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Figure 1: Given the input image (a), TEASER predicts hybrid parameters for 3D facial reconstruc-
tion. The explicit parameters can be used to reconstruct precise 3D facial expressions (b). The im-
plicit parameters (i.e., appearance token) guides high-fidelity face images generation (c). TEASER
can be easily adapted to various applications, e.g.,, expression modification, as shown in the top row
of (d), or changing facial appearance through token swapping, as shown in the bottom row of (d).

ABSTRACT
3D facial reconstruction from a single in-the-wild image is a crucial task in
human-centered computer vision tasks. While existing methods can recover accu-
rate facial shapes, there remains significant space for improvement in fine-grained
expression capture. Current approaches struggle with irregular mouth shapes, ex-
aggerated expressions, and asymmetrical facial movements. We present TEASER
(Token EnhAnced Spatial modeling for Expressions Reconstruction), which ad-
dresses these challenges and enhances 3D facial geometry performance. TEASER
tackles two main limitations of existing methods: insufficient photometric loss for
self-reconstruction and inaccurate localization of subtle expressions. We introduce
a multi-scale tokenizer to extract facial appearance information. Combined with
a neural renderer, these tokens provide precise geometric guidance for expression
reconstruction. Furthermore, TEASER incorporates a pose-dependent landmark
loss to further improve geometric performance. Our approach not only signif-
icantly enhances expression reconstruction quality but also offers interpretable
tokens suitable for various downstream applications, such as photorealistic facial
video driving, expression transfer, and identity swapping. Quantitative and qual-
itative experimental results across multiple datasets demonstrate that TEASER
achieves state-of-the-art performance in precise expression reconstruction. Code
and demos are available at https://tinyurl.com/TEASER-project.

1 INTRODUCTION

3D facial reconstruction from a single image is a key component in several human-centered ap-
plications, including digital avatar creation, immersive telecommunication in AR/VR/XR, social
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media, etc.Generally, these methods estimate the corresponding coefficients of the 3D Morphable
Model (3DMM) Egger et al. (2020) for precise facial feature positioning and expression recon-
struction. Due to the scarcity of large-scale paired data for single image-to-3D face mapping, many
optimization-based methods Bas et al. (2017); Romdhani & Vetter (2005) or deep learning-based re-
gression approaches Chang et al. (2018); Daněček et al. (2022); Deng et al. (2019b); Ploumpis et al.
(2020); Tewari et al. (2017) commonly rely on self-supervised learning, adhering to the analysis-by-
synthesis training paradigm.

Recent analysis-by-synthesis methods typically begin by using a network to estimate facial geome-
try, facial texture and environmental illumination from the input image. Then a differentiable ren-
derer is employed to render a pseudo-image based on the extracted information. The loss between
this pseudo-image and the input image is calculated as a supervision signal, allowing the network
to be trained without requiring 3D data. Although these methods have achieved good shape re-
construction performance, they tend to fail in capturing facial expressions under certain scenarios,
e.g.,, the input image contains extreme facial movements and expressions, including asymmetrical,
exaggerated, or subtle motions perceptible to the human eye. The reasons are: 1) The differentiable
renderer requires facial texture and environmental illumination. However, since the texture color on
the face is often coupled with environmental illumination, estimating these two parameters simul-
taneously is challenging. 2) The pseudo-image generated by differentiable renderer is often overly
smoothed, resulting in the loss of important facial details such as texture and expressions. And 3) the
differentiable renderer struggle to model complex facial scenarios such as shadows, occlusions, and
highly reflective facial surfaces, limiting the effectiveness of photometric loss. Some methods have
attempted to constrain the 3DMM parameter search space by incorporating networks from other fa-
cial tasks, such as lip reading Filntisis et al. (2023), emotion estimation Daněček et al. (2022), face
recognition Gecer et al. (2019), and GAN discriminators Otto et al. (2023), etc.However, these ap-
proaches provide indirect supervision for expression reconstruction and require a delicate balancing
of weights among different loss components.

Recently, SMIRK Retsinas et al. (2024) introduced a UNet-based image generator to upgrade the
traditional differentiable renderer. By circumventing the limitations of differentiable rendering,
SMIRK improves the perceptual quality of reconstructed facial expressions. However, it heavily
relies on randomly sampled pixels from the input images, resulting in low-quality outputs charac-
terized by excessive smoothing and noticeable artifacts. Consequently, a considerable domain gap
remains between the input and the synthesized images, as illustrated at 4th column in Fig. 1.

Inspired by this approach, we propose Token EnhAnced Spatial modeling for Expressions Recon-
struction (TEASER). Our method first extracts a hybrid representation combining explicit facial
parameters (3DMM coefficients) and implicit appearance token. This token then guide a newly de-
signed neural renderer to generate more faithful face images. Our novel neural renderer addresses
issues in the neural renderer from SMIRK, thereby providing more accurate photometric loss and
precise expression reconstruction. Furthermore, the extracted tokens not only enhance the stabil-
ity of the neural renderer but also exhibit good interpretability, enabling TEASER to be applied to
various downstream tasks including face editing, face animation, and identity swapping.

Specifically, TEASER introduces a multi-scale tokenizer that extracts complex facial representations
from the input image, including self-occlusion shadows, glasses, lighting, and various skin tone, etc.,
compressing them into a compact representation called Token. Subsequently, we design a Token-
guided facial neural renderer that fuses Tokens at different scales to reconstruct high-fidelity input
images based on facial mesh geometry. To train the tokenizer in an self-supervised manner, we
propose a novel token cycle loss. To further improve the generalization of the method in subtle facial
expression scenarios, we introduce a pose-dependent landmark loss and a region loss to improve
facial expression details and face reconstruction performance in gaze/mouth areas, respectively.

In summary, the main contributions of this paper are as follows: 1) We propose TEASER, a novel
approach that achieves more accurate facial expression reconstruction by predicting a hybrid repre-
sentation of faces from a single image. 2) We design a multi-scale facial appearance tokenizer and
introduce a token-guided neural renderer to generate high-fidelity facial images. The extracted token
is interpretable and highly disentangled, enabling various downstream applications. 3) We develop
a token cycle constraint for self-supervised training of the tokenizer. Additionally, we introduce
pose-dependent landmark loss and region loss to further enhance the quality of expression recon-
struction and facial image reconstruction. 4) TEASER achieves the state-of-the-art performance
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including quantitative and qualitative results on multiple benchmark datasets. Rigorous experiments
also demonstrate the efficiency of different components in TEASER. Furthermore, we showcase
impressive results in various face editing and animation tasks.

2 RELATED WORK

2.1 3D FACE RECONSTRUCTION

Reconstructing 3D faces from 2D input images has received widespread attention over the past few
decades Zollhöfer et al. (2018). Model-free approaches Deng et al. (2020); Dou et al. (2017); Feng
et al. (2018a); Wu et al. (2020); Ruan et al. (2021) regress 3D vertices directly or optimize a Signed
Distance Function Park et al. (2019) for image fitting. These techniques commonly require explicit
3D supervision during training, which limits their expressiveness due to inherent constraints in data
creation and the differences between synthetic and real images Dou et al. (2017); Zeng et al. (2019).

With the development of statistical face models 3DMM, many methods for estimating coefficients
of these models have emerged, employing a fixed linear shape space in an analysis-by-synthesis
manner, such as BFM Paysan et al. (2009), FaceWarehouse Cao et al. (2013), FLAME Li et al.
(2017b), 3DDFA-v3 Wang et al. (2024), etc.. Existing methods can be generally categorized into
optimization-based Aldrian & Smith (2012); Bas et al. (2017) and learning-based approaches Chang
et al. (2018); Kim et al. (2018); Zielonka et al. (2022b). Optimization-based methods require iter-
ative optimization for each new image, which is time-consuming. With the rise of deep learning,
learning-based methods have become mainstream, prompting many works to leverage various su-
pervisory signals from different image domains, such as 2D keypoints Yang et al. (2020); Deng
et al. (2019b); Shang et al. (2020) and 2D face contours Liu et al. (2017) for self-supervised train-
ing. However, for commonly used 2D key points, the sparsity and limited accuracy of the predicted
points result in constrained supervision, particularly when facial expressions and head poses are
complex. This often leads to misalignment between the 3D mesh and the input image. Photometric
constraints are especially effective for image-domain data; however, they are vulnerable to alignment
errors and rely on the quality of the rendered image.

To enable supervisory signals from the image domain to assist in reconstructing accurate 3D meshes,
it is essential to obtain a precise representation of facial appearance or texture. Lin et al. (2020)
enhances the initial 3DMM texture during the estimator training process, while Booth et al. (2018)
utilizes a 3DMM for shape estimation, supplemented by a PCA appearance model learned from in-
the-wild images. Gecer et al. (2019) expands on this concept by employing a GAN to model facial
appearance more effectively. Additionally, Tewari et al. (2021); Tran et al. (2019) learns nonlinear
models of shape and expression during the self-supervised training of a estimator.

Most of these studies generate renderings using linear statistical models and Lambertian reflectance
Koppal (2020). In contrast, SMIRK introduces an innovative neural rendering module that tries
addresses the domain gap between the input and the synthesized output. By reducing this discrep-
ancy, SMIRK enhances the supervision signal within an analysis-by-synthesis framework. How-
ever, SMIRK heavily depends on randomly sampling some pixels from the source image. Although
this approach ensures that facial structure information is not leaked, the supervision signal pro-
vided by the sampled pixels is not strong enough, resulting in significant differences between the
reconstructed 2D image and the source image. The intermediate generated mesh also deteriorates
accordingly, failing to align perfectly with the real image. We propose to use implicit appearance
token that decouple from input image, representing semantic information such as facial texture and
details, to provide stronger guidance, enabling the generalization of more accurate 2D images and
corresponding meshes.

2.2 DISENTANGLED FACE REPRESENTATION LEARNING

The development of disentangled facial representation learning Chen et al. (2016); Higgins et al.
(2016); Wei et al. (2021) has greatly benefited from advances in Generative Adversarial Networks
(GANs) and self-supervised learning, particularly in the areas of image generation and facial editing.
Early studies primarily focused on separating facial geometric structures from texture features. For
example, Liu et al. (2015b); Wang et al. (2022); Yang et al. (2022) used an autoencoder model to
disentangle identity and motion. While the 3D Morphable Model (3DMM) excels in modeling facial
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Figure 2: The framework of our pipeline.

geometry Ren et al., its texture modeling capabilities are limited, resulting in generated facial im-
ages that lack realistic texture details. This limitation arises mainly because the linear texture model
of 3DMM is overly simplified. To address this, Tewari et al. (2017); Yin et al. (2022) combined
3DMM with GANs to generate high-quality textures, overcoming the shortcomings of traditional
3DMM. Deng et al. (2019b) further improved the detail and visual quality of the generated images
by disentangling facial expressions, lighting, and textures. However, these methods face a dilemma:
non-3DMM-based approaches struggle to model 3D-level information, while the facial textures in-
cluded in 3DMM do not correspond to human perception. In this paper, we use 3DMM to obtain
facial geometry information and facial tokenizer to derive high-level texture representations that
align with human perception, achieving a balance between both approaches.

3 METHOD

This paper introduces TEASER, a novel approach that aims at extracting accurate hybrid representa-
tions from images, including explicit FLAME parameters for precise 3D facial expression geometry
modeling and implicit tokens for capturing complex facial appearances. The overall network frame-
work, as illustrated in Fig. 2, comprises three main components: 1) a Multi-scale Facial Appearance
Tokenizer (MFAT) for capturing facial appearance token at different scales, 2) a Geometry Extractor
that leverages existing techniques to extract parameters for FLAME modeling 3D geometric of fa-
cial expressions, and 3) a Token-guided Face Synthesizer (TFS) that generates facial images that are
both aligned with the mesh image and rich in detail and fidelity, based on explicit facial mesh im-
ages and implicit tokens. We begin by introducing preliminaries and notation definitions in Sec. 3.1,
followed by detailed descriptions of network modules, loss functions in subsequent subsections.

3.1 PRELIMINARY

Given an input image I , many existing methods employ FLAME to model the expressive 3D facial
geometry. FLAME generates 3D vertices V ∈ R5023×3 using shape coefficients β ∈ R300, ex-
pression coefficients ψ ∈ R50, jaw rotation θj ∈ R3, head pose θh ∈ R3, eye closure blendshapes
b ∈ R2, and camera parameters c ∈ R3. In addition to geometry-related parameters, these methods
typically predict appearance-related coefficients for facial modeling, including texture parameters
γ ∈ R50 and scene lighting using Spherical Harmonics (SH) l ∈ R9×3. γ is used to generated the
albedo b ∈ R5023×3 for each vertex in V through a FLAME-Tex model. To ensure the accuracy
of extracted parameters, these method introduce self-supervised constraints between I and recon-
structed image Î , which is generated by a differentiable renderer based on Lambertian reflectance.
Mathematically, the overall process is

{β, ψ, θj , θh, b, c, γ, l} = E(I), V = FLAME(β, ψ, θj , θh, b), ((1),(2))

C = FLAME-Tex(γ), Î = R(V,C, l, c). ((3),(4))
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Unlike previous methods that predict facial texture PCA coefficients γ and simplified environmental
lighting l, TEASER introduces an implicit latent code, namely token T , to represent complex facial
appearance. Simultaneously, TEASER incorporates a novel neural renderer R∗ that takes both
explicitly rendered mesh image and implicit token, generating high-fidelity facial images that bridge
the domain gap between the input and synthesized output Î . Consequently, we re-write Eqn. 1,
Eqn. 3 and Eqn.4 as follows:

{β,Ψ, θ, T} = E(I), (5)

Î = R∗(Iv, Ib, T ), where Iv = R(V,C0, l0, c). (6)
Here, for brevity, we combine jaw pose and expression parameters into a joint expression represen-
tation Ψ = {ψ, θj , b}. We also combine camera motion and head pose to global transformation
parameters, i.e., θ = {c, θh}. C0 and l0 are predefined vertices color and environmental lighting,
respectively. Ib is the background image where the face area is masked out. Following previous
work, we treat head pose θh as a rigid transformation and use a weak perspective camera model.

3.2 HYBRID FACIAL REPRESENTATION

Multi-scale Appearance Tokenizer. We design a Multi-scale Appearance Tokenizer (MFAT, ET )
to capture appearance features with rich facial appearance information. Given an input image I , we
first employ a multi-layer CNN-based image encoder E to extract image features. The extracted
features at different layers contain varying levels of semantic information. Thus, we propose to
use all these features to capture both high-dimensional semantics and fine-grained texture details
for a more comprehensive facial representation. Specifically, we adopt an average pooling layer P
followed by a fully connected layer F after each layer to project these features into a unified space.
Finally, we concatenate these multi-scale features together as a comprehensive facial appearance
token T . The computational process can be formulated as follows:

T = ET (I) = z1 ⊙ · · · ⊙ zK , (7)

where ⊙ is channel-wise concatenation, zi = Fi(P(xi)), i ∈ {1, · · · ,K}. xi is the feature map
from i-th stage in image encoder E. By doing this, our appearance token T incorporates multi-level
information from the input image, resulting in a more detailed and precise facial representation.

Facial Geometry Extractor. To extract the geometric information from the input image, we fol-
low Retsinas et al. (2024) and use three identical encoders Eβ , EΨ, Eθ to predict the face shape β,
expression Ψ, and transpose parameters θ, respectively. Formally,

β = Eβ(I), Ψ = EΨ(I), θ = Eθ(I). (8)

3.3 TOKEN GUIDED FACE SYNTHESIZER

We argue that an effective neural renderer should possess two key characteristics: a) The gener-
ated facial images must maintain strict alignment with the facial geometry (i.e., the rendered mesh
image). This alignment provides accurate spatial guidance for expression geometry reconstruction
when computing self-supervised losses. b) The generated faces must be of high fidelity, minimizing
the gap with the input image to reduce errors associated with photometric loss. To achieve these
objectives, we introduce a Token-guided Face Synthesizer (TFS). Our innovation lies in implement-
ing a facial neural rendering network controlled by hybrid information, combining explicit face
geometry and implicit appearance tokens. Specifically, our input contains three parts: 1) face geo-
metric information Iv , which is generated from differentiable rasterization step on the reconstructed
FLAME vertices V , as provided at Eqn. 6. 2) Facial appearance token T , which is extracted from
ET . T implicitly contains skin colors, face texture, complex environment illumination, etc.And 3)
Non-face background Ib. We mask out the face part to obtain the background region. Based on these
inputs, the generation process of our TFS can be represented as:

Î = TFS(Iv ⊙ Ib, T ). (9)

Î represents the generated image, which follows the geometric information of Iv , incorporates the
appearance of T , and uses Ib as the background. TFS is built on a U-Net structure for multi-scale
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feature extraction, which firstly takes face geometric Iv and the non-face background Ib as input.
As for the appearance token T , we adopt two techniques to incorporate T into TPS to guide the face
generation process. Initially, we adopt adaptive instance normalization (AdaIN Huang & Belongie
(2017)) to modulate the generation with T , which provides global style guidance to TPS. To better
inject high-frequency details, inspired by ControlNet Zhang et al. (2023), we create a new token
decoder D by referring to the decoder, where each block is followed by a zero-convolution layer.
Each feature map extracted by each block of D is added to the features from the UNet decoder.
Combining AdaIN and token decoder D, TPS effectively captures both global style information
and detailed high-frequency features, leading to more refined face generation results with rich facial
details. For the detailed network architecture please refer to the supplementary materials.

3.4 LOSS FUNCTIONS

To reconstruct 3D facial mesh from image I , we design a learning framework to minimize the total
loss L as follows:

L = λecLec + λlmkLlmk + λtcLtc + λpdlLpdl + λrgLrg + λicLic, (10)

where Lec is the augmented expression consistency loss, aiming to reduce over-compensation errors
and promoting diverse expressions, we borrow it from Retsinas et al. (2024). Llmk is the landmark
loss, which is inherit from Zielonka et al. (2022a).

Token Consistency Loss. Due to the lack of ground-truth tokens, we adopt a token consistency
loss Ltc to conduct self-supervised training in a cycle training manner. Given an input image I , we
first extract its appearance token T and geometric parameters β,Ψ, θ. To enhance the stability of
tokens across diverse expressions, we propose to augment the expression parameter Ψ to Ψaug by
randomly changing certain values. The augmented Ψaug and the original facial features are fed into
our TFS to generate face images Îaug with different expressions to I . Finally, the Ltc computes the
mean-squared error between the original Token T with the token predicated on Îaug:

Ltc =

N∑
i=1

∥∥∥ET (TFS(R(V
′

i , C0, l0, c)⊙ Ib, T ))− T
∥∥∥
2
, (11)

where V
′

i = FLAME(β,Ψaug, θ), N denotes the number of times we randomly augment Ψaug .
This loss guarantees the predicted token to be consistent under different expressions.

Pose-dependent Landmark Loss. We observed that commonly used facial landmark detection
methods Feng et al. (2021); Zielonka et al. (2022a) in previous approaches often yield inaccurate
results, particularly in distinguishing the boundary between the lower lip and lower teeth, or when
dealing with complex expressions. To address this, we employ a state-of-the-art 2D facial landmark
detector that accurately captures facial features under challenging conditions, including complex
expressions, large head poses, and asymmetrical mouth shapes.

To tackle the issue of non-correspondence between 2D and 3D cheek contour landmarks due to pose
variations, we deviate from conventional dynamic landmark marching Zhu et al. (2015). Instead,
we introduce a novel pose-dependent landmark loss that adapts to the specific head orientation θ,
ensuring more robust and accurate facial reconstruction across diverse poses.

Lpdl = ∥ML(θy)L−ML(θy)Lv∥2 , (12)

where L ∈ R203×2 and Lv ∈ R203×3 are 2D landmarks detected from I and 3D landmark selected
from face mesh V , respectively. ML is a pose-dependent mask, which is defined as

ML(θy) = 1θy<−ϵM
left
L + 1θy>ϵM

right
L + 1−ϵ≤θy≤ϵM

front
L , (13)

where 1 is indicator function, θy denotes the yaw angle of head pose, ϵ is a tunable parame-
ter that determines the range of frontal face. We empirically set ϵ = 0.05 in our experiments.
M left

L ,Mright
L ,Mfront

L are masks for visible landmarks under different head poses.

Region Loss. Previous neural facial renderer Retsinas et al. (2024) tends to generate faces with mis-
aligned gaze information, lack of wrinkle details, and color shifts in the lips. Although these com-
plex representations can be naturally addressed through our extracted implicit appearance tokens,
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Figure 3: Visual comparison of 3D face reconstruction with SOTA methods.

the generated faces still exhibit minor discrepancies compared to the input images. We attribute this
issue to the small size of these perceptually sensitive regions, making it challenging for the neural
renderer to learn. To address this, we employ a masking strategy to calculate the local loss in the
mouth and eye areas. Specifically, we parse facial landmarks to obtain masks for the eye region
(Me) and mouth region (Mm).The formula for this landmark-guided region loss is as follows:

Lrg =
∥∥∥(Mm +Me) · I − (Mm +Me) · Î

∥∥∥
2
. (14)

Photometric Loss and Perceptual Loss. Similar to previous approaches Deng et al. (2019b); Feng
et al. (2021), we apply common image-level supervision, including photometric loss Lpho and VGG
perceptual loss Lpho, to ensure consistency between the generated image Î and the input image I:

Lic = λphoLpho + λperLper. (15)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training Datasets. We use the following datasets for training: FFHQ Karras et al. (2019), CelebA
Liu et al. (2015a), and LRS3 Afouras et al. (2018). Since LRS3 is video dataset, we randomly sample
images from each video frames from during training. We crop the frames based on mediapipe
landmark and resize them to the resolution of 224 × 224. We follow Retsinas et al. (2024) and
separate different videos for training and testing.

Implementation Details. Our model is implemented in PyTorch Imambi et al. (2021). All models
are trained on one NVIDIA RTX 3090 GPU and the batchsize is 16. We use MobileNet-V3 Howard
et al. (2019) as the image encoder in MFAT for the balance between performance and efficiency.
We use a learning rate of 0.001 to train our model with the Adam optimizer. We set the number
of scales in MFAT to 4 and set the dimension of all tokens to 256. In our loss function, we set
λec = 1.0, λlmk = 100, λtc = 5.0, λrg = 10.0, λic = 10.0, λpdl = 500.0, λpho = 1.0, λper = 1.0.
We utilize a pre-trained geometry encoder from MICA Zielonka et al. (2022a). During the training
process, Eβ and Eθ remain frozen to maintain stability and leverage the robustness of the pre-trained
components. We alternately train the encoders (including the geometry encoder and MFAT) and TFS

7



Published as a conference paper at ICLR 2025

Input 3DDFA-v3 SMIRK Ours Input 3DDFA-v3 SMIRK Ours

Figure 4: Visual comparison of estimated expression and its corresponding reconstructed images.

during the training process. This design helps reduce the effect of the neural renderer compensating
for the encoders. For more training details please refer to the supplemental materials.

SOTA Methods. We compare with the following publicly available methods, including DECA Feng
et al. (2021), EMOCA Daněček et al. (2022), and SMIRK Retsinas et al. (2024), which use the
FLAME model Li et al. (2017a). We also involves the comparisons with Deep3DFace Deng et al.
(2019b) and 3DDFA-v3 Wang et al. (2024), which use BFM model Paysan et al. (2009).

Evaluation Metrics. Recent methods Daněček et al. (2022); Retsinas et al. (2024) have reported
that using 3D facial geometry to measure the accuracy of facial expression reconstruction is ill-
posed. Therefore, we evaluate the quality of final reconstructed 2D images and videos. The insight
is that if the quality of these reconstructed 2D images is high, then in our alternative training mode,
the intermediate generated mesh will also align more closely with the input image. We use the
Peak Signal-to-Noise Ratio (PSNR), Fréchet Inception Distance (FID) Heusel et al. (2017), cosine
similarity of identity (CSIM), Average Expression Distance (AED), and Average Pose Distance
(APD) to evaluate image-level reconstruction performance. We use warp-error Geyer et al. (2023)
and calcute flicker level between adjacent frames to evaluate video-level reconstruction. For more
details please refer to the supplementary materials.

Table 1: Quantitative comparisons of the reconstructed image on LRS3 and HDTF test dataset.
Images Videos

Methods LPIPS ↓ FID ↓ CSIM ↑ PSNR ↑ AED ↓ APD ↑ warp-error↓ flicker ↓

L
R

S3

SMIRK 0.109 25.39 0.729 29.14 0.147 0.056 1.245 1.588
3DDFA-V3 0.181 56.18 0.604 25.78 0.141 0.054 0.903 1.372

Ours 0.077 19.41 0.804 30.67 0.114 0.044 0.801 1.167

H
D

T
F SMIRK 0.114 35.27 0.732 27.39 0.138 0.125 1.958 1.484

3DDFA-V3 0.399 104.90 0.597 12.87 0.144 0.068 1.736 0.870
Ours 0.081 30.19 0.826 28.35 0.036 0.029 1.422 0.662

4.2 QUALITATIVE AND QUANTITATIVE RESULTS

4.2.1 QUANTITATIVE COMPARISON

We evaluate the image quality of our reconstructed images in two test datasets to validate the effec-
tiveness of our method and the result is shown in Tab.1. Compared with 3DDFA-v3 and SMIRK
across two benchmark datasets, our method demonstrates a significant advantage over the two meth-
ods. Specifically, higher LPIPS and lower FID values indicate that the perceptual difference between
the 2D images reconstructed by our method and the input images is smaller. TEASER gets the high-
est CSIM value, suggesting that the extracted tokens contain rich facial appearance information.
The better AED and APD results indicate that the expressions and head poses in our reconstructed
images are more accurate. In the evaluation of videos, the reduction in warp-error and flicker values
demonstrates that our generated videos exhibit better stability. This improvement is attributed to the
high consistency of our tokens compared to the randomly sampled pixels in SMIRK, allowing for
smoother transitions between video frames, which plays a crucial role in video generation.

4.2.2 QUALITATIVE COMPARISON

3D Mesh Accuracy. Fig. 3 presents a visual comparison of the 3D meshes from different methods.
Our approach, along with SMIRK, outperforms Deep3DFace, DECA, and EMOCA in capturing
more vivid facial expressions. However, our method excels over SMIRK by producing more precise
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Figure 5: Visual results of ablation study. Left: impact of token consistency loss. Middle: impact of
region loss. Right: impact of proposed landmark loss.

Table 2: Ablation study on the LRS3 test dataset.

Version Description LPIPS ↓ FID ↓ CSIM ↑ PSNR ↑ AED ↓ APD ↓
V1 Baseline 0.109 25.39 0.729 29.14 0.147 0.056

V1 (+ token T ′) 0.095 25.05 0.723 28.39 0.144 0.055
V2 V1 (+ token T ) 0.089 20.46 0.740 28.86 0.137 0.054
V3 V2 (+ Ltc.) 0.087 19.96 0.755 29.04 0.133 0.054
V4 V3 (+ Lrg) 0.086 20.30 0.762 29.17 0.123 0.046
V5 V4 (+ Zero Conv.) 0.078 19.11 0.798 30.51 0.118 0.045

Final V5 (+ Lpdl) 0.077 19.41 0.804 30.67 0.114 0.044

and nuanced expressions. Notably, our method excels in modeling subtleties such as the mouth
corner movements, intricate mouth shapes, and degree of eye openness.

Reconstruction Facial Image Quality. Fig.4 visually compares the reconstructed image with
3DDFA-v3 and SMIRK. It can be seen that the quality of our reconstructed images far surpasses
these two SOTA methods. There are significant improvements in image clarity, appearance details
(including eye gaze, wrinkles, sharpness of teeth), and the alignment of lip shape and color. Addi-
tionally, we show that our 3D mesh and 2D reconstructed images are almost perfectly aligned.

4.3 ABLATION STUDY

Ablation on the Significance of Appearance Token. In order to fully demonstrate the effectiveness
of the facial tokens, we first conducted an ablation study on them. We take SMIRK as the baseline
model. As shown in Fig.5, the tokens enhance the reconstructed 2D image in three aspects. First,
the overall clarity of the image is improved. Second, the shape of the mouth on the face gradually
approaches the original image. Additionally, compared to the baseline, there is a significant increase
in gaze accuracy and teeth clarity, resulting in more accurate meshes (specifically reflected in the
position of the eye contours and the shape of the mouth). We also remove multi-scale strategy in
MFAT, and use only the final output of the token encoder as the facial appearance token, denoted
as T ′. It is worth noting that we removed the mask from the baseline that could leak facial color
information, resulting in a slight decrease in both PSNR and CSIM metrics. As seen in Tab.2, the
inclusion of the token significantly and consistently improves other evaluation metrics.

Effect of the Token Consistency Loss and Region Loss. As shown in the second row of Fig.5
and Tab.2. Compared to the baseline, our token have learned more information representing facial
details without adding any constraints. However, there are still some shortcomings, as seen in the
third column in Fig. 5, such as incorrect gaze and over smooth teeth. After adding region loss, the
gaze and the density of the beard in the reconstructed images show significant improvement. This
is because under the constraint of region loss, our tokens pay more attention to the mouth and eye
areas, and under the constraint of cycle loss, the information extracted by the tokens is closer to the
input image, thus improving fidelity.

Effect of Pose-dependent Landmark Loss. In order to further enhance TEASER’s performance,
including modeling complex mouth shape and improving the accuracy of mouth closure issue, we
introduce pose-dependent landmark loss. In the third row of Fig.5, Lpdl compensates for a minor
flaw that was present before its addition, such as more accurate lip closure.
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Figure 6: Application of our token in face editing. Left: we only replace tokens T in the first row.
Right: we replace both tokens T and the FLAME shape parameters β.

Driving 

Source

Driving 

Source

Figure 7: Application of our token in expression transfer.

4.4 TOKEN ANALYSIS

Token Interpretability via t-SNE Clustering Visualization.

Figure 8: Different subjects’ tokens
visualization via t-SNE.

To validate our motivation, we investigate the multi-scale to-
kens that we extracted. We extract multi-scale tokens from
each frame of videos of several different individuals, and per-
form clustering on these tokens across various scales. The
clustering results are presented in Fig.8. We mark the tokens
from the same person with the same color, and it can be seen
that tokens from the same individual coalesce into distinct
groups, with clear boundaries between these groups, and this
is the case for all four scales of tokens. Given that the expres-
sions and head poses vary in every frame within the same
video, the ability to cluster them supports our hypothesis that
the tokens encapsulate identity-aware facial texture informa-
tion. The slight variations within the same category of tokens
are attributed to the changes in texture that occur when expressions change.

Token Transfer for Identity Swapping and Face Animation. Since our tokens can represent facial
textures, we apply them to the task of face swapping, with the results shown in Fig. 6. In the top row
of Fig. 6, we only transferred the target’s token to the source, and it can be observed that the swapped
face retains the expressions, poses, and shapes consistent with the source, while the textures, such as
skin and eyebrow color, are taken from the target. To more closely align with the definition of face
swapping, we transferred the target’s tokens and the FLAME shape parameters to the source. As
shown in the bottom row of Fig. 6, the resulting swapped identity is almost identical to the target,
while the expressions and other non-identity information remain consistent with the source.

5 CONCLUSION

In this paper, we propose a hybrid representation approach to enhance the accuracy of facial expres-
sion reconstruction. Our method designs a multi-scale facial appearance encoder to extract implicit
facial appearance tokens, while employing a geometry encoder to capture explicit facial geometry
information. In addition, we introduce a token-guided facial neural synthesizer, which generates
accurate and stable facial images based on the spatial information from facial meshes. This provides
finer and more precise supervision signals for facial expression reconstruction, enabling the cap-
ture of detailed facial expressions from a single image. Our results demonstrate the interpretability
of the implicit tokens and highlight several potential applications, holding promising implications
for visual effects and other human-centered tasks. Overall, we contribute a novel facial expression
extraction method and a hybrid signal-driven facial generation network, paving the way for future
tasks in complex 3D facial capture and tracking.
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Figure A-1: Detailed architecture of Token-guided Face Synthesizer.

A OUTLINE

This supplementary document provides more analyses and results that were not included in the main
paper due to space limitations. The contents are organized as follows.

• Section B: Detailed architecture of our Token-guided Face Synthesizer.

• Section C: More implementation details about training, evaluation and loss design.

• Section D: More results on different 3D benchmarks, ablation studies, network parameters
analysis, and inferecne speed details.

• Section E: Detailed explanation and analysis of our multi-scale appearance token and more
cluster results of appearance token on different person videos.

• Section F: More discussions about our limitations, future work and ethical considerations.

B ARCHITECTURE DETAILS

Token-guided Face Synthesizer. As shown in Fig A-1, the proposed TFS consists of a UNet-based
face generator (i.e.,, an encoder E, a bottleneck block, and a generator G), 4 MLP-layers, and a
4-layer token decoder. There are 4 blocks in E and G. Each block contains an up/down-sampling
layer and two convolutional layers. Given a rendered mesh Iv and a background Ib, the encoder E
first extracts multi-level features. These features are fed into the generator G by skip-connection. To
better inject the appearance token T to guide the generation process, we use two ways. Specifically,
we first use AdaIN to modulate each block in G, which provides a global style guidance for TPS.
According to Sec 3.2 in the main paper, T consists of K (K = 4) sub-tokens. In TFS, we adopt
K MLP-layers to map these K sub-tokens into AdaIN normalization parameters. Each of these
parameters is fed into different layers in G to modulate features from G, respectively. Meanwhile,
we design a multi-layer token decoder D, where each block is followed by a zero-convolution layer.
The token decoder D takes the whole multi-level token T as input. Each feature map extracted by
each block of D is added to the features after AdaIN. Combining AdaIN and token decoder D, TPS
effectively captures both global style information and detailed high-frequency features, leading to
more refined face generation results with rich facial details.
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C MORE IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS.

Our training process is divided into two stages. In the first stage, we only optimize the geometry
encoders, without incorporating the tokenizer and TFS, for coarse FLAME parameters estimation.
In this stage, the total loss is set as L = Llmk. In the second stage, similar to SMIRK Retsinas
et al. (2024), we alternately train the encoders (including the geometry encoder and MFAT) and TFS
during the training process. This design helps reduce the effect of the neural renderer compensating
for the encoders. Specifically, for each iteration, we first freeze the TFS and update the encoders.
Then, we freeze the encoders and update the TFS only. By alternating the training of the encoders
and TFS, we avoid the joint optimization of these two components. Additionally, the frozen part
acts as a regularizer for the other training component, enhancing generalization.

C.2 EVALUATION METRICS DETAILS

To validate our motivation and demonstrate that the 2D images we reconstructed have higher quality,
we utilized several image-level evaluation metrics. Additionally, we also assessed the stability of the
reconstructed videos, which is greatly beneficial for subsequent practical application such as face
reenactment and identity swapping. (i) Image Reconstruction: For image reconstruction quality,
the Peak Signal-to-Noise Ratio (PSNR) measures the low-level similarity of the generated images
to the ground-truth images. The Fréchet Inception Distance (FID) Heusel et al. (2017) metric is em-
ployed to measure the dissimilarity between distributions of generated and real images. Of particular
importance, we compute the cosine similarity of identity (CSIM) features to assess the fidelity of
identity preservation. These features are derived from the pretrained face recognition model ArcFace
Deng et al. (2019a). Furthermore, following the previous work PIRenderer Ren et al., the Average
Expression Distance (AED) and Average Pose Distance (APD) metrics are employed to scrutinize
the impact of pose and expression imitation. (ii) Video Reconstruction: We use warp-error Geyer
et al. (2023) to evaluate the temporally consistency of reconstructed video. We determine the flicker
level of the entire video by calculating the average brightness difference between adjacent frames.

C.3 LOSS DETAILS

Previous methods for single-image face geometry reconstruction often heavily rely on 2D facial
landmark detection due to the lack of necessary 3D annotations. These 2D landmarks are used to
constrain the accuracy of the projected mesh. However, we have observed that the commonly used
2D facial landmarks are inaccurate for many scenarios. For example, in Fig. A-2, asymmetric mouth
shapes or exaggerated facial expressions often lead to erroneous mouth landmarks with widely used
detectors such as the 68-point facial detector Feng et al. (2021) or Mediapipe Zielonka et al. (2022a);
Retsinas et al. (2024), which in turn degrades the accuracy of face reconstruction. In our experiment,
we set ϵ = 0.05 in Eq. 12.

Our investigation revealed that the facial landmark detector provided by InsightFace Guo & Deng
(2022) delivers accurate and robust facial keypoints. However, since these keypoints are 2D, they
can only detect visible facial contours. The corresponding mesh landmarks are often fixed at specific
semantic locations, such as the jawline and the sides of the nose. In cases of large head poses, this
leads to significant discrepancies between the 3D mesh landmarks and the detected 2D landmarks.
To address this issue, we designed a head-pose-based landmark loss that only constrains the visible
mesh landmarks. This provides more precise supervision signals. The landmarks selected under
different head poses are dynamically adjusted based on visibility. Therefore, our selected facial
keypoints focus on the eyes, nose, and mouth regions. We empirically observed that: 1) Yaw angle
significantly affects the accuracy of nose and jawline keypoints, 2) Pitch angle has minimal impact
on keypoint loss. Please find more details at the right in Fig. A-2

Although our experiments demonstrate that this loss term brings significant improvements to the
model, we used a relatively hard mask to directly determine effective landmarks based on different
head poses. Designing a smoothly varying confidence score to apply to all landmarks could po-
tentially make better use of all landmark information, including eyebrows. Therefore, we plan to
further explore a stronger landmark loss in the future.
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Figure A-2: (Left) We use InsightFace Guo & Deng (2022) to detect 203 2D facial landmarks, which
get more accurate mouth landmarks. (Right) Different masks for landmark loss under different head
poses.

Table A-1: Numerical comparison on 3D facial geometry benchmark.
NoW benchmark Stirling benchmark FaceWareHouse ×e2

Method Median ↓ Mean ↓ Std. ↓ Median ↓ Mean ↓ Std. ↓ Median ↓ Mean ↓ Std. ↓
Deep3DFace*( Deng et al. (2019b)) 1.11 1.41 1.21 0.99 1.27 1.15 2.98 4.11 3.93
3DDFA-V2 (Guo et al. (2020)) 1.09 1.38 1.18 1.20 1.55 1.45 3.12 3.94 3.87
DECA (Feng et al. (2021)) 1.23 1.57 1.39 1.03 1.32 1.18 3.09 4.05 3.91
SMIRK (Retsinas et al. (2024)) 0.99 1.22 1.02 1.01 1.08 1.05 2.87 3.98 3.89
TEASER (Ours) 0.92 1.10 0.99 1.00 1.07 1.04 2.78 3.87 3.81

D MORE RESULTS

More results on 3D benchmarks. In Fig. A-3, we present a comparison of our method with SMIRK
on the Stirling benchmark Feng et al. (2018b) for facial expression reconstruction. It is visually evi-
dent that our method reconstructs facial meshes with greater accuracy, particularly in terms of mouth
closure. Although we did not specifically focus on optimizing the 3D face shape estimation, the im-
proved accuracy of expression reconstruction in our approach allows us to achieve performance on
par with other methods on the Stirling benchmark (as reported at Tab. A-1). Both the Stirling and
NoW benchmarks primarily focus on face shape reconstruction accuracy, which is not our main
contribution, our method still shows competitive performance in Tab.A-1. To better demonstrate our
effectiveness on 3D expression reconstruction, we compared our method on FaceWareHouse Cao
et al. (2013), a dataset that provides 3D geometry meshes with different expressions across 150 sub-
jects. We used the now evaluation codebase 1 with standard (non-metrical) evaluation to calculate
‘median/mean/std‘ metrics. All images from FaceWareHouse are used for benchmarking. Note that
methods marked with * in Table A-1 used additional 3D datasets during training, making direct
comparisons with our method unfair. Nevertheless, our method still achieves comparable results.

In Table A-2, we have provided more quantitative comparisons on LRS3 test set with other advanced
method under same condition. Our method consistently achieves better performance across metrics.

More ablation study results. In Fig. A-4, we demonstrate the effectiveness of the token consistency
loss. With this loss, we can reconstruct more faithful facial images, capturing clearer facial details,
such as gaze direction, sharpness of the teeth, and finer details of glasses.

Number of network parameters analysis. To further analysis our token enhanced face renderer
can generated superior face quality, not dependent on more trainable parameters, we experimented
with increasing SMIRK’s renderer parameters to match or exceed our renderer size. We found that
increasing the learnable parameters of the renderer did not significantly improve the performance

1https://github.com/soubhiksanyal/now_evaluation

Table A-2: More numerical comparisons against SOTA methods.
Methods LIPIS ↓ FID ↓ CSIM ↑ PSNR ↑ AED ↓ APD ↓
DECA( Feng et al. (2021)) 0.442 151.6 0.209 11.90 0.151 0.057
3DDFA-v3 (Wang et al. (2024)) 0.181 25.18 0.604 25.78 0.141 0.054
SMIRK (Retsinas et al. (2024)) 0.109 25.39 0.729 29.14 0.147 0.056
TEASER (Ours) 0.077 19.41 0.804 30.67 0.114 0.044
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Figure A-3: Visual mesh results on stiring result dataset. From left to right: input images, recon-
structed mesh from SMIRK, and ours.
Table A-3: Analysis on number of trainable parameters in our renderer. Our method shows consis-
tently superior performance compared to SMIRK with different scale of model size.

Methods # Params. LIPIS ↓ FID ↓ PSNR ↑ CSIM ↑ AED ↓ APD ↓
SMIRK 31.4M 0.109 25.39 0.729 29.14 0.147 0.056
SMIRK (res block=6) 36.1M 0.108 25.31 0.731 29.12 0.146 0.056
SMIRK (res block=6, init feat=40) 56.4M 0.108 25.32 0.728 29.16 0.147 0.055
TEASER (Ours) 32.7M 0.077 19.41 0.804 30.67 0.114 0.044

of SMIRK. Even with these larger models, our method still achieves better results, as shown in the
Table. A-3.

Inference speed. On an RTX 3090, our method runs at an overall speed of 20.43 FPS. Both the
Encoder and Face Renderer operate above real-time, with the Encoder at 43.94 FPS and the Token-
guided Face Synthesizer at 45.77 FPS. Our model can be easily converted to a ONNX model, after
which the overall speed increases to 29.77 FPS.

E UNDERSTANDING APPEARANCE TOKENS

In Fig. A-6, we present more interpretable results of the tokens. Using videos corresponding to
different identities, we extracted tokens and observed that the extracted tokens cluster effectively
around the same identity. This demonstrates that the tokens extracted by TEASER exhibit strong
interpretability and disentanglement with respect to identity.

Fig. A-5 illustrates how tokens at different scales affect face appearance. We extract multi-scale ap-
pearance tokens from the target image, while the source image provides face geometry. Specifically,
z1 represents low-level tokens, and z4 represents high-level tokens. It can be observed that low-level
tokens primarily influence skin tone, while high-level tokens affect semantic details such as gender,
eyebrow shape, etc.

F DISCUSSIONS

F.1 LIMITATIONS AND FUTURE WORK.

The 3D geometry encoder of our method inherits several limitations that are specific to FLAME-
based head reconstruction methods. While we do address some of the limitations that stem from
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Input w/o ℒ𝑡𝑐 with ℒ𝑡𝑐 Input w/o ℒ𝑡𝑐 with ℒ𝑡𝑐

Figure A-4: More results about effectiveness of token consistency loss.

Source

Target

𝑧1
𝑧2
𝑧3
𝑧4

ℰ𝑇

𝑇

𝑧4 𝑧4 + 𝑧3 𝑧4 + 𝑧3 + 𝑧2 𝑇

𝑧1 𝑧1 + 𝑧2 𝑧1 + 𝑧2 + 𝑧3 𝑇Mesh

Figure A-5: Understanding how tokens at different scales affect face appearance.

Figure A-6: More results about token visualization.
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the use of a parametric FLAME model, we are still subject to misalignment on extreme poses and
strongly occluded faces. Our face synthesis stage cannot generate overly complex facial occlusions,
such as hands, microphones, bangs, and other facial accessories. Future work can explore using
semantic segmentation to filter out non-facial regions when calculating the loss, in order to improve
the accuracy and robustness of the synthesis-by-neural-rendering scheme. Our work can also be
applied to future SOTA talking head generation tasks, providing accurate expression information
and a general facial renderer.

F.2 ETHICAL CONSIDERATIONS.

This research is conducted with a focus on advancing the accuracy and realism of 3D expression
capture technologies for legitimate and ethical applications, such as enhance user experience in
VR/AR/XR and improving visual effects in the social media. Specifically, the ability to edit faces
and transfer expressions could facilitate the creation of deepfake videos, which might be used to ma-
nipulate the likeness of individuals without their consent. This includes generating highly realistic
but fabricated content, such as making individuals appear to say or do things they never did or plac-
ing their likenesses in misleading or harmful contexts. Such misuse poses risks to privacy, consent,
and trust in digital media, as well as broader societal implications, such as spreading misinformation
or damaging reputations. We strongly object to the misuse of our method for any harmful or decep-
tive purposes. Our research is intended to support the scientific community and ethical industry
practices. We encourage ongoing dialogue and regulation to ensure that developments in this area
are employed in ways that uphold individual rights and align with community values. Future work
should also prioritize an in-depth exploration of these issues, including robust mitigation strategies,
transparent usage guidelines, and technical safeguards to prevent misuse.
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