o.
+

Since (¢ +2A)TA Y e+ A) = e+ A)TA e+ A) + ATA (e + A) > 0, it holds that

(e+2A)TA e+ A) - TA Y e+ A)
&4 2A] 4 [l -1
SE+20)TA e+ A) e ar > AT E+A) e+ 2A] 4
o ~\2 A \2 R
. ((a F2A)TA (e + A)) el > <6TA*1(5 + A)) NN

& (ATa7 e+ 8)) - (le+ Al - A5 - (ATAM e+ 4)2) > 0.

Therefore, we have
E+20)"A7 e+ A) - (e + 24l a—) > " AN e+ A) - (el a-),

which contradicts with (T4). Therefore, we have ||é + 2A|4-1 = ||¢]|a-1 and hence (¢ +
2M)TA e+ Ay =eTA (e + A). O

Based on the above property, we provide a lower bound of calibration function.
Theorem C.3. Suppose Assumptionholds and P € Prot symm, then the calibration function §(-)
satisfies

min{||e]a-1, e —clla-1} ] p2llellas
lle — el -1 +llella-tlle — efl.a-s 2L9/2

d(e) > E,

)

foralle > 0.
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Proof. First we know that () > &'(e). Also, Lemma|C.7]shows that for optimal A, it holds that
Ie]l a-1 = ||¢ + 2A]| 4-1. By the definition of Rgp,, we have
T A=Y (e 4 2A)
Repos (D) = Ec[lspo, (¢, A)] = Ee {|C +2A[ 4 - ”0”14_1}
QCTA_lA]
Tellas
Since ||¢ + 2A[|4-1 = ||é]|4-1, Proposition shows that E, [|lc + 2A[4-1] = E.[|le]|a-1]-

Therefore, it holds that
2¢TA7LA (c+ d)o(c))TA*lA
A)=-E.|—7—| =—-E,.
Byon(8) = B | 7= | = e[GO 2

& [CTA_lc cTA—lA]_ |:CTA_16:| —cTATTA

E. [flc+ 28 4] — Ee [[ellas] — E. [

lellZ-2  llella—s el a-s 111 -
e’A71le] ATATIA

= EC . —5 s
lella=r ] llellf-

where the last inequality holds since (¢ + A)T A=!A = 0. Based on the result in Proposition

we have ) ) B
[ETAlc} [lell%- min{[lc]la-1, [lc — ella-1 }

“Lllella-r ] = e =l + llella-alle — élla-s
Also, let ¢ = Cy(u, L, ) - €. In the constraint we have
A e+ A) _
T TE—— N 3 )

e+ Alla—

and hence ||¢]| s4-1 —||c+ A a-1 > €. Since [|€]| 4-1 > €, itholds that (||c]| 4-1 —€')? > [lc+Al% -,

This implies that ATA7TA > 2|¢||4-1€’ — €2 > ||¢||a-1€' = ||&]| a1 Ca(p, L, 7)e. Therefore, we
conclude that

lefla —

b0 > . [l de -] ] el

lle —ell%-1 + llella-1lle — el a- 2L9/2
O
We are now ready to complete the proof of Theorem[C.I]
Proof of Theorem[C1] From Theorem|[C.3] we know that
ind IEl 4 — @l a Y El 4 9/2
5(e;2,P) > By, {mm{lf”;“ vle = ella}-fela } N
le —ell%-2 + llella-1lle —eflar | 229/
. 2
Also, by m”;‘%{f:c’fii'cl > 2(C%ercg) for all ¢, co # 0, we have
2% P2
5(e;x,P)>E,,[ - S — . . (15)
A 2el s+ lle—elf -] 2207
Moreover, for all P € P, g, it holds that
el } [ el% - _ _
Eae | N 3 v m— S . L
e+ e —elPo ] = 7 LlelRo + e — el
Pepp(lle = ella-r < B [|e]la-1)
@
> )
1+
and for all P € Pg, it holds that
- el E el 1
o HE||,24—1 + e - 5”,24—1 B HE||,24—1 +Ec\z[”0_ E”,Qq—J T 1+
By applying the above two inequalities to (T3) we complete the proof. O
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Normalized Excess Risk v.s. Training Sample Size
Feasible Region Strongly—-Convex Level-Set &3 Polyhedron
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Figure 3: Normalized test set excess risk for the SPO+ methods on instances with polyhedron and
level-set feasible regions. For each value of the sample size in the above plots we run 50 independent
trials.

D Experimental details

For both problems, we ran each instance on one core of Intel Xeon Skylake 6230 @ 2.1 GHz.

D.1 Excess risk comparison

In Figure [3] we provide the empirical excess risk comparison of the cases with polyhedral and
level-set feasible regions. The case with polyhedral feasible region are the cost-sensitive multi-class
classification instances with simplex feasible region, and the case with level-set feasible region are
the entropy constrained portfolio optimization problems. The main metric we use in Figure[3]is the
normalized excess risk, which for each case, is defined as the excess risk over the averaged excess
risk with sample size n = 100. For each type of feasible region, the excess risk is calculated by the
difference between the SPO risk of the predictions given by the trained model and the true model.
Also, we set polynomial degree equals to one with moderate noises, which means the true model is
in the hypothesis class. The main purpose of this plot is not checking if the order of the calibration
matches the theoretical results, as these are only worst case guarantees, but qualitatively comparing
the convergence of excess risk with different types of feasible regions.

D.2 Additional plots on the cost-sensitive multi-class classification instances

In Figure[d] we provide a complete comparison of all the method on the cost-sensitive multi-class
classification instances. We can observe a similar pattern as in Figure

D.3 Technical details

In Lemma we show that the optimization oracle w*(+) is differentiable when the projection of
the predicted cost vector ¢ is not zero for the entropy constrained portfolio optimization example.
LemmaD.1. Let T = {w € R? : w > 0, 17w = 1} denote the interior of the probability simplex.

For any vector ¢ € R%, let & denote the projection of c onto T'. Let f(w) = Z?Zl —w; log(w;) denote
the entropy function. For some scalar v € (fin,lim,, o7 f(w)), let S = {w € T : f(w) < r}.
Let w*(c) = arg miny, e g ¢ w. Then it holds that w*(c) is differentiable when ¢ # 0 where ¢ is the
projection of ¢ onto the subspace {w € R% : 1Tw = 0}.

Proof. Let softmax(-) : R? — R< denote the softmax function, namely

exp(c1) exp(ca)

7 N
Yimexpa) Yo exp(ci)

softmax(c) =
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Normalized SPO Loss v.s. Polynomial Degree
Method Absolute Loss 3 Least Squares £ SPO+ SPO+ w/ Barrier
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Figure 4: Test set SPO loss for the SPO+, least squares, and absolute loss methods on cost-sensitive
multi-class classification instances. For each value of the polynomial degree in the above plots we
run 50 independent trials.

Using KKT condition, we know that for any ¢ € R? such that & # 0, there exists some scalar
u(c) > 0 such that ¢ = —u(c) - V f(w*(c)), and therefore w*(c) = softmax(—¢/u(c)). Since the
softmax function is differentiable and ¢ is differentiable with respect to ¢, we only need to show that
the function u(c) is also differentiable with respect to c. Indeed, when ¢ # 0, we have f(w*(c)) = r,
which is equivalent to f(softmax(—¢/u(c))) = r. Let ¢(c,u) = f(softmax(—¢/u)). Since ¢(c,u)

is a decreasing function for u > 0, by inverse function theorem we have fi—f:‘ = — gi’;g;, and hence

u(c) is also differentiable with respect to c. O

In the cost-sensitive multi-class classification problem, we consider the SPO+ method using a
log barrier approximation to the unit simplex. For the choice of the threshold r, according to
Assumption|C.1|we will need r > fui, and r < lim,, 5 f(w). In this log barrier scenario, we
have fuin = dlogd and lim,,_, 57 f(w) = co. Therefore, we pick the threshold » = 2dlogd. Of
course, one may consider a more careful tuning of this hyper-parameter. Nevertheless, even with
our simplistic approach for setting it we observe benefits of the SPO+ loss that uses a log barrier
approximation to the unit simplex.

D.4 Data generation processes

In the next two paragraphs we discuss the detailed data generation process of each problem.

Portfolio allocation problems. Let us describe the process used for generating the synthetic data
sets for portfolio allocation instances. In this experiment, we set the number of assets d = 50 and
the dimension of feature vector p = 5. We first generate a weight matrix B € R?*P, whereby each
entry of B is a Bernoulli random variable with the probability P(B;; = 1) = %. We then generate
the training data set {(z;, ¢;)}?_; and the test data set {(%;, ¢;)}7*, independently according to the
following procedure.

1. First we generate the feature vector x € R? from the standard multivariate normal distribu-
tion, namely = ~ N(0, I,,).

T deg
2. Then we generate the true cost vector ¢ € R according to cj = [1 + (1 + bj/; ) ] ¢; for

Jj=1,...,d, where b; is the j-th row of matrix 5. Here deg is the fixed degree parameter
and ¢, the multiplicative noise term, is a random variable which independently generated

29



from the uniform distribution [1 — €, 1 + €| for a fixed noise half width € > 0. In particular,
€ is set to 0 for “no noise” instances and 0.5 for “moderate noise” instances.

Cost-sensitive multi-class classification problems. Let us describe the process used for generating
the synthetic data sets for cost-sensitive multi-class classification instances. In this experiment, we
set the number of class d = 10 and the dimension of feature vector p = 5. We first generate a
weight vector b € RP, whereby each entry of b is a Bernoulli random variable with the probability
P(b; = 1) = 1. We then generate the training data set { (z;, ¢;) }?_, and the test data set {(Z;, &) }7,
independently according to the following procedure.

1. First we generate the feature vector z € RP from the standard multivariate normal distribu-
tion, namely = ~ N(0, I,,).

2. Then we generate the score s € (0,1) according to s = o ((b” z)*¢ - sign(b” z) - €), where
o(-) is the logistic function. Here €, the multiplicative noise term, is a random variable
which independently generated from the uniform distribution [1 — €, 1 + €] for a fixed noise

half width € > 0. In particular, € is set to 0 for “no noise” instances and 0.5 for “moderate
noise” instances.

3. Finally we generate the true class label lab = [10s] € {1,..., 10} and the true cost vector
c=(c1,...,c10)is given by ¢; = [j —lab| for j =1,...,10.
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