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In order to provide a comprehensive demonstration of our approach, we will supplement additional1

details in the Appendix. The arrangement of these sections is as follows: First, we demonstrate the2

core concepts of our Aurora for clarity. Second, we comprehensively make overall comparisons with3

existing methods on various multimodal tasks. Then, we provide details regarding the datasets and4

baselines in Section C, while the concrete training details are outlined in Section D. We then conduct5

a comprehensive analysis of the computational costs, including time and memory consumption,6

along with algorithmic complexity in Section E. Furthermore, we provide theoretical support for7

our approach in Section F. Finally, we present visualizations of our proposed Aurora for several8

cross-modal tasks to facilitate qualitative comparisons in Section G. To represent our method clearly9

and concisely, we use lowercase letters for scalars, bold lowercase letters for vectors, italicized10

uppercase letters for MATRICES, and bold italicized uppercase letters for TENSORS in the equations,11

respectively.12

A Concept Definition13

According to [1, 27], we will offer a precise definition of the fundamental notions underpinning our14

key Mode Approximation component.15

First, the definition of tensors can be demonstrated as follows:16

Definition 1 (Tensor). Let D1,D2, · · · ,DN ∈ N denote index upper bounds, a tensor W ∈17

RD1×···×DN of order N is an N -way array where elements Wd1,d2,··· ,dn
are indexed by dn ∈18

{1, 2, · · · ,Dn}, for 1 ≤ n ≤ N.19

Then, the concept of the mode is formulated as follows:20

Definition 2 (Mode). Let W ∈ Rn1×n2×···×nd be a d-dimensional tensor. The mode-k matricization21

of W , denoted as W(k) ∈ Rnk×(n1···nk−1nk+1···nd), is obtained by unfolding the tensor along its22

k-th mode and arranging the entries as rows in a matrix.23

Given the mathematical definition of the mode, we can implement decomposition in the context of CP24

decomposition. We stack all the weight matrices in the attention layer (i.e., Wq,Wk,Wv) of all the25

branches into a tensor, which needs to be updated as ∆W . Since our method assumes that the stack26

of weight matrices is a three-order tensor, k is three in our settings, and thus the CP decomposition27

can be illustrated as follows:28

∆W =

R∑
r=1

λrur ◦ vr ◦ pr, (1)

where R is the rank, λr are non-negative scalar weights, and ur ∈ Rn1 , vr ∈ Rn2 , pr ∈ Rn3 are29

non-zero factor vectors. And the mode-k unfolding of the tensor ∆W is U, V, P respectively.30
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Figure 1: Performance-Parameter comparison of different methods on each multimodal downstream
task. Note that the bubble size denotes the size of total tunable parameters.

Our proposed Aurora aims to approximate the latent mode matrix with randomly initialized learnable31

parameters, which can learn knowledge on downstream tasks in a lightweight manner.32

B Overall Comparison33

We compare all the baselines for three downstream tasks and presented a comprehensive illustration34

in Figure 1. The arrow in the figure points towards better performance on dual metrics, as it moves35

towards the upper right corner. We rank the size of the model parameters and use it as a basis for36

determining the size of the bubbles, which are also displayed in Figure 1. It is evident that our method37

performs remarkably well even with smaller parameter sizes, and in several instances, outperforms38

the fully fine-tuned approach, demonstrating the strength of our architecture.39

C Detailed Descriptions for the Baselines & Datasets.40

Baselines. For Frozen Backbone methods, UniAdapter [25] is currently the state-of-the-art method41

for parameter-efficient transfer learning in the field of multimodality and can be considered as a42

representative of the Adapter class of methods in the multimodal domain. LoRA [14] is another43

important branch of parameter-efficient transfer learning methods. Its core idea is to use low-rank44

decomposed matrices to calculate the incremental change of model parameters during adaptation on45

downstream tasks. To enable comparison with a wider range of baselines, we replicate many of the46

settings from prior works and reuse their experiment results whenever possible. It should be noted47

that this means some baselines only appear in specific experiments.48

As for Full Fine Tuning methods, we apply UNITER [6], VILLA [12], OSCAR [23], ALIGN [16],49

ALBEF [22] and BLIP [21] for image-text retrieval tasks, then we use ClipBERT [19], Frozen in50

Time [3], ALPRO [20], VIOLET [11], All-in-one [29], CLIP4Clip [26] and CLIP-Hhiker [4] for51

text-video retrieval tasks, finally we adopt ClipBERT[19], ALPRO [20], Just-Ask [32], VIOLET [11],52

MERLOT [33], All-in-one [29] for VideoQA task while adopt VL-T5/BART [7], SOHO [15],53

OSCAR [23], UNITER [6], ALBEF [22] and BLIP [21] for VQA tasks.54

Datasets. We provide a comprehensive introduction to the datasets of various downstream tasks in55

the multimodal scenario, as outlined below:56

• MSCOCO [24] is a large scale image-text dataset and each image is annotated with five captions.57

Following [25, 17], we use Karpathy split of MSCOCO: 5,000 images for testing, 5,000 images for58

validation, and the rest for training.59

• Flickr30K [28] contains 31,000 images collected from Flickr. Each image is usually referenced60

with five human annotations. Following previous works [25, 10], we use 1,000 images for testing,61

another 1000 for validation, and the rest for training.62

• MSR-VTT [31] contains 10,000 video clips and each video clip is annotated with 20 English63

sentences. Following recent works [25, 26], we adopt 1k-test split for training and testing.64

• DiDemo [2] is one of the most commonly used datasets for the temporal localization of events in65

videos. It contains about 10,000 videos and 40,000 annotations. we follow [25, 3] to concatenate all66
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Figure 2: Model architecture for the Visual Question Answering tasks on both images and videos.

descriptions corresponding to the same video into a single sentence to conduct actually paragraph-67

to-video retrieval task.68

• VQAv2 [13] is one of the most famous visual question answering datasets which contains69

83k/41k/81k images for training/validation/testing. Following [25, 22, 21], we use both train-70

ing and validation splits of VQAv2 and additional training samples from Visual Genome [18] for71

training. The results should be evaluated by the official server and we report the results on the72

test-dev and test-std splits.73

• MSRVTT-QA [30] is one of the most popular video question answering datasets. It’s constructed74

based on MSRVTT and has 243k open-ended questions associated with 10k videos. We follow75

[25, 19] to employ the standard split for training and testing.76

D Training Details77

D.1 Frozen Backbone78

BLIP [21] is a unified VLP framework which has multimodal mixture of encoder-decoder(MED)79

architecture with both understanding and generation capabilities. In our experiments, we utilize80

BLIP-base as the frozen backbone and the pre-trained weights can be downloaded from Salesforce.81

Its visual encoder is ViT-B [9] and the text encoder is the same as BERT [8] while the text decoder82

replaces the self-attention layers with causal self-attention layers. It uses cross-attention layers to83

gather information from encoded visual representations using the textual representations as query. It’s84

flexible to choose different components in the BLIP architecture to perform different multimodality85

downstream tasks.86

Another important design in BLIP is CapFlit, It contains a Captioner to generate captions given web-87

searched images and a Filter to remove noisy image-text pairs, both Captioner and Filter are finetuned88

individually on the COCO dataset while using different objective loss. In addition, BLIP uses89

momentum technology to further improve the correctness of the image-text matching relationship.90

D.2 Architecture for VQA Tasks91

Figure 2 shows the architecture of Aurora for Visual Question Answering tasks. Compared to Retrieval92

tasks, the VQA architecture has an additional answer decoder. During fine-tuning, the images/videos93

are first encoded by a single-modal visual encoder, and then the image/video-text pairs are fused94

using a multimodal encoder and given to the decoder for prediction. Answers are used as ground95

truth and Language-Model Loss is utilized for parameter updating throughout the entire training96

process. As the ITM Loss is no longer needed, we remove the Informative Context Enhancement97

module from the VQA architecture. Meanwhile, we retain the Gated Query Transformation module98

to preserve the complete semantic information of the question representations as much as possible.99

Finally, in order to further reduce the number of parameters, we share the learnable parameters of the100

multimodal encoder and the multimodal decoder.101
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Table 1: Training time and GPU memory comparison.

Method #Tunable MSCOCO FLICKR30K MSRVTT-QA VQAv2 DiDemo MSRVTT
Time Memory Time Memory Time Memory Time Memory Time Memory Time Memory

UniAdapter (r=512) 18.8M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UniAdapter (r=128) 4.6M 0.86 0.95 0.93 0.95 0.89 0.91 0.79 0.92 0.88 0.94 0.94 0.94

Aurora (r=128) 0.2M 0.90 0.93 0.93 0.94 0.88 0.89 0.79 0.91 0.90 0.92 0.95 0.93
Aurora (r=64) 0.1M 0.84 0.93 0.92 0.94 0.86 0.89 0.76 0.89 0.88 0.88 0.94 0.92

D.3 Implementation Details102

In this section, we give more training details about our Aurora.103

• For image-text downstream tasks, we set the image size into 384×384. We use cosine decay to104

update the learning rate during training. We set the batch size to 16 for each GPU and train a total105

of 6 epochs.106

• For video-text retrieval tasks, we randomly sample T = 8(16) frames for each video during107

training(testing) while setting the frame size to be 224×224. We use cosine decay to update the108

learning rate, we set the batch size to 8 per GPU during training and train for a total of 5 epochs.109

• For VideoQA task, we also sample 8 frames per video for training while the frame size is changed110

to 384×384. While training, we set the batch size to 4 per GPU and train 10 epochs in total. During111

the evaluation, we randomly sample 16 frames for each video, and we use greedy search to generate112

the next token when producing answer for its corresponding question.113

• For VQA task, we set the image size to 480×480 for training/inference and adopt a batch size of 16114

for each GPU. We also adopt cosine decay to change the value of learning rate at different epochs115

and we train 10 epochs.116

We also perform a simple cleaning of the text data and truncate all words beyond the maximum length117

of the sentence. All data processing and partitioning are consistent with UniAdapter and LoRA to118

ensure fair comparison. When implementing CP decomposition, textual encoder, visual encoder, and119

multimodal encoder share the same global mode factor U and factor V to do parameter sharing and120

we initialize the weights of factor V to be zero.121

E Cost Analysis122

In Table 1, following [25], we report the training time and GPU memory cost for both retrieval and123

VQA tasks. We regard the training time and memory cost of UniAdapter(r=512) as one unit. Since124

we adopt the same backbone models, the forward propagation process of the two methods, Aurora125

and UniAdapter, is almost consistent, and the time cost is similar. However, our Aurora has fewer126

trainable parameters, resulting in a slightly smaller GPU memory footprint.127

Then, We will give a theoretical analysis of the parametric complexity of the three PETL methods.128

Assume that the frozen backbone’s visual, textual, and multimodal encoder all have L transformer129

layers while multimodal encoders contain cross-attention modules and visual, textual encoders130

contain self-attention modules. We only approximate the Query/Key/Value weight matrix in these131

attention-based modules. Let d donates the dimension of the hidden feature and r for rank, so the132

parametric complexity of the LoRA is L × (3 + 6) × 2dr ∼O(Ldr), the complexity of the UniAdapter133

is L × 4dr ∼O(Ldr), and the complexity of our Aurora is L × (3 + 6) × 2r + 2dr + 2Ld ∼O((L+d)r),134

normally r and L are much smaller than d, so from the above analysis we can draw the conclusion135

that when r increases, our Aurora can achieve the lowest parameter cost.136

F Theoretical Analysis137

Write ∆W =
∑R

r=1 λr(ur ◦ vr ◦ pr), and the (i, j, k)-element of ∆W is:138

∆Wijk =

R∑
r=1

λrurivrjprk. (2)
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Recall that the Frobenius norm of a tensor X ∈ Rd×d×N is given by:139

∥X∥F =

(
d∑

i1=1

d∑
i2=1

N∑
i3=1

|xi1,i2,i3 |
2

)1/2

, (3)

Hence, it suffices to analyze the convergence rate of our parameter tensors in the Euclidean space140

RddN , where ddN denotes the product of d × d ×N in order to distinguishing from the space of141

multi-dimensional arrays of size d× d×N .142

Assumption F.1 We identify Rd×d×N with RddN , and let the loss function L be defined on RddN ,143

while we still write L(W) where W ∈ Rd×d×N is a tensor. We will also use Frobenius norm and ℓ2144

norm interchangeably, which means that:145

∥X∥F = ∥X∥2. (4)

Assumption F.2 We assume that the loss function L : RddN → R has the following property:146

1. L is injective.147

2. L is strongly convex: there exist m and M such that:148

mI ⪯ ∇2L(X ) ⪯ MI. (5)

That is, ∇2L(X )−mI is positive semidefinite and ∇2L(X )−MI is negative semidefinite.149

Let {λ(0)
r ,u

(0)
r ,v

(0)
r ,p

(0)
r : r = 1, · · · , R} be the randomly initialized vectors used for tensor150

decomposition, where λ
(0)
r ∈ R,u(0)

r ∈ Rd,v
(0)
r ∈ Rd,p

(0)
r ∈ RN . Denote151

∆W(0) = W0 =

R∑
r=1

λ(0)
r u(0)

r ◦ v(0)
r ◦ p(0)

r . (6)

Let ∆W(n) be the parameter tensor returned by the nth training epoch, that is,152

∆W(n) =

R∑
r=1

λ(n)
r u(n)

r ◦ v(n)
r ◦ p(n)

r . (7)

Theorem F.1 Under the above assumptions, and suppose that we train for n epochs with η ≤ 1/M153

using gradient descent. Let W∗ be the optimal parameter tensor, then,154

L
(
W0 +∆W(n)

)
→ L (W∗) (n → ∞). (8)

Moreover, W∗ is unique.155

Proof F.1 The proof follows from [5]. For notational convenience let X (n) = W0 +∆W(n), and156

denote the optimal value L(W∗) by λ∗. We will begin by analyzing the convergence using arbitrary157

X ,Y ∈ RddN , and then plug in our parameter tensors. By Taylor’s theorem we can write:158

L(Y) = L(X ) +∇L(X )T (Y − X ) +
1

2
(Y − X )T∇2L(Z)(Y − X ), (9)

where Z lies in the line segment joining X and Y . By the strong convexity assumption, we have,159

1

2
(Y − X )T∇2L(Z)(Y − X ) ≥ 1

2
(Y − X )Tm(Y − X ) =

m

2
∥Y − X∥22. (10)

Hence160

L(Y) ≥ L(X ) +∇L(X )T (Y − X ) +
m

2
∥Y − X∥22. (11)

Now we use ∥∇L(X )∥2 to bound L(X ) − λ∗. The right-hand side of (11) is a convex quadratic161

function of Y , hence Y∗ = X − 1/m∇L(X ) is the minimizer, thus,162
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L(Y) ≥ L(X ) +∇L(X )T (Y∗ −X ) +
m

2
∥Y ∗ −X∥22 (12)

= L(X ) +∇L(X )T
(
− 1

m
∇L(X )

)
+

m

2

∥∥∥∥ 1

m
∇L(X)

∥∥∥∥2
2

(13)

= L(X )− 1

2m
∥∇L(X )∥22. (14)

Since Y is arbitrary, plugging X = X (n), we have163

λ∗ ≥ L(X (n))− 1

2m

∥∥∥∇L(X (n))
∥∥∥2
2

(15)

By the assumption ∇2L(X ) ⪯ MI we have164

L(Y) ≤ L(X ) +∇L(X )T (Y − X ) +
M

2
∥Y − X∥22. (16)

Plugging in Y = X (n) − η∇L(X (n)) yields165

L̃(t) ≤ L(X (n))− η∥∇L(X )∥22 +
Mη2

2
∥∇L(X )∥22. (17)

Now we minimize over η on both sides of (17), and denote the optimal value by L̃(η∗). The right-hand166

side of (17) is simple quadratic, hence it is minimized by η = 1/M , and167

min(RHS) = L(X )− 1

2M
∥∇L(X )∥22. (18)

Now,168

L(X (n) + η∆X (n)) = L̃(t∗) ≤ L(X (n))− 1

2M
∥∇L(X )∥22. (19)

Subtracting λ∗ on both sides, we have,169

L
(
X (n) + η∆X (n)

)
− λ∗ ≤ L(X (n))− λ∗ − 1

2M
∥∇L(X )∥22, (20)

by (15) we have,170

L
(
X (n+1)

)
= L

(
X (n) + η∆X (n)

)
− λ∗ ≤

(
1− m

M

)(
L(X (n))− λ∗

)
. (21)

By mathematical induction, we obtain,171

L(X (n))− λ∗ ≤
(
1− m

M

)n (
L(X (0) − λ∗

)
→ 0 (n → ∞), (22)

therefore L(X (n)) → λ∗ as n → ∞.172

Suppose V∗ is another optimal parameter tensor, then by the same argument we have L(X (n)) →173

L (V∗) as n → ∞. Since RddN is a Hausdorff space, L (V∗) = L (W∗). By our assumption that L174

is injective, W∗ = V∗.175

G Visualization Analysis176

G.1 Parameter Distribution177

Figure 3 and Figure 4 show more details on the parameter distribution comparisons between our178

Aurora and the pre-trained model and the full fine-tuned model, in which similar results can be179

observed on Wk and Wv. We can see that the mode approximation parameters adjust the original180

weights, and change the distribution of weights and biases to fit the downstream task. It can be181

concluded that Aurora has several advantages over traditional fine-tuning approaches. First, it avoids182

over-fitting to specific downstream tasks by only adjusting the pre-trained model parameters in a183

small local range. Second, it reduces the amount of training required on new data, making it more184

efficient and cost-effective. Last but not least, Aurora can further improve the model’s performance185

on downstream tasks.186
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Figure 3: We represent the parameter distribution on different layers of the pre-trained model (BLIP)
vs. our Aurora, which is tuned on MSCOCO for image-text retrieval. Notably, Wk and Wv are the
stack of the key and value projection matrices in different modality branches.

Figure 4: We represent the parameter distribution on different layers of the full fine-tuned model vs.
our Aurora, which is tuned on MSCOCO for image-text retrieval. Notably, Wk and Wv are the
stack of the key and value projection matrices in different modality branches.

G.2 Case Study187

Visual-Text Retrieval. Figure 5 demonstrates some actual examples of Aurora performing text-188

to-video task on MSRVTT test set. In conclusion, the results presented highlight the exceptional189

performance of Aurora in searching relevant videos from textual descriptions. The accuracy and190

realism of the returned videos demonstrate the effectiveness of our proposed method in understanding191

the relationship between text and visual content.192

Visual Question Answering. Figure 6 gives some question-answering examples of Aurora and193

UniAdapter on the MSRVTT-QA dataset. Specifically, our method is able to reason about the meaning194

of the text and video information to answer the questions more accurately than UniAdapter. This is an195

important result because the ability to reason about the meaning of both text and visual information196

is essential for understanding multimodal data.197

Overall, the qualitative results shown in Figure 5 and Figure 6 demonstrate the effectiveness of our198

proposed method in both multimodal retrieval and question-answering tasks. We believe that our199
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Caption7462：He drew a beautiful picture

Caption9623：A man is on a cell phone while people are fighting

Caption9451：Kids feeding and playing with the horse

Caption7756：A group of women are singing

Caption8662：A man a woman cooking on a cooking show

Figure 5: Video-Text retrieval cases on MSRVTT test set.

Query191201：What is a guy doing?

Query191306：What is a man standing in talking?

Query191382：What does a man fold?

Query191949：How many men play in a tennis match?

Ground-Truth: ask       Aurora: ask       UniAdapter: talk

Ground-Truth: kitchen       Aurora: kitchen       UniAdapter: kitchen

Ground-Truth: paper       Aurora: paper       UniAdapter: paper

Query192400：What does hillary clinton speak to?
Ground-Truth: two      Aurora: two      UniAdapter: two

Ground-Truth: crowd      Aurora: crowd      UniAdapter: people

Figure 6: Video Question Answering cases on MSRVTT-QA test set.

approach has the potential to be used in many multimodal applications, where understanding and200

analyzing multimedia data is essential.201
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