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Abstract
We provide an approach for the analysis of randomised exploration algorithms like Thompson
sampling that does not rely on forced optimism or posterior inflation. With this, we demonstrate
that in the d-dimensional linear bandit setting, when the action space is smooth and strongly convex,
randomised exploration algorithms enjoy an n-step regret bound of the order O(d

√
n log(n)).

Notably, this shows for the first time that there exist non-trivial linear bandit settings where Thompson
sampling can achieve optimal dimension dependence in the regret.
Keywords: linear bandits, randomised exploration, Thompson sampling

1. Introduction

To achieve low regret in sequential decision-making problems, it is necessary to balance exploration
(selecting uncertain actions) and exploitation (selecting previously successful actions). One method
of balancing this exploration-vs-exploitation trade-off that is particularly well-understood is through
optimism: optimistic algorithms maintain a set of statistically plausible models of the environment
and select actions that maximize the reward in the best plausible model—note however that this entails
solving a bi-level optimization problem in each round. Randomised exploration is an alternative
approach where algorithms select a model of the problem randomly from a set of plausible models and
act optimally with respect to that randomly sampled model—bypassing the need to solve the bi-level
optimization problem associated with optimism. Notable examples of randomised decision-making
algorithms include Bayesian algorithms such as posterior sampling (Thompson, 1933, also known as
Thompson sampling), ensemble sampling (Lu and Van Roy, 2017; Janz et al., 2024a) and perturbed
history exploration (Kveton et al., 2020; Janz et al., 2024b). However, while randomisation-based
algorithms are often preferred in practice, our theoretical understanding of when and why randomised
exploration works in structured sequential decision-making problems is limited.

In this paper, we analyse randomised sequential decision-making algorithms in the classic linear
bandit problem—but the techniques that we introduce should carry over to other structured settings.
In this setting, previous frequentist analyses (e.g. Agrawal and Goyal, 2013; Abeille and Lazaric,
2017; Kveton et al., 2020; Janz et al., 2024b) are not sufficient to explain the practical effectiveness
of randomised exploration, nor do they identify a mechanism through which randomised exploration
works. Indeed, existing proofs rely on modifying randomised exploration algorithms so that they can
be analysed using the optimism framework. These modifications often lead to suboptimal regret. Our
analysis does away with such modifications; it holds under the assumption that the action space is
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smooth and strongly convex (see Section 4.2 for formal definitions), which allows for perturbation in
the model parameter space to translate to perturbations in the action space, while also guaranteeing
that small changes in the action space only lead to small changes in the incurred regret.

For such smooth, strongly convex action sets, which include ℓp-balls for p ∈ (1,∞), we a regret
of the order O(d

√
n log(n)) where d is the dimension of the action space and n is the number of

rounds. Notably, this shows for the first time that (unmodified) linear Thompson sampling can enjoy
regret with the optimal dependence on the dimension in a structured linear bandit settings, thus
partially resolving an important open question (Russo et al., 2018).

2. Related work

Lower bounds for the linear bandit problem depend on the structure of specific action spaces (for
example, Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Lattimore and Szepesvari, 2017).
Theorem 2.1 of Rusmevichientong and Tsitsiklis (2010) shows that there exists a problem instance
where the action space is the d-dimensional unit sphere in which any policy must incur Ω(d

√
n)

regret. Optimistic algorithms have frequentist regret nearly matching the lower bound for linear
bandits (Auer, 2002; Dani et al., 2008; Abbasi-Yadkori et al., 2011). Specifically, Abbasi-Yadkori
et al. (2011) show that by constructing confidence sets using self-normalized bounds for vector-valued
martingales, and taking actions optimistically within these, the resulting regret is O(d

√
n log(n/δ))

with probability at least 1− δ. Despite the strong theoretical performance of optimistic algorithms,
randomised algorithms, such as Thompson sampling, have been shown to perform better in practice
(Chapelle and Li, 2011; May et al., 2012). In the simpler multi-armed bandit setting, randomised
algorithms achieve optimal regret (Agrawal and Goyal, 2012; Kaufmann et al., 2012; Korda et al.,
2013; Honda and Takemura, 2014). Under Bayesian assumptions, where regret is defined by taking
an expectation over the unknown parameter, Russo and Van Roy (2014, 2016) show that Thompson
sampling is near-optimal in many structured and unstructured settings. In particular, for the linear
bandit setting, they show a Bayesian regret bound of Õ(d

√
n) (Russo and Van Roy, 2014).

In this paper, our focus is on the regret of randomised exploration algorithms in linear bandits.
While this setting has been studied extensively by, amongst others, previous approaches rely on
modifying the algorithm to force it to be more optimistic. The main line of analysis, by Agrawal and
Goyal (2013), Abeille and Lazaric (2017), and Xu et al. (2023), inflates the variance of the posterior
over models in round t by a factor of Θ(

√
d log(t/δ)) to show that the algorithm is optimistic with

constant probability—this leads O((d log(n))3/2
√
n) regret, where the increased dependence on d is

due to the inflation of the posterior. Further variants of randomised exploration algorithms include
modifying the algorithms to only sample parameters with reward greater than the mean (May et al.,
2012; Vaswani et al., 2020) and modifying the likelihood used in the Bayesian update of Thompson
sampling to force the algorithm to be more optimistic (Zhang, 2022; Huix et al., 2023). The analysis
of Thompson sampling in other structured settings, such as generalised linear bandits, relies on these
same modifications Kveton et al. (2020) and Janz et al. (2024b).

We remark that the results presented in this paper do not contradict the lower bounds by Hamidi
and Bayati (2023) and Zhang (2022) where examples were provided for which linear Thompson
sampling incurs linear regret if the posterior distribution is not inflated. The action spaces constructed
in those examples fail to satisfy our assumptions.
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3. Problem setting, notation and basic definitions

We study the linear bandit problem, where each bandit instance is parameterised by an unknown
θ⋆ ∈ RBd

2 (R > 0 known), and an action set X , a closed subset of Bd
2 (the closed unit ℓ2-ball in

Rd). Then, at each time-step t = 1, 2, . . . an agent selects an action Xt ∈ X , allowed to depend on
observations from previous time-steps, and receives a real-valued reward Yt. We assume that the
reward Yt is S-subgaussian given Xt and the past (S > 0 known), with mean given by ⟨Xt, θ⋆⟩. The
goal of the agent is to select actions to minimize the n-step regret (n ≥ 1), defined by

Rn =
n∑

t=1

rt for rt = ⟨x⋆ −Xt, θ⋆⟩ ,

where x⋆ ∈ argmaxx∈X ⟨x, θ⋆⟩ is any optimal arm and the horizon n needs not be known.

Confidence set construction The algorithms and analysis in this work are based on the standard
regularised least-squares-based confidence ellipsoids for θ⋆ (Abbasi-Yadkori et al., 2011). To
construct these, fix a regularisation parameter λ > 0 and a confidence parameter δ ∈ (0, 1). Define
the regularised design matrices and least-squares estimates as V0 = λI , θ̂0 = 0 and then

Vt = XtX
T
t + Vt−1 and θ̂t = V −1

t

t∑
i=1

YiXi for t ≥ 1 ,

Also, define the sequence of nondecreasing, nonnegative confidence widths

βt = R
√
λ+ S

√
2 log(1/δ) + log(det(Vt)/λd), t ≥ 0 .

Then, Abbasi-Yadkori et al. (2011) show that, with probability 1−δ, θ⋆ ∈ ∩t≥1Θt−1 for the ellipsoids
given by

Θt−1 = {θ ∈ Rd : ∥θ − θ̂t−1∥Vt−1 ≤ βt−1} , t ≥ 1 ,

where for a ∈ Rd and a d × d positive-definite matrix B, we denote by ∥a∥B the B-weighted
Euclidean norm of a given by

√
⟨Ba, a⟩.

Optimistic algorithms Optimistic algorithms select actions Xt by solving the bi-level optimization
problem (Xt, θt) ∈ argmax(x,θ)∈X×Θt−1

⟨x, θ⟩ in each round t ≤ n. We instead consider ran-
domised algorithms which randomise over Θt−1. These methods are formally defined in Section 4.1

Bregman divergence Our analysis will make use of a generalised Bregman divergence, defined
convex function f : Rd → R as

Df (x, y) = f(x)− f(y)− ⟨∇f(y), x− y⟩ ,

for almost every y ∈ Rd, where ∇f denotes the gradient of f . We recall that convex functions are
almost everywhere differentiable (Rockafellar, 1970, Theorem 25.5).

Probabilistic formalism Let F = (Ft)t≥0 be a filtration where F0 is the trivial σ-algebra and
Ft = σ(σ(Xt, Yt),At), where At is the σ-algebra generated by any additional random variables the
algorithm uses in selecting Xt. Note that this means that Xt is Ft-measurable. We will write Pt

for the Ft-conditional probability measure and Et for the corresponding expectation. With this, we
formalise the assumption that for all t ≥ 1, Yt is conditionally S-subgaussian as that

Et−1 exp{sYt} ≤ exp{s2S2/2} for all s ∈ R , t ≥ 1 . (1)
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Asymptotic notation We will write f(x) ≲ g(x) if f(x) = O(g(x)), and use ≳ for the converse.

Vectors, norms, balls & spheres We will write ∥ · ∥ to denote the ℓ2-norm. We recall that for
a positive-definite matrix B and a vector a of compatible dimensions, ∥a∥B =

√
⟨Ba, a⟩ denotes

the B-weighted ℓ2 norm. We write Bd
2 for the closed unit Euclidean ball in Rd, and Sd−1

2 for its
surface ∂Bd

2, the (d− 1)-sphere.

4. A frequentist regret bound for randomised algorithms in linear bandits

In this section, we state our main result that provides conditions under which randomised exploration
algorithms can achieve frequentist regret of Õ(d

√
n) in the linear bandit setting. We begin by

describing the algorithmic framework and assumptions for the action set under which it holds.

4.1. Randomised algorithms: definition and assumptions

We consider algorithms that at each time-step t ≥ 1 sample a parameter of the form

θt = θ̂t−1 + V
−1/2
t−1 ηt ,

where (ηt)t≥1 is a sequence of independent random variables (perturbations), and select action

Xt ∈ argmax
x∈X

⟨x, θt⟩ .

Our result will require the following assumptions to hold for the perturbations (ηt)t≥1.

Assumption 1. The perturbations (ηt)t≥1 are independent rotationally-invariant random variables
for which there exists a constant K > 0 such that

1 ≤ E⟨u, ηt⟩2 ≤ K2 and E⟨u, ηt⟩4 ≤ K4 for all u ∈ Sd−1
2 , t ≥ 1 .

These assumptions hold for many common distributions, such as standard Gaussian (with K4 = 3),
and the uniform distribution on

√
dSd−1

2 (with K = 1).

4.2. Action set assumptions: smoothness and strong convexity

A core part of our contribution is in identifying the properties of action sets that allow randomised
exploration to succeed. Our assumptions will be expressed in terms of the support function of X ,

JX (θ) = max
x∈X

⟨x, θ⟩ .

Crucially, for randomised algorithms where for each t ≥ 1, the Ft−1-conditional law of θt is diffuse
(implied by rotational invariance), we have that

Xt = ∇JX (θt) almost surely for all t ≥ 1 .

Our upcoming assumptions ensure that ∇JX is a suitably regular function. Note that the above
relation means the per-step regret of randomised algorithms is given by the divergence

rt = JX (θ⋆)− ⟨Xt, θ⋆⟩ = JX (θ⋆)− JX (θt)− ⟨∇JX (θt), θ⋆ − θt⟩ = DJX (θ⋆, θt) ,

again, almost surely with respect to the Ft−1-conditional law of θt.
Our assumptions will be based on the following three definitions:
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Definition 1 (Absorbing set). We call a set X ⊂ Rd absorbing if it is a neighbourhood of the origin.

Definition 2 (Strong convexity). We say J2
X is m-strongly convex with respect to a norm ∥ · ∥∗ if

m

2
∥θ − θ′∥2∗ ≤ DJ2

X
(θ, θ′) for all θ, θ′ ∈ Rd .

Definition 3 (Smoothness). We say that J2
X is M -smooth with respect to a norm ∥ · ∥∗ if

DJ2
X
(θ, θ′) ≤ M

2
∥θ − θ′∥2∗ for all θ, θ′ ∈ Rd .

With these definitions in place, the conditions we will ask for on the arm set X are captured thus.

Assumption 2. The action set X is a closed absorbing subset of Bd
2, and there exists a norm ∥ · ∥∗

and constants M,m > 0 such that J2
X is m-strongly convex and M -smooth.

The motivation for asking for strong convexity and smoothness for the square J2
X , rather than

directly for JX , is that the quantity

∇J2
X (θ) = 2J(θ)∇J(θ) (2)

does not explode as θ → 0, whereas ∇JX (θ) does. That X is absorbing ensures that the multiplier
J(θ) in the above is positive, which will come in useful in our proofs—we do not believe this
assumption to be essential, but we have thus far been unable to eliminate it.

Remark 1. Definition 3 generalises the notion of M -strong convexity used in Rusmevichientong and
Tsitsiklis (2010), where this was defined by the requirement that

∥∇JX (θ)−∇JX (θ
′)∥ ≤ M∥θ − θ′∥ for all θ, θ′ ∈ Sd−1

2 .

Our definition will be vital to getting the right rate for randomised algorithms outside the ℓ2-ball
case, and specifically to avoid incurring an extra factor of ∥θ⋆∥/J(θ⋆) in the regret, which may
be large. We note also that their definition is for the strong convexity of the arm-set, whereas our
definition is for the smoothness of J2

X . There is a duality between the (indicator function of) the set
and the corresponding support function, which explains the inversion in the nomenclature.

Remark 2. If X is absorbing and balanced (symmetric about the origin), JX is a norm; if it is just
absorbing, J̃(θ) = JX (θ) ∨ JX (−θ) is a norm. In these cases, it may be productive to try taking
∥ · ∥∗ = JX (·) (or J̃(·)), as in our above examples. Of course, ∥ · ∥∗,m,M do not need to be known
to run the algorithm, and the regret implicitly scales with the best M/m over all norms ∥ · ∥∗.

An example of an action sets that satisfy Assumption 2 are ℓp balls with p ∈ (1,∞):

Example 1. Let p, q > 1 be conjugate indices (1p + 1
q = 1), X = Bd

q and ∥ · ∥∗ = ∥ · ∥p. Then,
Assumption 2 holds with m = 1, M = (p− 1) for q ∈ (1, 2) and m = p− 1, M = 1 for q ∈ [2,∞).

Assumption 2 is unaffected by linear transformations, extending the above examples to ellipsoids:

Example 2. Let X be any arm set satisfying Assumption 2 for some ∥ · ∥∗, M and m. Then, for any
A ∈ Rd×d, AX := {x ∈ Rd : Ax ∈ X} satisfies Assumption 2 for norm x 7→ ∥Ax∥∗, M and m.
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4.3. Main result and discussion

We are now ready to state our main result which shows that any randomised algorithm satisfying
Assumption 1 with an action set satisfying Assumption 2 achieves at most Õ(d

√
n) regret in the

linear bandit problem. This matches the lower bound of Rusmevichientong and Tsitsiklis (2010) up
to logarithmic factors (based on X = Bd

2, a set that satisfies our assumptions).

Theorem 4. Fix λ ≥ 1 and δ ∈ (0, 1). Suppose that a learner uses a randomised algorithm with
perturbations satisfying Assumption 1 on a linear bandit instance with an arm-set that satisfies
Assumption 2. Then, for any θ⋆ ∈

√
dBd

2, with probability 1 − δ, for all n ≥ 1, the n-step regret
incurred by the learner is bounded as

Rn ≲
M

m
K(β2

n ∨K2d)
√
n+K4βn

√
n(d log(1 + n/(dλ)) + log(1/δ)) ,

The proof of this result is presented in Section 5, with much of the details deferred to the appendices.
We now discuss some aspects of our result, its proof and its relation to previous works.

On the regret of Thompson sampling If the noise in the responses (Yt)t≥1 is Gaussian with
a known variance σ2, and if for all t ≥ 1 the perturbations are given by ηt ∼ Nd(0, σ

2I), then
our randomised exploration algorithm is equivalent to the linear Thompson sampling algorithms
of Russo and Van Roy (2014), Agrawal and Goyal (2012), and Abeille and Lazaric (2017). Thus,
for action spaces satisfying Assumption 2, Theorem 4 shows that Thompson sampling can enjoy
regret of O(d

√
n log(n)), leaving at most an O(log n) gap between this frequentist regret and the

corresponding Bayesian regret (see Russo and Van Roy, 2014, 2016, for Bayesian analyses).

On the lower bound for randomised algorithms We remark that Theorem 4 holds for any
randomised algorithm without any modification; in particular there is no need to inflate any variance
proxies. This is in contrast to lower bounds by Hamidi and Bayati (2023) and Zhang (2022) which
show that there exist problem instances on which linear Thompson sampling suffers linear regret.
These instances are specifically designed so that there is a bad ‘trap’ arm, where pulling that arm
yields regret, but no information, so that Thompson sampling gets stuck. They are the polar opposite
of what Assumption 2 asks for: not absorbing, strongly convex, or smooth.

Limitation of optimism-based proofs Existing proofs of frequentist regret bounds for randomised
algorithms in linear bandit, including those of Agrawal and Goyal (2013), Abeille and Lazaric (2017),
Kveton et al. (2020), and Janz et al. (2024b), leverage that with high probability,

rt = JX (θ⋆)− ⟨Xt, θ⋆⟩ = DJX (θ⋆, θt) ≤ sup
θ∈Θt

DJX (θ⋆, θ) ,

and then show that supθ∈Θt
DJX (θ⋆, θ) can be suitably controlled when randomised sampling

guarantees sufficient optimism—that is, when the algorithm is optimistic with a fixed probability.
Unfortunately, as illustrated in Abeille and Lazaric (2017, Fig. 2), guaranteeing optimism with a
fixed probability requires inflating the variance of the sampling distributions, and this results in an
extra

√
d factor in the regret bound. Moreover, these proofs implicitly suggest that non-optimistic

samples do not help in controlling the upper bound on the per-step regret, supθ∈Θt
DJX (θ⋆, θ).

This approach is overly conservative in two ways: first, while a particular sample may provide
very little information—measured through the design matrix update XtX

T
t = Vt − Vt−1—the
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X

J(θ) ≥ J(θ⋆)

Θ′
Θ

θ⋆

x′x
∆′

∆

Figure 1: Illustration of the update to the confidence sets during non-optimistic exploration, and the
impact this has on the per-step worst case regret, when X = Bd

2. In red, we have an initial
confidence set Θ; the corresponding worst-case optimal action over Θ is given by x =
argminθ∈Θ⟨∇(θ), θ⋆⟩ and the associated per-step worst case regret is ∆ = ∥θ⋆∥2−⟨x, θ⋆⟩.
In blue, we illustrate the average of the respective quantities after randomised structured
exploration with θ ∼ Θ. That is, taking V ′ = V + Eθ∼Θ

(
∇(θ)∇(θ)T

)
. While the actions

sampled by this strategy are unlikely to be optimistic, this randomised strategy does in fact
explore—the confidence set shrinks—and this reduces the per-step regret.

sample may still provide useful information on average, that is, by considering Et−1XtX
T
t . Second,

while the information acquired at a time t might not significantly reduce the per-step regret bound
supθ∈Θt+1

DJX (θ⋆, θ) for the step immediately following it, it may prove useful at later steps.
Figure. 1 illustrates how non-optimistic samples provide useful information that is ignored by the
optimistic proof approaches.

Our proof techniques The key challenge in developing a non-optimistic proof for randomised
algorithms in linear bandits is to directly analyse the dynamic of the exploration, that is, of the process
{Θt}t≥0, and relating this to the upper bound of the per-step regret process, supθ′,θ∈Θt

DJX (θ
′, θ).

Interestingly, such approach is closer to the analysis of Thompson sampling in the K-armed bandit
setting, for which it is shown to be optimal (Kaufmann et al., 2012; Agrawal and Goyal, 2012).
Within the proof of our regret bound, Theorem 4, we address the above points by:

(i) Providing a new bound on supθ′,θ∈Θt
DJX (θ

′, θ), t ≥ 0 by leveraging strong convexity and
smoothness;
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(ii) Characterising the minimum amount of information acquired during interaction through a lower
bound on Vt, where Vt acts as a proxy for Θt;

and connecting (i) and (ii) by studying the properties of the average per-step information Et−1XtX
T
t .

Comparison with forced exploration Rusmevichientong and Tsitsiklis (2010) proposes a phased
explore-then-commit algorithm that interleaves rounds of playing d linearly independent actions
with increasingly long exploitation phases, where the estimated best action is selected. They show
prove a regret bound on the order of O((∥θ⋆∥ + 1/∥θ⋆∥)d

√
n) for their approach, which notably

behaves poorly as θ → 0. This behaviour is because their exploration is isotropic—equal in all
directions—and not directed by an estimate of θ⋆. In contrast, randomised exploration algorithms
account for structure by (i) taking Xt = ∇J(θt) (almost surely), which accounts for the geometry
of the action-set, and (ii) sampling θt from a distribution concentrated on a scaled version of Θt−1,
which accounts for the current estimate of θ⋆. One might interpret randomised algorithms as blending
together the exploration and exploitation stages with a more careful balance between the two.

5. Proof of main result

We now prove our main result, Theorem 4. Here and in the appendices, we will write J in place
of JX , and we will work throughout on the 1− δ probability event where θ⋆ ∈ ∩t≥1Θt−1.

We start by moving from Rn to R̄n :=
∑n

t=1 Et−1rt. This can be done by noting that ξt =
rt − Et−1rt, t ≥ 1, is a martingale difference sequence satisfying |ξt| ≲

√
d for all t ≥ 1, and

applying a standard concentration inequality (included here as Lemma 8, Appendix A). From this,
conclude that with probability 1− δ, for all n ≥ 1,

Rn ≲ R̄n +
√

dn log(dn/δ) .

We now outline the three main results we use in bounding R̄n, and then show how they come together.

5.1. Regret decomposition & upper bound

Denote by pt−1 the conditional probability of optimism Pt−1{J(θt) ≥ J(θ⋆)} at time-step t ≥ 1.
Letting χt−1 = 1[pt−1 ≤ p] for a threshold p ∈ (0, 1), we now decompose the regret into that
incurred in time-steps where pt−1 is high, and those where it is low (we take p = 1/(16K4), where
K is the constant appearing in Assumption 1):

R̄n =

n∑
t=1

χt−1Et−1rt +

n∑
t=1

(1− χt−1)Et−1rt

≲
M(β2

n ∨K2d)

J(θ⋆)

n∑
t=1

χt−1 sup
u∈Bd

2

∥V −1/2
t−1 u∥2∗︸ ︷︷ ︸

=:R̄TS
n

+K4(βn ∨K
√
d)

n∑
t=1

Et−1∥Xt∥V −1
t−1︸ ︷︷ ︸

=:R̄OPT
n

. (3)

The derivations of the bound is presented in Appendix B. It is based on repeatedly applying properties
of Bregman divergences and convex functions. At a high level, we introduce θ′t, which is, condition-
ally on Ft−1, an independent copy of θt; then conditioning condition on the event {J(θ′t) ≤ J(θ⋆)}
(the converse for the second term), and integrating the θ′t out.

8



WHEN AND WHY RANDOMISED EXPLORATION WORKS

Examining the two terms, R̄OPT
n is a term that appears in the standard regret analysis of optimistic

algorithms, and is easily handled using a concentration argument (Lemma 9) and the elliptical
potential lemma (Lemma 10); this yields

R̄OPT
n ≲ (βn ∨K

√
d)K4

√
n(d log(1 + n/(dλ)) + log(1/δ)) ,

a term featuring in our overall regret bound. The term R̄TS
n is a cost associated with randomised

exploration: it is the sum of the sizes of the parameter sampling distributions (or confidence sets, as
these are the same up to scaling), where size is measured in the geometry induced by ∥ · ∥∗.

5.2. Relating confidence widths to the amount of exploration

The challenge is now to show that Vt grows sufficiently fast, measured with respect to the geometry
induced by ∥ · ∥∗, such that R̄TS

n is small. First, we relate the width ∥V −1/2
t−1 u∥∗ to the expected

amount of exploration in the direction of u ∈ Bd
2 at step t, with the latter measured in the ℓ2 norm,

∥ · ∥, at a cost of 1/m from m-strong convexity. This is a change of geometry lemma:

Lemma 5. For all t ≥ 1 with pt−1 ≤ 1/(16K4), for any u ∈ Bd
2,

1

J(θ⋆)
∥V −1/2

t−1 u∥2∗ ≾
K

m
∥Et−1[XtX

T
t ]

1/2V
−1/2
t−1 u∥ .

Remark 3. When X = Bd
2, we have m = 1 for ∥ · ∥∗ = ∥ · ∥, and thus no change of geometry is

needed. In that case Xt = θt/∥θt∥ almost surely, and J(θ) = ∥θ∥ for all θ ∈ Rd, and so

Et−1XtX
T
t = Et−1[θtθ

T
t /∥θt∥2] ≈

1

∥θ⋆∥2
Et−1θtθ

T
t ⪰ 1

∥θ⋆∥2
Vart−1 θt =

K2

J2(θ⋆)
V −1
t−1 ,

where we for the sake of exposition, allowed ourselves the simplifying assumption our the confidence
sets and perturbations are concentrated sufficiently to ensure that 1/∥θt∥ ≈ 1/∥θ⋆∥.

We present the proof of Lemma 5 in Appendix C. Once again, we proceed by introducing a random
variable θ′t with the same Ft−1-conditional law as θt; however, this time, we couple θt and θ′t closely
coupled, in that they differ only in the u marginal (along which they are independent). We then
proceed with a convex Poincaré inequality-style argument along the u direction, which relates
Xt = ∇J(θt) and the V −1

t−1 matrix, with the latter being essentially the conditional variance of θt.

5.3. Establishing the growth of the design matrices

The final ingredient is the following relation between the sum
∑n

t=1 Et−1XtX
T
t of the conditional

expected increments in the design matrices and their realisation
∑n

t=1XtXt.

Lemma 6. For any r ∈ (0, 1] and δ ∈ (0, 1), with probability at least 1− δ, for all n ≥ 1 and all
u ∈ rBd

2,

uT
n∑

i=1

XtX
T
t u+ J2(u)ωn + 5 ≥ 1

2

n∑
t=1

uTEt−1[XtX
T
t ]u ,

where ωn = d log(20d3n2r/δ2).
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Remark 4. A standard matrix Chernoff inequality1 gives that with probability 1− δ, for all n ≥ 1,

n∑
t=1

XtXt + log(d/δ) ⪰ 1

2

n∑
t=1

Et−1XtX
T
t , (4)

where ⪰ denotes the usual ordering on positive-semidefinite matrices. For the ℓ2 ball, Equation (4)
serves the same role as Lemma 6, but is tighter. However, in the general setting where J(u) ̸= ∥u∥,
it is crucial that we obtain the J2(u) dependence seen in Lemma 6.

The proof of Lemma 6 is presented in Appendix D. It uses Lemma 9, a one-dimensional version
of the inequality given in Equation (4), and applies it to the process (⟨u,Xt⟩2 : t ≥ 1) for all u in
a time-dependent cover of rBd

2. A union bound over the size of the cover is responsible for the ωn

term, and the discretisation error involved in the covering argument yields the additive 5.

5.4. Putting everything together

Let Nn =
∑n

t=1 χt−1 be the number of steps up to n on which the conditional probability of
optimism was below the threshold p. We will shortly show that Lemma 5 and Lemma 6, together
with the assumed smoothness, yield the following bound:

Claim 7. For all t ≥ 2 and u ∈ Bd
2,

1

J(θ⋆)
∥V −1/2

t−1 u∥2∗ ≲
Mωt−1K

2J(θ⋆)

m2Nt−1
+

K

m
√
Nt−1

.

First though, note that using Claim 7 within the regret decomposition of Equation (3) completes the
proof. Indeed, using that the expected per-step regret is bounded by 2∥θ⋆∥ ≲

√
d (to handle step the

first step, which is not covered by Claim 7), and the usual integral for monotonic integrands, we have

R̄TS
n ≲

√
d+ (β2

n ∨K2d)

∫ n

1

[
M2ωtK

2J(θ⋆)

m2Nt
+

K

m
√
Nt

]
dt

≲
√
d+ d

√
d(β2

n ∨K2d)K2M
2

m2
log(dn/(δλ)) log n+

M

m
K(β2

n ∨K2d)
√
n ,

which completes our bound (observe that the first two terms are lower order).

Proof of Claim 7. We work on the 1− δ probability event resulting from applying Lemma 6 with
r = 1/

√
λ. Since u ∈ Bd

2, we have V
−1/2
n u ∈ Bd

2/
√
λ, and thus for all n ≥ 1,

J2(V −1/2
n u)ωn + 6 ≥ 1

2

n∑
t=1

∥Et−1[XtX
T
t ]

1/2V −1/2
n u∥2 . (5)

Now we proceed to in turn upper and lower-bounding the above expression.
For the upper-bound, note that by M -smoothness, J2(V

−1/2
n u) ≤ M

2 ∥V
−1/2
n u∥2∗.

1. See Tropp (2012). This exact inequality is not stated there, but all the tools needed to derive it are.
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For the lower bound of the right-hand side of Equation (5), we will use Lemma 5. Let vt−1 =

V
1/2
t−1V

−1/2
n u, and note that since Vt−1 ⪯ Vn, we have that ∥vt−1∥ ≤ 1. Now,

n∑
t=1

χt−1∥Et−1[XtX
T
t ]

1/2V −1/2
n u∥2 =

n∑
t=1

χt−1∥vt−1∥2∥Et−1[XtX
T
t ]

1/2V
−1/2
t−1

vt−1

∥vt−1∥
∥2

≳
m2

K2J2(θ⋆)

n∑
t=1

χt−1
∥V −1/2

t−1 vt−1∥4∗
∥vt−1∥2

(Lemma 5)

≥ m2

K2J2(θ⋆)
Nn∥V −1/2

n u∥4∗ (∥vt−1∥ ≤ 1)

Combining our lower and upper bounds on Equation (5), writing αn = Cm2Nn/K
2 for a

numerical constant C > 0 and letting y = 1
J(θ⋆)

∥V −1/2
n u∥2∗, we obtain the quadratic

−αny
2 +MωnJ(θ⋆)y + 6 ≥ 0 .

Solving for y, we have

∥V −1/2
n u∥2∗ ≤

MωnJ(θ⋆) +
√

M2ω2
nJ

2(θ⋆) + 24αn

2αn
≤ MωnJ(θ⋆)

αn
+

√
6

αn
,

whence relabelling n 7→ t− 1 concludes the proof.

6. Conclusion

In this paper, we have presented a new analysis of randomised exploration algorithms for the linear
bandit setting, which establishes that, given a nice-enough action set, randomised algorithms can
obtain the optimal dependence on the dimension of the problem without need for any algorithmic
modifications. Our improved regret bounds requires that the action space satisfies a smoothness and
strong convexity condition, Assumption 2, which ensures that small perturbations in the parameter
space are translate directly to at least some perturbations in the action space, while also guaranteeing
that these do not lead to large changes in the instantaneous regret.

Our results complement the lower bounds by Hamidi and Bayati (2023) and Zhang (2022)
which show that linear Thompson sampling can suffer linear regret in particular settings where the
connection between randomness in the parameter and action spaces is broken. However, these results
together still do not give a complete characterisation of when randomised exploration algorithms can
and cannot achieve the optimal rate of regret in the linear bandit setting: it remains an important open
problem to understand exactly which action spaces permit an optimal dependence on the dimension.
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workshop, and for feedback on early versions of this work. DJ & MA thank Gergely Neu for putting
them in touch with CP-B, who was working contemporaneously on the same problem.

11



ABEILLE JANZ PIKE-BURKE

References
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Appendix A. Some standard results

The following lemma is adapted from Exercise 20.8 in Lattimore and Szepesvári (2020).

Lemma 8. Fix 0 < δ ≤ 1. Let (ξt)t∈N+ be a real-valued martingale difference sequence satisfying
|ξt| ≤ c almost surely for each t ∈ N+ and some c > 0. Then,

P

∃n :

(
n∑

t=1

ξt

)2

≥ 2(c2n+ 1) log
(√

c2n+ 1/δ
) ≤ δ.

Next is a second concentration inequality that we require.

Lemma 9. Let (αt)t≥1 be a sequence of random variables adapted to a filtration (Ft)t≥0 with
0 ≤ αt ≤ R for all t ≥ 0. Then, for all δ ∈ (0, 1),

P

{
n∑

t=1

αt ≥ (1− 1/e)

n∑
t=1

E[αt | Ft−1]−R log 1/δ, ∀n ≥ 1

}
≥ 1− δ .

Proof of Lemma 9. By rescaling, we need only consider the case where R = 1. Let (Sn)n≥0 be the
random process defined by S0 = 0 and

Sn = exp

(
(1− 1/e)

n∑
t=1

E[αt | Ft−1]−
n∑

t=1

αt

)
.

Observe that Sn ≥ 0 for all n ≥ 0, and that since for any n ≥ 0,

E[exp{−αn+1} | Fn] ≤ 1− (1− 1/e)E[αn+1 | Fn] ≤ exp{−(1− 1/e)E[αn+1 | Fn]}

we have that for al n ≥ 0,

E[Sn+1 | Fn] = Sn exp{(1− 1/e)E[αn+1 | Fn]− αn+1} ≤ Sn .

Therefore, (Sn)n≥0 is a non-negative supermartingale. Applying Ville’s inequality yields the result.

The following is an adaptation of Lemma 19.4 in Lattimore and Szepesvári (2020),

Lemma 10 (Elliptical potential lemma). Fix λ > 0 and a sequence a1, a2, . . . in Bd
2. Then, letting

Vn =
∑n

t=1 ata
T
t + λI , we have that for all n ≥ 1,

n∑
t=1

∥at∥2V −1
t−1

≤ 2d log(1 + n/(dλ)) .
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Appendix B. Derivation of the regret decomposition upper bound (Equation (3))

Let pt−1 = Pt−1{J(θt) ≥ J(θ⋆)} be the (conditional) probability of optimism at step t ≥ 1, and let
β̃t−1 = βt−1 ∨K

√
d. We now derive two bounds separately. When pt−1 is high, we will use

Et−1DJ(θ⋆, θt) ≤
4β̃t−1

pt−1
Et−1

[
∥Xt∥2V −1

t−1

] 1
2
. (6)

When pt−1 is low, we will prefer the bound

Et−1DJ(θ⋆, θt) ≤
1

1− pt−1

{
4πβ̃2

t−1

J(θ⋆)
sup
u∈Bd

2

∥V −1/2
t−1 u∥2∗ + 6β̃t−1Et−1

[
∥Xt∥2V −1

t−1

] 1
2

}
. (7)

Combining these two bounds with our regret decomposition establishes Equation (3)
We will derive the two bounds Equations (6) and (7) using similar techniques. Let Pt−1(A) =

Pt−1{θt ∈ A}. Both derivations will make use of the following estimates.

Claim 11. For any norm F on Rd,∫
F 2(θ⋆ − a)Pt−1(da) ∨

∫
F 2(a− b)P 2

t−1(da× db) ≤ 4(β2
t−1 ∨K2d) sup

u∈Bd
2

F 2(V
−1/2
t−1 u) .

Proof. Letting ηa and ηb be independent copies of ηt, we can express a and b as

a = θ̂t−1 + V
−1/2
t−1 ηa and b = θ̂t−1 + V

1/2
t−1 ηb .

Denote by Eηa,ηb the expectation over ηa and ηb. We have that∫
F 2(a− b)P 2

t−1(da× db) = Eηa,ηbF
2(V

−1/2
t−1 (ηa − ηb))

≤ 4Eηa∥ηa∥2 sup
u∈Bd

2

F 2(V
−1/2
t−1 u)

≤ 4K2d sup
u∈Bd

2

F 2(V
−1/2
t−1 u) ,

where we used that Eηb∥ηb∥ = Eηa∥ηa∥2 = Et−1∥ηt∥2 ≤ K2d.
Expressing θ⋆ = θ̂t−1 + βt−1V

−1/2
t−1 u′ for some u′ ∈ Bd

2 (which we can do due to the implicit
assumption that θ⋆ ∈ Θt−1) and using the same approach we obtain the other part of the bound.

Derivation of Equation (6). For almost every θt, θ
′
t ∈ Rd such that J(θ′t) ≥ J(θ⋆),

DJ(θ⋆, θt) ≤ J(θ′t)− J(θt)− ⟨∇J(θt), θ⋆ − θt⟩ (J(θ′t) ≥ J(θ⋆))

≤ ⟨∇J(θ′t), θ
′
t − θt⟩ − ⟨∇J(θt), θ⋆ − θt⟩ (convexity)

≤ ∥∇J(θ′t)∥V −1
t−1

∥θ′t − θt∥Vt−1 + ∥∇J(θt)∥V −1
t−1

∥θ⋆ − θt∥Vt−1 . (Cauchy-Schwarz)

Now let Q be a measure on Rd given by

Q(A) =

{
1

pt−1
Pt−1(A ∩ {θ ∈ Rd : J(θ) ≥ J(θ⋆)}) , pt−1 ̸= 0

any arbitrary measure otherwise.
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Since the bound above holds for almost all θ′t ∈ Rd such that J(θ′t) ≥ J(θ⋆), and Q is a diffuse
measure on that set, it also holds on average for θ′t ∼ Q. Integrating with respect to Q and Pt−1,

Et−1DJ(θ⋆, θt) ≤
∫

∥∇J(θ′t)∥V −1
t−1

∥θ′t − θt∥Vt−1(Pt−1 ⊗Q)(dθt × dθ′t)

+

∫
∥∇J(θt)∥V −1

t−1
∥θ⋆ − θt∥Vt−1Pt−1(dθt) .

For the first integral,

∫
∥∇J(θ′t)∥V −1

t−1
∥θ′t − θt∥Vt−1(Pt−1 ⊗Q)(dθt × dθ′t) (8)

≤ 1

pt−1

∫
∥∇J(θ′t)∥V −1

t−1
∥θ′t − θt∥Vt−1P

2
t−1(dθt × dθ′t) (∀f ≥ 0,

∫
fdQ ≤ 1

pt−1

∫
fdPt−1)

≤ 1

pt−1

[∫
∥∇J(θ′t)∥2V −1

t−1
Pt−1(θ

′
t)

∫
∥θ′t − θt∥2Vt−1

P 2
t−1(dθt × dθ′t)

]1/2
(Cauchy-Schwarz)

≤ 2(βt−1 ∨K
√
d)

pt−1

[∫
∥∇J(θt)∥2V −1

t−1
Pt−1(θt)

]1/2
. (Claim 11)

Finally, since ∇J(θt) = Xt almost surely, Et−1[∥∇J(θt)∥2V −1
t−1

]1/2 = Et−1[∥Xt∥2V −1
t−1

]1/2.

The second integral follows likewise, with the addition of multiplying the resulting nonnegative
bound by 1/pt−1 ≥ 1 to keep things tidy.

For the steps with a low probability of optimism, we will need the following property of Bregman
divergences:

Lemma 12 (Law of cosines). For any convex function f : Rd → R and all x and almost all y, z ∈ Rd,

Df (x, y) = Df (x, z) +Df (z, y)− ⟨x− z,∇f(y)−∇f(z)⟩ .

Derivation of Equation (7). For almost all θt, θ′t ∈ Rd,

DJ(θ⋆, θt) = DJ(θ⋆, θ
′
t) +DJ(θ

′
t, θt)− ⟨θ⋆ − θ′t,∇J(θt)−∇J(θ′t)⟩ (law of cosines)

≤ DJ(θ⋆, θ
′
t) + ⟨θ⋆ − θt,∇J(θ′t)−∇J(θt)⟩ (convexity of J in DJ )

≤ DJ(θ⋆, θ
′
t) + ∥∇J(θ′t)−∇J(θt)∥V −1

t−1
∥θ⋆ − θt∥Vt−1 . (Cauchy-Schwartz)
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Also, for almost every θ′t ∈ Rd satisfying J(θ′t) ≤ J(θ⋆),

DJ(θ⋆, θ
′
t) = J(θ⋆)− J(θ′t)− ⟨∇J(θ′t), θ⋆ − θ′t⟩

=
1

J(θ⋆)

[
J2(θ⋆)− J(θ′t)J(θ⋆)− ⟨2J(θ′t)∇J(θ′t), θ⋆ − θ′t⟩

]
+

(
2
J(θ′t)

J(θ⋆)
− 1

)
⟨∇J(θ′t), θ⋆ − θ′t⟩

≤ 1

J(θ⋆)

[
J2(θ⋆)− J2(θ′t)− ⟨2J(θ′t)∇J(θ′t), θ⋆ − θ′t⟩

]
+ |⟨∇J(θ′t), θ⋆ − θ′t⟩|

(0 < J(θ′t) ≤ J(θ⋆))

=
1

J(θ⋆)
DJ2(θ⋆, θ

′
t) + |⟨∇J(θ′t), θ⋆ − θ′t⟩| (2J(θ′t)∇J(θ′t) = ∇J2(θ′t) a.e.)

≤ 1

J(θ⋆)
DJ2(θ⋆, θ

′
t) + ∥∇J(θ′t)∥V −1

t−1
∥θ⋆ − θ′t∥Vt−1 . (Cauchy-Schwartz)

Combining the above two bounds, we have that for almost all θt, θ′t ∈ Rd, if J(θ′t) ≤ J(θ⋆), then

DJ(θ⋆, θt) ≤
1

J(θ⋆)
DJ2(θ⋆, θ

′
t) + ∥∇J(θt)∥V −1

t−1
∥θ⋆ − θt∥Vt−1

+ ∥∇J(θ′t)∥V −1
t−1

[
∥θ⋆ − θt∥Vt−1 + ∥θ⋆ − θ′t∥Vt−1

]
. (9)

Now let Q be a measure on Rd given by

Q(A) =

{
1

1−pt−1
Pt−1(A ∩ {θ ∈ Rd : J(θ) ≤ J(θ⋆)}) , pt−1 ̸= 1

any arbitrary measure otherwise.

Since Equation (9) holds for almost all θt, θ′t ∈ Rd with J(θ′t) ≤ J(θ⋆) and Q,Pt−1 are non-atomic,
it also holds on average for θ′t ∼ Q and θt ∼ Pt−1. Integrating, we see that Et−1DJ(θ⋆, θt) is upper
bounded by

1

J(θ⋆)

∫
DJ2(θ⋆, θ

′
t)Q(dθ′t) +

∫
∥∇J(θ′t)∥V −1

t−1
Q(dθ′t)

∫
∥θ⋆ − θt∥Vt−1Pt−1(dθt) (10)

+

∫
∥∇J(θ′t)∥V −1

t−1
∥θ⋆ − θ′t∥Vt−1Q(dθ′t) +

∫
∥∇J(θt)∥V −1

t−1
∥θ⋆ − θt∥Vt−1Pt−1(dθt) .

For the first integral, we can use that for any f ≥ 0,
∫
fdQ ≤ 1

1−pt−1

∫
fdPt−1, to establish that∫

DJ2(θ⋆, θ
′
t)Q(dθ′t) ≤

1

(1− pt−1)

∫
DJ2(θ⋆, θ

′
t)Pt−1(dθ

′
t) =

1

(1− pt−1)
Et−1DJ2(θ⋆, θt) ,

where the final equality follows since θ′t ∼ Pt−1 has the same law as θt conditioned on Ft−1. Now,
by Assumption 2 and then using the estimate from Claim 11,

Et−1DJ2(θ⋆, θt) ≤ πEt−1∥θ⋆ − θt∥2∗ ≤ 4π(β2
t−1 ∨K2d) sup

u∈Bd
2

∥V −1/2
t−1 u∥2∗ ,

Bounding the remaining integrals in Equation (10) can be done by following the same steps as
for the integral in Equation (8) of the optimistic bound, just with 1

1−pt−1
in place of 1

pt−1
.
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Appendix C. Proof of the change of geometry lemma (Lemma 5)

Let u⊥ : Rd → Rd be a basis completion orthogonal to u (a projection onto the orthogonal comple-
ment of the span of u). Let ϵ = ⟨ηt, u⟩/∥u∥, and let ϵ̃ be an independent copy of ϵ independent of
Ft−1 and define

θ̃t = θ̂t−1 + V
−1/2
t−1 u⊥ηt + V

−1/2
t−1 uϵ̃ observing that θt − θ̃t = (ϵ− ϵ̃)u .

Also define the indicators ι = 1[J(θt) ≤ J(θ⋆)] and ι̃ = 1[J(θ̃t) ≤ J(θ⋆)].

Proof of Lemma 5. The proof is based on lower and upper-bounding Et−1ιι̃DJ2(θ̃t, θt).
For the lower bound, note that by strong convexity,

Et−1ιι̃DJ2(θ̃t, θt) ≥
m

2
∥V −1/2

t−1 u∥2∗ Et−1ιι̃(ϵ̃− ϵ)2 ,

where

Et−1ιι̃(ϵ̃− ϵ)2 = Et−1(ϵ̃− ϵ)2 − Et−1((ι+ ι̃) ∧ 1)(ϵ̃− ϵ)2

≥ 2− Et−1((ι+ ι̃) ∧ 1)(ϵ̃− ϵ)2 (marginal variance assumption)

≥ 2− 2Et−1ι(ϵ̃− ϵ)2 (drop ∧)

≥ 2− 2Et−1ι(K
2 + ϵ2) (marginal variance assumption)

≥ 2− 2
√
pt−1

√
Et−1(K2 + ϵ2)2 (Cauchy-Schwarz and Et−1ι = pt−1)

≥ 2− 4K2√pt−1 (marginal variance and fourth moment assumptions)

≥ 1 (pt−1 ≤ p = 1/(16K4) by assumption)

For the upper bound, we have that

Et−1ιι̃DJ2(θ̃t, θt) = Et−1ιι̃(J
2(θ̃t)− J2(θt)− ⟨∇J2(θt), θ̃t − θt⟩)

= Et−1ιι̃(J
2(θ̃t)− J2(θt)− ⟨2J(θt)∇J(θt), θ̃t − θt⟩)

≤ Et−1ιι̃|J2(θ̃t)− J2(θt)|+ 2J(θ⋆)Et−1|⟨∇J(θt), θ̃t − θt⟩|
(0 < ιJ(θt) ≤ J(θ⋆))

= Et−1ιι̃|J(θ̃t)− J(θt)|(J(θt) + J(θ̃t)) + 2J(θ⋆)Et−1|⟨∇J(θt), θ̃t − θt⟩|

≤ 2J(θ⋆)
{
Et−1|J(θ̃t)− J(θt)|+ Et−1|⟨∇J(θt), θ̃t − θt⟩|

}
≤ 6J(θ⋆)Et−1|⟨∇J(θt), θ̃t − θt⟩| (convexity)

= 6J(θ⋆)Et−1(ϵ̃− ϵ)|⟨∇J(θt), V
−1/2
t−1 u⟩|

≤ 6J(θ⋆)Et−1[(ϵ̃− ϵ)2]1/2∥Et−1[∇J(θt)∇J(θt)
T]1/2V

−1/2
t−1 u∥

(Cauchy-Schwarz)

≤ 6
√
2J(θ⋆)K∥Et−1[∇J(θt)∇J(θt)

T]1/2V
1/2
t−1u∥ .

(marginal variance assumption)

Chaining the lower and upper bounds yields the claimed result.
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WHEN AND WHY RANDOMISED EXPLORATION WORKS

Appendix D. Proof of directional concentration (Lemma 6)

Lemma 13. For any r, ϵ > 0, the covering number of rBd
2 is upper bounded by rd(1 + 2

ϵ )
d.

Proof of Lemma 6. For each n ≥ 1, let Nn be a minimal ϵn-cover of rBd
2 in ∥ · ∥, where the value of

ϵn > 0 will be chosen shortly. Let

∆n =

n∑
t=1

XtX
T
t − (1− 1/e)

n∑
t=1

Et−1[XtX
T
t ] .

For every n ≥ 1 and u ∈ Nn, we apply Lemma 9 to the sequence αt = ⟨Xt, u⟩2, t ≥ 1, using the
upper bound αt ≤ J(u)2 for all t ≥ 1, and confidence level δn = 6δ/(π2n2|Nn|). Taking a union
bound over the resulting events, we obtain that with probability 1− δ, for all n ≥ 1 and u ∈ Nn,

fn(u) := uT∆nu+ J(u)2 log(1/δn) ≥ 0 .

Now for each n ≥ 1, let πn : rBd
2 → Nn be a map satisfying ∥u − πn(u)∥ ≤ ϵn for all u ∈ rBd

2.
The proof will be complete once we show that for a suitable choice of ϵn, |fn(u)− fn(πn(u))| ≤ 5
for all u ∈ rBd

2, and that for the chosen ϵn, we have the bound log(1/δn) ≤ ωn. We begin with the
bound

|fn(u)− fn(πn(u))| ≤ |uT∆nu− πn(u)
T∆tπn(u)|︸ ︷︷ ︸

=:An

+ |J2(u)− J2(πn(u))|︸ ︷︷ ︸
=:Bn

log(1/δn) ,

Letting ∥ · ∥op denote the ℓ2 → ℓ2 operator norm,

An = |(u− πn(u))
T∆n(u− πn(u))− 2πn(u)

T∆n(πn(u)− u)|
≤ (∥u− πn(u)∥2 + 2∥πn(u)∥∥πn(u)− u∥)∥∆n∥op
≤ ϵn(ϵn + 2r)2n < 6ϵnn . (∥∆n∥op ≤ 2n, r ≤ 1, ϵn < 1)

Also,

Bn = |(J(u)− J(πn(u))(J(u) + J(πn(u)))|
≤ 2r|(J(u)− J(πn(u))| (∀u ∈ rBd

2, J(u) ≤ ∥u∥ ≤ r)

≤ 2r|J(u− πn(u))| (∀u, u′, |J(u)− J(u′)| ≤ |J(u− u′)|)
≤ 2rϵn < 2ϵn . (r ≤ 1)

Now choose ϵn = 1/(4nd2 log(1/δ)). By Lemma 13, for this choice, log(1/δn) ≤ ωn. Combining
the bounds on An and Bn, we now indeed have that for all u ∈ rBd

2,

|fn(u)− fn(πn(u))| ≤ An +Bn log(1/δn) ≤ ϵn(2 + 6n+ log(1/δn)) ≤ 5 .
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