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A THE IMPORT ALGORITHM

The algorithm is described in details in Algorithm 2. In our implementation, the value function
network used for (A) and (B) is the same, i.e. shared. We specialize the input, i.e. for (A) the input
will be (st, fH(τt)) and (st, fµ(µt)) for (B).

Algorithm 2 Details of IMPORT Training
Initialize σ, ω, θ, ν arbitrarily
Hyperparameters: Number of iterations K, Number of transitions per update steps M ,
discount factor γ, GAE parameter γGAE , Adam learning rate η, weighting of the (C) objective β,
weighting of the entropy objective λh, weighting of the critic objective λc
Optim = Adam(η)
for k = 1, . . . ,K do

if k is odd then
Collect M transitions according to πH in buffer BH .

else
Collect M transitions according to πµ in buffer Bµ.

end if
δσ, δω, δθ = 0, 0, 0

Rµ ← compute gae returns(Bµ, γGAE)
RH ← compute gae returns(BH , γGAE)

δθ,ω += 1
|BH |

∑
b∈BH

∑T
t=1[R

µ,b
t − Vν(sbt , zbt )]∇θ,ω log πH(abt |sbt , zbt )

δθ,ω += λh
|BH |

∑
b∈BH

∑T
t=1∇θ,ωH

(
πH(abt |sbt , zbt )

)
δω −= 2β

|BH |
∑
b∈BH

∑T
t=1[f

ω
H(sbt , z

b
t )− fµ(sbt , µbt)]∇ωfωH(sbt , z

b
t )

δν −= 2λc
|BH |

∑
b∈BH

∑T
t=1[R

H,b
t − Vν(sbt , zbt )]∇νVν(sbt , zbt )

δθ,σ += 1
|Bµ|

∑
b∈Bµ

∑T
t=1[R

H,b
t − Vν(sbt , µbt)]∇θ,σ log πµ(abt |sbt , µbt)

δθ,σ += λh
|Bµ|

∑
b∈Bµ

∑T
t=1∇θ,σH

(
πµ(a

b
t |sbt , µbt)

)
δν −= 2λc

|Bµ|
∑
b∈Bµ

∑T
t=1[R

µ,b
t − Vν(sbt , µbt)]∇νVν(sbt , µbt)

θ ← Optim(θ, δθ)
ω ← Optim(ω, δω)
σ ← Optim(σ, δσ)
ν ← Optim(ν, δν)

end for

B IMPLEMENTATION DETAILS

B.1 DATA COLLECTION AND OPTIMIZATION

We focus on on-policy training for which we use the actor-critic method A2C (Mnih et al., 2016)
algorithm with generalized advantage estimation. We use a distributed execution to accelerate
experience collection. Several worker processes independently collect trajectories. As workers
progress, a shared replay buffer is filled with trajectories and an optimization step happens when the
buffer’s capacity bs is reached. After model updates, replay buffer is emptied and the parameters of
all workers are updated to guarantee synchronisation.

B.2 NETWORK ARCHITECTURES

The architecture of the different methods remains the same in all our experiments, except that the
number of hidden units changes across considered environments and we consider convolutional
neural networks for the Maze3d environment. A description of the architectures of each method is
given in Fig. 2.
Unless otherwise specified, MLP blocks represent single linear layers activated with a tanh function
and their output size is hs. All methods aggregate the trajectory into an embedding zt using a GRU
with hidden size hs. Its input is the concatenation of representations of the last action at−1 and
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HPs CartPole Acrobot Bandits TMDP Maze3d
E 16 128 16 16 32
Tr 20 20 20 20 20
hs 16 32 16 64 32
hsµ {2, 4, 8, 16} {2, 4, 8, 16} 16 {16, 32} {2, 16, 32}
γ 0.95 0.95 0.90 0.90 0.90
λh {1., 1e−1} {1e−1, 1e−2, 1e−3}

γGAE {0.0, 1.0}
clip gradient 40

η {1e−3, 3e−4}
λc {1., 1e−1, 1e−2}
β {1e−1, 1e−2, 0.}

Table 4: Hyperparameters tested per environments. At each training epoch, we run our agent on E
environments in parallel collecting Tr transitions on each of them resulting in batches ofM = E∗Tr
transitions.

current state st obtained separately. Actions are encoded as one-hot vectors. When episodes begin,
we initialize the last action with a vector of zeros. For bandits environments, the current state
corresponds to the previous reward. TS uses the same GRU architecture to aggregate the history into
zt.

All methods use a softmax activation to obtain a probability distribution over actions.
The use of the hidden-state zt differs across methods. While RNNs only use zt as an input to
the policy and critic, both TS and TI map zt to a belief distribution that is problem-specific, e.g.
Gaussian for control problems, Beta distribution for bandits, and a multinomial distribution for Maze
and CartPole-task environments. For instance, zt is mapped to a Gaussian distribution by using
two MLPs whose outputs of size |µ| correspond to the mean and variance. The variance values are
mapped to [0, 1] using a sigmoid activation.

IMPORT maps zt to an embedding fH , whereas the task embedding fµ is obtained by using a
tanh-activated linear mapping of µt. Both embeddings have size hsµ, tuned by cross-validation onto
a set of validation tasks. The input of the shared policy head φ is the embedding associated with the
policy to use, i.e. either fH when using πH or fµ when using fµ.

For the Maze3d experiment and in all methods, we pre-process the pixel input st with three con-
volutional layers (with output channels 32, stride is 2 and respective kernel sizes are 5, 5 and 4)
and LeakyReLU activation. We also use a batch-norm after each convolutional layer. The output is
flattened, linearly mapped to a vector of size hs and tanh-activated.

C EXPERIMENTS

In this section, we explain in deeper details the environments and the set of hyper-parameters we
considered. We add learning curves of all experiments to supplement results from Table 1, 2, 3 and 5
in order to study sample efficiency.

Task descriptor. Note that for CartPole and Acrobot µ is normalized to be in [−1, 1]D where D is
the task descriptor dimension. The task distribution q is always uniform, see the description of the
environments for details. For experiments with task identifiers, we associate to each sampled task an
integer value corresponding to the order of generation, and encode it usong a one-hot vector.

Hyperparameters. Hyperparameter ranges are specified in Table 4. For TS, we consider sampling
µ from the posterior dynamics distribution every k steps with k ∈ {1, 5, 10, 20}.
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C.1 CARTPOLE.

We consider the classic CartPole control environment where the environment dynamics change
within a set M (|µ| = 5) described by the following physical variables: gravity, cart
mass, pole mass, pole length, magnetic force. Their respective pre-normalized domains are
[4.8, 14.8], [0.5, 1.5], [0.01, 0.19], [0.2, 0.8], and [−10, 10]. The value of µ are uniformly sampled.
Knowing some components of µ might not be required to behave optimally. The discrete action space
is {−1, 1}.
Episode length is T = 100.

Final performance and sample efficiency. Table 1 shows IMPORT’s performance is marginally
superior to other methods in most settings. Learning curves in Figure 7 allow analyzing the sample
efficiency of the different methods. Overall, IMPORT is more sample efficient than other methods in
the privileged information µ setting. Moreover, the use of the auxiliary loss (β > 0) usually speed-up
the learning convergence by enforcing the RNN to quickly produce a coherent embedding. We can
see that only sharing parameters (β = 0) already helps improving over RNNs.

(a) CartPole with µ and N = 10 (b) CartPole with TID and N = 10

(c) CartPole with µ and N = 20 (d) CartPole with TID and N = 20

(e) CartPole with µ and N = 50 (f) CartPole with TID and N = 50

(g) CartPole with µ and N = 100 (h) CartPole with TID and N = 100

Figure 7: Evaluation on CartPole

Non-stationary environments. We consider the non-stationary version of CarPole environment
where at each timestep, there is a probability ρ = 0.05 to sample a new dynamic µ. Table 8 shows
that the performance of IMPORT, AuxTask and TI are comparable in these settings.
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Method N = 10 N = 100

AuxTask 86.4(1.0) 93.0(0.3)
IMPORT 91.7(0.5) 92.7(0.8)
RNN 65.5(4.3) 89.5(0.6)
TI 88.2(3.9) 95.5(0.8)
TS 86.7(1.6) 92.2(0.7)

Figure 8: CartPole (non-stationary). Figure 9: Non-stationary CartPole with N = 10

Figure 10: IMPORT and TI with different task embedding representation size on CartPole with
N = 20

Size of built embeddings. We now study the impact of the task embedding representation size. As
can be seen from Figure 10, IMPORT’s performance remains stable for different representation sizes
in {2, 4, 8, 16} whereas TI’s sample efficiency decreases with this dimension.

Trajectory and task embeddings. In Figure 11, we plot both the evolution of fH(τt) during an
episode of the final model obtained training IMPORT with two-dimensional task embeddings on
CartPole with task identifiers (left) and task embedding fµ(µ) learnt by the informed policy (right).
As expected, the history embedding gets close to the task embedding after just a few timesteps
(left). Interestingly, task embeddings fµ(µ) are able to capture relevant information from the task.
For instance, they are highly correlated with the magnetic force which is a very strong factor to
“understand” from each new environment to control the system correctly. At the opposite, gravity is
less correlated since it does not influence the optimal policy – whatever the gravity is, if the pole is
on the left, then you have to go right and vice-versa.

16



Under review as a conference paper at ICLR 2021

(a) Value of fH(τt) among episodes steps on
CartPole with task identifiers. The green cir-
cle is the value of fµ(µ). The image shows
that IMPORT starts with a random embed-
ding, and is able to discover the task embed-
ding with a reasonable performance in a few
steps.

(b) Task embeddings fµ(µ) for Cartpole with task iden-
tifiers. The color of the point corresponds to the value of
one of the ’real’ physics component of the environment
(unknown to the model).

Figure 11: Visualization of task embeddings upon Cartpole

C.2 ACROBOT

N = 10 N = 20 N = 50 N = 100

AuxTask −189.0(54.8) −98.3(1.8) −103.0(8.0) −93.6(1.3)
IMPORT −87.2(0.9) −92.5(1.3) −88.9(1.1) −88.9(1.6)
RNN −483.6(1.6) −482.7(4.0) −480.7(3.5) −485.0(3.7)
TI −89.7(1.2) −94.6(0.7) −87.8(0.8) −87.3(1.2)
TS −101.4(2.0) −102.1(6.0) −102.4(2.0) −102.3(0.8)

Table 5: Acrobot

Acrobot consists of two joints and two links, where the joint between the two links is actuated. Initially,
the links are hanging downwards, and the goal is to swing the end of the lower link up to a given height.
Environment dynamics are determined by the length of the two links, their masses, their maximum ve-
locity. Their respective pre-normalized domains are [0.5, 1.5], [0.5, 1.5], [0.5, 1.5], [0.5, 1.5], [3π, 5π]
and [7π, 11π]. Unlike CartPole, the environment is stochastic because the simulator applies noise to
the applied force. The action space is {−1, 0, 1}. We also add an extra dynamics parameter which
controls whether the action order is inverted, i.e. {1, 0,−1}, thus |µ| = 7.

Episode length is 500.

IMPORT outperforms all baselines in settings with small training task sets (Figure 12 and Table 5)
and perform similarly to TI on larger training task sets.
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(a) N = 10 (b) N = 20

(c) N = 50 (d) N = 100

Figure 12: Performance on Acrobot

C.3 BANDITS

The Bandit environment is a standard Bernoulli multi-armed bandit problem with K arms. The
vector µ ∈ RK denotes the probability of success of the independent Bernoulli distributions. Each
dimension of µ is sampled uniformly between 0 and 0.5, the best arm is randomly selected and
associated to a probability of 0.9. Although relatively simple, this environment assesses the ability of
algorithms to learn nontrivial exploration/exploitation strategies.

Note that it is not surprising that UCB outperforms the other algorithms in this setting. UCB is an
optimal algorithm for MAB and we have optimized it for achieving the best empirical performance.
Moreover, IMPORT cannot leverage correlations between tasks since, due to the generation process,
tasks are independent.

We visualize the task embeddings learnt by the informed policy in 13.

Figure 13: t-SNE of the task embeddings on the bandit problem with K = 10.

18



Under review as a conference paper at ICLR 2021

(a) Bandits with K = 10 arms (b) Bandits with K = 20 arms

Figure 14: Learning curves on the bandit problem.

C.4 MAZE3D ENVIRONMENT

Figure 15: Maze 3D. The goal is either located at the blue or the red box. When the wall on the
opposite side of the boxes (i.e. not observed in the leftmost image) has a wooden texture, the correct
goal is the blue box, whereas if the texture is green, the red box is the goal.

The Maze 3D environment (Figure 15) is a continuous maze problem implemented using gym-
miniworld (Chevalier-Boisvert, 2018), with 3 discrete actions (forward, left, right) where the objective
is to reach one of the two possible goals, resulting in a reward of +1 (resp. −1) when the correct
(resp. wrong) goal is reached. If a box is touched, the episode ends. The maze’s axis range from -40
to 40, the two turn actions (left, right) modify the angle by 45 degrees, and the forward action is a
5 length move. The agent starts in a random position with a random orientation. The information
about which goal to reach at each episode is encoded by the use of two different textures on the wall
located on the opposite side of the boxes. In this way, the agent cannot simultaneously observe both
boxes and the “informative” wall.

This environment allows to evaluate the models in a setting where the observation is a high dimen-
sional space (3x60x60 RGB image). The mapping between the RGB image and the task target in
{−1, 1} is challenging and the informed policy should provide better auxiliary task targets than TI
thanks to the “easy” training of the informed policy.

IMPORT outperforms TI on this environment (Figure 16) in both final performance and sample
efficiency.
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Figure 16: Learning curves on the Maze 3D environment

C.5 TABULAR MDPS

Tabular MDP (Duan et al., 2016) is a MDP with S discrete states andA actions such that the transition
matrix is sampled from a flat Dirichlet distribution, and the reward function is sampled from a uniform
distribution in [0, 1]. The task identifier µ is a concatenation of the transition and reward functions
resulting in a vector of size S2A+ SA, allowing to test the models with high-dimensional µ.

IMPORT outperforms all baselines in all settings (Figure 17 and Table 2).

(a) TMDP with µ and |S| = 1 (b) TMDP with TID and |S| = 1

(c) TMDP with µ and |S| = 3 (d) TMDP with TID and |S| = 3

(e) TMDP with µ and |S| = 5 (f) TMDP with TID and |S| = 5

Figure 17: Evaluation on Tabular-MDP with different parameters and task descriptors (TID stands
for task identifier).
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D IMPACT OF THE β HYPERPARAMETER

We study the sensibility of the β parameter on IMPORT. Figure 18 clearly shows the benefits of using
the auxiliary objective. On all but the Tabular-MDP environments, the recurrent policy successfully
leverages the auxiliary objective to improve both sample efficiency and final performance for Acrobot.

(a) Bandits. K = 10, N = 100 (b) Bandits. K = 20, N = 100

(c) CartPole with N = 10 (d) CartPole with N = 100

(e) Acrobot with N = 10 (f) Acrobot with N = 100

(g) TMDP with |S| = 1, |A| = 5, N = 100 (h) TMDP with |S| = 3, |A| = 5, N = 100

Figure 18: Test performance of IMPORT for different β parameters (auxiliary supervised objective).
We only report performance on informative µ task descriptors.
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