
Supplementary materials for the NeurIPS 2021 submission
“Robustifying Algorithms of Learning Latent Trees with Vector

Variables”

A Illustrations of corruption patterns in Section 2.1

Figure 3: The left figure shows the corruption pattern that corrupted terms lie in the same rows. This
corruption patterm is known as outliers. The right figure shows an arbitrary corruption pattern where
corrupted entries in each column can be in any n1/2 rows.

B Illustrations of active sets defined in Section 3.2

(a) Illustration of Γ1 (b) Illustration of Γ2 (c) Illustration of Γ3

Figure 4: Illustration of active sets.
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C Pseudo-code of RRG in Section 3.2

Algorithm 1 RRG
Input: Data matrix X, corruption level n1, threshold ε
Output: Adjacency matrix A
Procedure:

1: Active set Γ1 ← all the observed nodes
2: Implement truncated inner product to compute d̂(xi, xj) for all xi, xj ∈ Vobs.
3: while |Γi| > 2 do
4: Update d̂(xnew, xi) for all xi ∈ Γi for all new hidden nodes.
5: Compute Φ̂ijk = d̂(xi, xk)− d̂(xj , xk) for all xi, xj , xk ∈ Γi

6: for all nodes xi and xj in Γi do
7: if |Φ̂ijk − Φ̂ijk′ | < ε for all xk, xk′ ∈ Γi then
8: if |Φ̂ijk − d̂(xi, xj)| < ε for all xk ∈ Γi then
9: xj is the parent of xi.

10: Eliminate xi from Γi

11: else
12: xj and xi are siblings.
13: Create a hidden node xnew as the parent of xj and xi
14: Add xnew and eliminate xj and xi from Γi

15: end if
16: end if
17: end for
18: end while

D Pseudo-code of RSNJ in Section 3.3

Algorithm 2 RSNJ
Input: Data matrix X, corruption level n1

Output: Adjacent matrix A
Procedure:

1: Implement truncated inner product to compute d̂(xi, xj) for all xi, xj ∈ Vobs.
2: Compute the symmetric affinity matrix R̂ as R̂(i, j) = exp(−d̂(xi, xj)) for all xi, xj ∈ Vobs

3: Set Bi = {xi} for all xi ∈ Ω

4: Compute the matrix S as Ŝ(i, j) = σ2(R̂Bi∪Bj )
5: while The number of Bi’s is larger than 3 do
6: Find (̂i, ĵ) = arg mini,j Ŝ(i, j).
7: Merge Bî and Bĵ as Bî = Bî ∪Bĵ and delete Bĵ .
8: Update Ŝ(k, î) = σ2(R̂Bk∪Bî).
9: end while
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E Pseudo-code of RCLRG in Section 3.4

Algorithm 3 RCLRG
Input: Data matrix X, corruption level n1, threshold ε
Output: Adjacency matrix A
Procedure:

1: Construct a Chow-Liu tree with d̂(xj , xk) for observed nodes xj , xk ∈ Vobs

2: Identify the set of internal nodes of the Chow-Liu tree
3: for all internal nodes xi of the Chow-Liu tree do
4: Implement RRG algorithm on the closed neighborhood of xi
5: Replace the closed neighborhood of xi with the output of RRG
6: end for

F Illustrations of representative trees in Section 3.5

(a) Double-binary tree (b) HMM

(c) Full m-tree, m = 3 (d) Double star

Figure 5: Representative tree structures.

G Proofs of results in Section 3.1

Proof of Proposition 1. For the sake of brevity, we prove the additivity property for paths of length 2.
The proof for the general cases can be derived similarly. We consider the case xj is on the path
connected xi and xk and xi, xj , xk ∈ V .

For any square matrix A ∈ Rn×n, the determinant of A is denoted as |A| = det(A).

Then we can write information distance as

d(xi, xk) = −1

2
log
∣∣ΣikΣ

>
ik

∣∣+
1

4
log
∣∣ΣiiΣ

>
ii

∣∣+
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4
log
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∣∣ (G.1)

Note that E[xi|xj ] = ΣijΣ
−1
jj xj and Σij is of full rank by Assumption 2, and

Ai|j = ΣijΣ
−1
jj (G.2)

is also of full rank.

Furthermore, we have
Σik = Ai|jΣjjA

>
k|j and ΣikΣ

>
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Then we have ∣∣ΣikΣ
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Substituting (G.4) and (G.7) into (G.1), we have

d(xi, xk) =− 1
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= d(xi, xj) + d(xj , xk), (G.10)

as desired.

Lemma 8. (Bernstein-type inequality [22]) Let X1, . . . , Xn be n centered sub-exponential random
variables, and K = max1≤i≤n ‖Xi‖ψ1 , where ‖ · ‖ψ1 is the sub-exponential norm and is defined as

‖X‖ψ1
:= sup

p≥1
p−1
(
E|X|p

)1/p
. (G.11)

Then for every a = (a1, . . . , an) ∈ Rn and every t > 0, we have

P
(∣∣∣ n∑

i=1

aiXi

∣∣∣ ≥ t) ≤ 2 exp

[
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K2‖a‖22
,

t

K‖a‖∞

}]
(G.12)

Lemma 9. Let the estimate of the covariance matrix Σij based on the truncated inner product be
Σ̂ij . If t2 < κ = max{σ2

max, ρmin}, we have

P
(
‖Σ̂ij −Σij‖∞,∞ > t1 + t2

)
≤ 2l2maxe

− 3n2
16κn1

t1 + l2maxe
−c t

2
2n2

κ2 ∀xi, xj ∈ Vobs. (G.13)

Proof of Lemma 9. Let Istij,1 be the set of indexes of the uncorrupted samples of [xi]s[xj ]t. Without
loss of generality, we assume that |Istij,1| = n2. Let Istij,2 and Istij,3 be the sets of the indexes of
truncated uncorrupted samples and the reserved corrupted samples, respectively.

Figure 6: Illustration of the truncated inner product.

Then,

[Σ̂ij ]st =
1
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The (s, t)th entry of the error covariance matrix Σ̃ij = Σ̂ij −Σij ∈ Rd×d is defined as

[Σ̃ij ]st =
1
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. (G.15)

From the definition of the truncated inner product, we can bound the right-hand side of (G.15) as∣∣[Σ̃ij ]st
∣∣ ≤ 2
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t

∣∣. (G.16)

Equipped with the expression of the moment-generating function of a chi-squared distribution, the
moment-generating function of each term in the sum of (G.16) can be upper bounded as
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. (G.19)

Using the power mean inequality, we have(
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Thus,
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and
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Thus,
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Let λ = 3n2

16σ2
maxn1

, then we have
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According to Lemma 8 (since the involved random variables are sub-exponential), we have
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where K = σ2
max.

Thus, if t < κ, we have
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(
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as desired.
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Proof of Proposition 2. From the definition of the information distance, we have

d(xi, xj) = −
lmax∑
n=1

log σn
(
Σij

)
+

1

2
log det

(
Σii

)
+

1

2
log det

(
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)
. (G.30)

According to the inequality ‖A‖2 ≤
√
‖A‖1‖A‖∞ which holds for all A ∈ Rn×m [23], we have∣∣σk(Σ̂ij)− σk(Σij)

∣∣ ≤ ‖Σ̂ij −Σij‖2 (G.31)

≤
√
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Using the triangle inequality, we arrive at

∣∣d̂(xi, xj)− d(xi, xj)
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n=1
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+
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∣∣. (G.33)

Furthermore, since the singular value is lower bounded by γmin, using Taylor’s theorem and (G.31),
we obtain∣∣ log σn(Σ̂ij)− log σn(Σij)

∣∣ ≤ 1

γmin

∣∣σn(Σ̂ij)− σn(Σij)
∣∣ ≤ lmax

γmin
‖Σ̂ij −Σij‖∞,∞. (G.34)

Finally, ∣∣d̂(xi, xj)− d(xi, xj)
∣∣ ≤ (lmax +

dim(xi) + dim(xj)

2

) lmax

γmin
‖Σ̂ij −Σij‖∞,∞

≤ 2l2max

γmin
‖Σ̂ij −Σij‖∞,∞. (G.35)

From Lemma 9, the proposition is proved.

H Proofs of results in Section 3.2

Lemma 10. Consider the optimization problem

P : max
{xi}

f(x) =

n∑
i=1

xi(xi − 1)

s.t.

N∑
i=1

xi ≤ N 0 ≤ xi ≤ k i = 1, . . . , N. (H.1)

Assume nk ≥ N . An optimal solution is given by xi = k for all i = 1, . . . , bNk c and xbNk c+1 =

N − kbNk c, and xi = 0 for i = bNk c+ 2, . . . , n.

This lemma can be verified by direct calculation, and so we will omit the details.

Proof of Proposition 4. We prove the proposition by induction.

Proposition 2 and Eqn. (6) show that at the 0th layer [24]

P(|∆ij | > ε) < f(ε) = h(0)(ε). (H.2)

Now suppose that the distances related to the nodes created in the (l − 1)st iteration satisfy

P
(∣∣d̂(xi, xh)− d(xi, xh)

∣∣ > ε
)
< h(l−1)(ε). (H.3)
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Since s > 1 and m < 1, it is obvious that

h(l)(ε) ≤ h(l+k)(ε) for all l, k ∈ N and for all ε > 0. (H.4)

Then we can deduce that

P(|d̂(xi, xj)− d(xi, xj)| > ε) < h(l−1)(ε) for all xi, xj ∈ Γl. (H.5)

From the update equation of the distance in (9), we have
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)( ∑
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1
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)
(H.6)

and
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1
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∑
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)
+ d(xi, xh). (H.7)

Using the union bound, we find that
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)
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(H.8)
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2
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The estimates of the distances related to the nodes in the lth layer satisfy

P
(∣∣d̂(xi, xh)− d(xi, xh)
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)
< |C(h)|

(
1 + 2|Kij |

)
h(l−1)

(2

3
ε
)

(H.11)

≤ dmax(1 + 2Nτ )h(l−1)
(2

3
ε
)
. (H.12)

Similarly, from (10), we have

P
(∣∣d̂(xk, xh)− d(xk, xh)
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)

≤
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(
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)
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)
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)
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(
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)

+ P
(
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3ε
)
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(H.13)

Using the concentration bound at the (l − 1)st layer in inequality (H.3), we have

P
(∣∣d̂(xk, xh)− d(xk, xh)

∣∣ > ε
)

≤
{
dmaxh

(l−1)( 1
2ε) + d2

max(1 + 2Nτ )h(l−1)( 1
3ε), if k ∈ Vobs

d2
maxh

(l−1)( 2
3ε) + 2d3

max(1 + 2Nτ )h(l−1)( 2
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(H.14)

Summarizing the above three concentration bounds, we have that for the nodes at the lth layer,
estimates of the information distances (based on the truncated inner product) satisfy

P
(∣∣d̂(xk, xh)− d(xk, xh)

∣∣ > ε
)
<
[
d2

max + 2d3
max(1 + 2Nτ )

]
h(l−1)

(2

9
ε
)

= h(l)(ε). (H.15)

Proposition 11. The cardinalities of the active sets in lth and (l + 1)st iterations admit following
relationship

|Γl|
dmax

≤ |Γl+1| ≤ |Γl| − 2. (H.16)

18



Proof of Proposition 11. Note that at the lth iteration, the number of families is |Γl+1|, and thus we
have

|Γl+1|∑
i=1

ni = |Γl|, (H.17)

where ni is the number of nodes in Γl in each family. Since 1 ≤ ni ≤ dmax, we have Γl

dmax
≤ |Γl+1|.

Figure 7: Illustration of RRG. The shaded nodes are the observed nodes and the rest are hidden
nodes. Γ1 = {x1, x2, . . . , , x9}, and Γ2 is the nodes in the dotted lines. If we delete the nodes in Γ2,
the remained unknown hidden nodes are x10, x11 and x13. Nodes x10 and x13 are at the end of the
chain formed by these two nodes, and x11 is at the end of the degenerate chain formed by itself.

We next prove that there are at least two of ni’s not less than 2. If we delete the nodes in active set Γl,
the remaining hidden nodes form a single tree or a forest. There will at least two nodes at the end of
the chain, which means that they only have one neighbor in hidden nodes, as shown in Fig. 7. Since
they at least have three neighbors, they have at least two neighbors in Γl. Thus, there are at least two
of ni’s not less than 2, and thus |Γl+1| ≤ |Γl| − 2.

Corollary 1. The maximum number of iterations of Algorithm 1, LR, is bounded as

log |Vobs|2

log dmax
≤ LR ≤ |Vobs| − 2. (H.18)

Proof. When Algorithm 1 terminates, |Γ| ≤ 2. Combining Proposition 11 and |Γ| ≤ 2 proves the
corollary.

Theorem 6. Under Assumptions 1–5, RRG algorithm constructs the correct latent tree with proba-
bility at least 1− η if

n2 ≥
64λ2κ2

cε2

(9

2

)2LR−2
log

17l2maxs
LR−1|Vobs|3

η
(H.19)

n2

n1
≥ 128λκ

3ε

(9

2

)LR−1
log

34l2maxs
LR−1|Vobs|3

η
, (H.20)

where

λ =
2l2maxe

ρmax/lmax

δ
1/lmax

min

κ = max{σ2
max, ρmin} s = d2

max + 2d3
max(1 + 2Nτ ) ε =

ρmin

2
,

(H.21)

c is an absolute constant, and LR is the number of iterations of RRG needed to construct the tree.
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Proof of Theorem 6. It is easy to see by substituting the constants λ, κ, s and ε into (H.19) and
(H.20) that Theorem 6 implies Theorem 1, so we provide the proof of Theorem 6 here.

The error events of learning structure in the lth layer of the latent tree (the 0th layer consists of
the observed nodes, and the (l + 1)st layer is the active set formed from lth layer). The error
events could be enumerated as: misclassification of families E lf , misclassification of non-families E lnf ,
misclassification of parents E lp and misclassification of siblings E ls . We will bound the probabilities
of these four error events in the following.

The event representing misclassification of families E lf represents classifying the nodes that are not
in the same family as a family. Suppose nodes xi and xj are in different families. The event that
classifying them to be in the same family E lf,ij at layer l can be expressed as

E lf,ij =
{
|Φ̂ijk − Φ̂ijk′ | < ε for all xk, xk′ ∈ Γl

}
. (H.22)

We have

P(E lf,ij) = P
( ⋂
xk,xk′∈Γ

{
|Φ̂ijk − Φ̂ijk′ | < ε

})
≤ min
xk,xk′∈Γ

P
(
|Φ̂ijk − Φ̂ijk′ | < ε

)
, (H.23)

P(E lf ) = P
( ⋃
xi,xjnot in same family

E lf,ij
)

= P
( ⋃

(xi,xj)∈Γlf

E lf,ij
)
. (H.24)

We enumerate all possible structural relationships between xi, xj , xk and xk′

Figure 8: Enumerating of four-node topology and the corresponding |Φijk − Φijk′ |.

Let ε < 2ρmin, by decomposing the estimate of the information distance as d̂(xi, xj) = d(xi, xj) +
∆ij , we have

P
(
|Φ̂ijk − Φ̂ijk′ | < ε

)
= P

(
|Φijk − Φijk′ + ∆ik −∆jk −∆ik′ + ∆jk′ | < ε

)
≤ P

(
∆ik −∆jk −∆ik′ + ∆jk′ < ε− (Φijk − Φijk′)

)
≤ P

(
∆ik −∆jk −∆ik′ + ∆jk′ < ε− 2ρmin

)
≤ P

(
|∆ik| >

2ρmin − ε
4

)
+ P

(
|∆jk| >

2ρmin − ε
4

)
+ P

(
∆jk′ | >

2ρmin − ε
4

)
+ P

(
|∆ik′ | >

2ρmin − ε
4

)
. (H.25)
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The event representing misclassification of the parents E lp represents classifying a sibling relationship
as a parent relationship. Following similar procedures, we have

P(E lp) = P
( ⋃
xi,xj are siblings

E lp,ij
)

= P
( ⋃

(xi,xj)∈Γlp

E lp,ij
)

(H.26)

P(E lp,ij) = P
( ⋂
xk∈Γl

{∣∣Φ̂ijk − d̂(xi, xj)
∣∣ < ε

})
≤ min
xk∈Γl

P
(∣∣Φ̂ijk − d̂(xi, xj)

∣∣ < ε
)

(H.27)

≤ P
(
|∆ij | >

2ρmin − ε
3

)
+ P

(
|∆ik| >

2ρmin − ε
3

)
+ P

(
|∆jk| >

2ρmin − ε
3

)
(H.28)

The event representing misclassification of non-families E lnf represents classifying family members
as non-family members. We have

P(E lnf) = P
( ⋃
xi,xj in the same family

E lnf,ij

)
= P

( ⋃
(xi,xj)∈Γlnf

E lnf,ij

)
(H.29)

P(E lnf) = P
( ⋃
xi,xj in the same family

⋃
xk,xk′∈Γ

{
|Φ̂ijk − Φ̂ijk′ | > ε

})
(H.30)

and

P
(
|Φ̂ijk − Φ̂ijk′ | ≥ ε

)
≤ P

(
|∆ik| >

ε

4

)
+ P

(
|∆jk| >

ε

4

)
+ P

(
|∆jk′ | >

ε

4

)
+ P

(
|∆ik′ | >

ε

4

)
(H.31)

The event representing misclassification of siblings E ls represents classifying parent relationship as
sibling relationship. Similarly, we have

P(E ls) = P
( ⋃
xi is the parent of xj

E ls,ij
)

= P
( ⋃

(xi,xj)∈Γls

E ls,ij
)

(H.32)

P(E ls,ij) = P
( ⋃
xk∈Γ

{∣∣Φ̂jik − d̂(xi, xj)
∣∣ > ε

})
(H.33)

and

P
(∣∣Φ̂jik − d̂(xi, xj)

∣∣ > ε
)
≤ P

(
|∆ij | >

ε

3

)
+ P

(
|∆ik| >

ε

3

)
+ P

(
|∆jk| >

ε

3

)
(H.34)

To bound the probability of error event in lth layer, we first analyze the cardinalities of Γlf , Γlp, Γlnf

and Γls. Note that the definitions of these four sets are

Γlf =
{

(xi, xj) : xi and xj are not in the same family xi, xj ∈ Γl
}

(H.35)

Γlp =
{

(xi, xj) : xi and xj are siblings xi, xj ∈ Γl
}

(H.36)

Γlnf =
{

(xi, xj) : xi and xj are in the same family xi, xj ∈ Γl
}

(H.37)

Γls =
{

(xi, xj) : xi and xj is the parent of xi, xj ∈ Γl
}
. (H.38)

Clearly, we have

|Γlf | ≤
(
|Γl|
2

)
and |Γls| ≤ |Γl|. (H.39)

The cardinality of Γlp can be bounded as

|Γlp| ≤
|Γl+1|∑
i=1

(
ni
2

)
(H.40)

where ni is the size of each family in Γl.
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From Lemma 10, we deduce that

|Γlp| ≤
1

2
dmax(dmax − 1)

|Γl|
dmax

=
1

2
|Γl|(dmax − 1). (H.41)

Similarly, we have

|Γlnf | ≤
1

2
|Γl|(dmax − 1). (H.42)

The probability of the error event in lth layer can be bounded as

P(E l) = P(E lf ∪ E lp ∪ E lnf ∪ E ls)
≤ P(E lf ) + P(E lp) + P(E lnf) + P(E ls)

≤ 4

(
|Γl|
2

)
h(l)
(2ρmin − ε

4

)
+

3

2
|Γl|(dmax − 1)h(l)

(2ρmin − ε
3

)
+ 3|Γl|2h(l)

(ε
3

)
+ 2|Γl|3(dmax − 1)h(l)

(ε
4

)
. (H.43)

The probability of learning the wrong structure is

P(E) = P
(⋃

l

E l
)
≤
∑
l

P(E l) (H.44)

≤
∑
l

4

(
|Γl|
2

)
h(l)
(2ρmin − ε

4

)
+

3

2
|Γl|(dmax − 1)h(l)

(2ρmin − ε
3

)
+ 3|Γl|2h(l)

(ε
3

)
+ 2|Γl|3(dmax − 1)h(l)

(ε
4

)
(H.45)

With Proposition 11, we have

P(E) ≤
L−1∑
l=0

4

(
|Vobs| − 2l

2

)
h(l)
(2ρmin − ε

4

)
+

3

2
(|Vobs| − 2l)(dmax − 1)h(l)

(2ρmin − ε
3

)
+ 3(|Vobs| − 2l)2h(l)

(ε
3

)
+ 2(|Vobs| − 2l)3(dmax − 1)h(l)

(ε
4

)
, (H.46)

where L is the number of iterations of RRG.

We can separately bound the two parts of the first term in the summation
(|Vobs|−2l

2

)
h(l)
(

2ρmin−ε
4

)
as

4
(|Vobs|−2l

2

)
slae−wm

lx

4
(|Vobs|−2L

2

)
sL−1ae−wmL−1x

≤
(
|Vobs| − 2l

)(
|Vobs| − 2l − 1

)
2sL−1−l ≤ |Vobs|2

2sL−1−l for x > 0

and

4
(|Vobs|−2l

2

)
slbe−um

2lx2

4
(|Vobs|−2L

2

)
sL−1be−um2L−2x2

≤
(
|Vobs| − 2l

)(
|Vobs| − 2l − 1

)
2sL−1−l ≤ |Vobs|2

2sL−1−l . (H.47)

These bounds imply that
L−1∑
l=0

4

(
|Vobs| − 2l

2

)
h(l)(x) ≤

[
1 +
|Vobs|2

2

∞∑
i=1

1

si
]
4h(L−1)(x) = 4

(
1 +

|Vobs|2

2(s− 1)

)
4h(L−1)(x) for x > 0

Similar procedures could be implemented on other terms, and we will obtain

P(E) ≤
[
4
(

1 +
|Vobs|2

2(s− 1)

)
+

3

2
(dmax − 1)

(
1 +

|Vobs|
2(s− 1)

)]
h(L−1)

(2ρmin − ε
4

)
+

[
3
(

1 +
|Vobs|2

4(s− 1)

)
+ 2(dmax − 1)

(
1 +

|Vobs|3

8(s− 1)

)]
h(L−1)

(ε
4

)
(H.48)

=

[
4
(

1 +
|Vobs|2

2(s− 1)

)
+

3

2
(dmax − 1)

(
1 +

|Vobs|
2(s− 1)

)](
ae−wm

L−1 2ρmin−ε
4 + be−um

2L−2(
2ρmin−ε

4 )2
)

+

[
3
(

1 +
|Vobs|2

4(s− 1)

)
+ 2(dmax − 1)

(
1 +

|Vobs|3

8(s− 1)

)](
ae−wm

L−1 ε
4 + be−um

2L−2( ε4 )2
)
≤ η.
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Upper bounding each of the four terms in inequality (H.48) by η/4, we obtain the following sufficient
conditions of n1 and n2 to ensure that P(E) ≤ η:

n2 ≥ max

{
64λ2κ2

c(2ρmin − ε)2

(9

2

)2L−2

log
4l2maxs

L−1
[
4(1 + |Vobs|2

2(s−1) ) + 3
2 (dmax − 1)(1 + |Vobs|

2(s−1) )
]

η
,

64λ2κ2

cε2

(9

2

)2L−2

log
4l2maxs

L−1
[
3(1 + |Vobs|2

4(s−1) ) + 2(dmax − 1)(1 + |Vobs|3
8(s−1) )

]
η

}
,

n2

n1
≥ max

{
128λκ

3(2ρmin − ε)

(9

2

)L−1

log
8l2maxs

L−1
[
4(1 + |Vobs|2

2(s−1) ) + 3
2 (dmax − 1)(1 + |Vobs|

2(s−1) )
]

η
,

128λκ

3ε

(9

2

)L−1

log
8l2maxs

L−1
[
3(1 + |Vobs|2

4(s−1) ) + 2(dmax − 1)(1 + |Vobs|3
8(s−1) )

]
η

}
.

Note that

max

{
4
(

1 +
|Vobs|2

2(s− 1)

)
+

3

2
(dmax − 1)

(
1 +

|Vobs|
2(s− 1)

)
,

3
(

1 +
|Vobs|2

(s− 1)

)
+ 2(dmax − 1)

(
1 +

|Vobs|3

8(s− 1)

)}

< 4
(

1 +
|Vobs|2

2(s− 1)

)
+ 2(dmax − 1)

(
1 +

|Vobs|3

2(s− 1)

)
(H.49)

≤ 2(dmax − 1)
(

2 +
|Vobs|3 + 2|Vobs|2

2(s− 1)

)
(H.50)

< 2(dmax − 1)
(

2 +
|Vobs|3 + 2|Vobs|2

s

)
(H.51)

(a)
< 2(dmax − 1)

|Vobs|3 + 2|Vobs|2 + 7Nτ |Vobs|3

s
(H.52)

< 17dmaxNτ
|Vobs|3

s
(H.53)

(b)
<

17

4
|Vobs|3, (H.54)

where inequality (a) and (b) result from s < 7Nτ |Vobs|3 and dmaxNτ <
s
4 , respectively. Choosing

ε < ρmin, we then can derive the sufficient conditions to ensure that P(E) ≤ η as

n2 ≥
64λ2κ2

cε2

(9

2

)2L−2

log
17l2maxs

L−1|Vobs|3

η
, (H.55)

n2

n1
≥ 128λκ

3ε

(9

2

)L−1

log
34l2maxs

L−1|Vobs|3

η
. (H.56)

In Theorem 1, we choose ε = ρmin

2 .

Then the following conditions

n2 ≥
64λ2κ2

cε2

(9

2

)2L−2

log
17l2maxs

L−1|Vobs|3

η
, (H.57)

n1 = O
( √n2

log n2

)
. (H.58)

are sufficient to guarantee that P(E) ≤ η.

We are going to prove that there exists C ′ > 0, such that

C ′
√
n2

log n2
≤ n2

128λκ
3ε ( 9

2 )L−1 log
34l2maxs

L−1|Vobs|3
η

, (H.59)
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which is equivalent to

C ′
128λκ

3ε

(9

2

)L−1

log
34l2maxs

L−1|Vobs|3

η
≤
√
n2 log n2. (H.60)

Since n2 is lower bounded as in (H.57), it is sufficient to show that there exists C ′ > 0, such that

(C ′)2

(
128λκ

3ε

(9

2

)L−1

log
34l2maxs

L−1|Vobs|3

η

)2

≤ 64λ2κ2

cε2

(9

2

)2L−2

log
17l2maxs

L−1|Vobs|3

η
log

[
64λ2κ2

cε2

(9

2

)2L−2

log
17l2maxs

L−1|Vobs|3

η

]
,

which is equivalent to

(C ′)2 ≤ 9

256c

log
17l2maxs

L−1|Vobs|3
η

log
34l2maxs

L−1|Vobs|3
η

(
log
(

64λ2κ2

cε2 ( 9
2 )2L−2

)
+ log log

17l2maxs
L−1|Vobs|3
η

)2

log
34l2maxs

L−1|Vobs|3
η

. (H.61)

We have

log
17l2maxs

L−1|Vobs|3

η
/ log

34l2maxs
L−1|Vobs|3

η
>

1

2
and (H.62)(

log
(

64λ2κ2

cε2 ( 9
2 )2L−2

)
+ log log

17l2maxs
L−1|Vobs|3
η

)2

log
34l2maxs

L−1|Vobs|3
η

>

(
log
(

64λ2κ2

cε2 ( 9
2 )2L−2

))2

log
34l2maxs

L−1|Vobs|3
η

. (H.63)

Since

lim
L→∞

(
log
(

64λ2κ2

cε2 ( 9
2 )2L−2

))2

log
34l2maxs

L−1|Vobs|3
η

= +∞, (H.64)

we can see that there exists C ′ > 0 that satisfies inequality (H.59).

I Proofs of results in Section 3.3

Theorem 7. If Assumptions 1 to 5 hold and all the nodes have exactly two children, RNJ constructs
the correct latent tree with probability at least 1− η if

n2 >
16λ2κ2

cρ2
min

log
(2|Vobs|2l2max

η

)
(I.1)

n2

n1
>

64λκ

3ρmin
log
(4|Vobs|2l2max

η

)
(I.2)

where

λ =
2l2maxe

ρmax/lmax

δ
1/lmax

min

and κ = max{σ2
max, ρmin}, (I.3)

and c is an absolute constant.

Proof of Theorem 7. It is easy to see by substituting the constants λ and κ into (I.1) and (I.2) that
Theorem 7 implies Theorem 2, so we provide the proof of Theorem 7 here.

With the sufficient condition in Proposition 5, we can bound the probability of error event by the
union bound as follows

P(E) ≤ P
(

max
xi,xj∈Vobs

∣∣d̂(xi, xj)− d(xi, xj)
∣∣ > ρmin

2

)
(I.4)

≤ |Vobs|2P
(∣∣d̂(xi, xj)− d(xi, xj)

∣∣ > ρmin

2

)
. (I.5)
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We bound two terms in the tail probability separately as

2l2maxe
− 3n2

64λκn1
ρmin <

η

2|Vobs|2
(I.6)

l2maxe
−c n2

16λ2κ2
ρ2min <

η

2|Vobs|2
. (I.7)

Then we have

n2 >
16λ2κ2

cρ2
min

log
(2|Vobs|2l2max

η

)
, (I.8)

n2

n1
>

64λκ

3ρmin
log
(4|Vobs|2l2max

η

)
. (I.9)

The proof that n1 = O(
√
n2/ log n2) can be derived by following the similar procedures in the proof

of Theorem 1.

Proposition 12. If Assumption 1 to 5 hold and the truncated inner product is adopted to estimate the
information distances,

P
(
‖R̂−R‖2 > t

)
≤ |Vobs|2f

(
eρmin

t

|Vobs|

)
, (I.10)

where the function f is defined as

f(x) , 2l2maxe
− 3n2

32λκn1
x + l2maxe

−c n2
4λ2κ2

x2

= ae−wx + be−ux
2

, (I.11)

with λ = 2l2maxe
ρmax/lmax/δ

1/lmax

min , w = 3n2

32λκn1
, u = c n2

4λ2κ2 , a = 2l2max and b = l2max.

Proof of Proposition 12. Noting that Rij = exp
(
− d(xi, xj)

)
, we have

P
(
|R̂ij −Rij | > t

)
= P

(∣∣∣ exp
(
− d̂(xi, xj)

)
− exp

(
− d(xi, xj)

)∣∣∣ > t

)
(I.12)

(a)

≤ P
(∣∣d̂(xi, xj)− d(xi, xj)

∣∣ > eρmint
)

(I.13)

< f(eρmint), (I.14)

where inequality (a) is derived from Taylor’s Theorem.

Since

‖R̂−R‖2 ≤ |Vobs|max
i,j
|R̂ij −Rij |, (I.15)

we have

P
(
‖R̂−R‖2 > t

)
≤ P

(
max
i,j
|R̂ij −Rij | >

t

|Vobs|

)
≤ |Vobs|2f

(
eρmin

t

|Vobs|

)
(I.16)

as desired.

Theorem 8. If Assumptions 1 to 5 hold and all the nodes have exactly two children, RSNJ constructs
the correct latent tree with probability at least 1− η if

n2 ≥
16λ2κ2|Vobs|2

ce2ρming(|Vobs|, ρmin, ρmax)2
log

2|Vobs|2l2max

η
(I.17)

n2

n1
≥ 64λκ|Vobs|

3eρming(|Vobs|, ρmin, ρmax)
log

4|Vobs|2l2max

η
(I.18)

where

g(x, ρmin, ρmax) =

{
1
2 (2e−ρmax)log2(x/2)e−ρmax(1− e−2ρmin), e−2ρmax ≤ 0.5
e−3ρmax(1− e−2ρmin), e−2ρmax > 0.5

(I.19)

λ =
2l2maxe

ρmax/lmax

δ
1/lmax

min

κ = max{σ2
max, ρmin}, (I.20)

and c is an absolute constant.
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Proof of Theorem 8. It is easy to see by substituting the constants λ and κ into (I.17) and (I.18) that
Theorem 8 implies Theorem 3, so we provide the proof of Theorem 8 here.

Proposition 6 shows that the probability of learning the wrong tree P(E) could be bounded as

P(E) ≤ P
(
‖R̂−R‖2 > g(|Vobs|, ρmin, ρmax)

)
≤ |Vobs|2f

(
eρmin

g(|Vobs|, ρmin, ρmax)

|Vobs|

)
. (I.21)

Substituting the expression of f and bounding the right-hand-side of inequality (I.21) by η, we have

n2 ≥
16λ2κ2|Vobs|2

ce2ρming(|Vobs|, ρmin, ρmax)2
log

2|Vobs|2l2max

η
and (I.22)

n2

n1
≥ 64λκ|Vobs|

3eρming(|Vobs|, ρmin, ρmax)
log

4|Vobs|2l2max

η
. (I.23)

The proof that n1 = O(
√
n2/ log n2) can be derived by following the similar procedures in the proof

of Theorem 1.

J Proofs of results in Section 3.4

Lemma 13. The MST of a weighted graph T has the following properties:

(1) For any cut C of the graph, if the weight of an edge e in the cut-set of C is strictly smaller
than the weights of all other edges of the cut-set of C, then this edge belongs to all MSTs of
the graph.

(2) If T′ is a tree of MST edges, then we can contract T′ into a single vertex while maintaining
the invariant that the MST of the contracted graph plus T′ gives the MST for the graph
before contraction [25].

Proof of Proposition 7. We prove this argument by induction. Choosing any node as the root node,
we first prove that the edges which are related to the observed nodes with the largest depth are
identified or contracted correctly.

Since we consider the edges which involve at least one observed node, we only need to discuss the
edges formed by two observed nodes and one observed node and one hidden node. We first consider
the identification of the edges between two observed nodes.

Figure 9: Two kinds of edges related at least one observed node.

To correctly identify the edge (xk, xj) in Fig. 9, we consider the cut of the graph which splits the
nodes into {xj} and all the other nodes. Lemma 13 says that the condition that

d̂(xk, xj) < d̂(xl, xj) ∀xl ∈ Vobs, xl 6= xk, xj (J.1)

is sufficient to guarantee that this edge is identified correctly. This condition is equivalent to

∆kj < ∆lj + d(xl, xk) ∀xl ∈ Vobs, xl 6= xk, xj , (J.2)

which is guaranteed by choosing ∆MST = dct(xk;T,Vobs).
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Furthermore, we need to guarantee that xj is not connected to other nodes except xk. We consider
the cut of the graph which split the nodes into {xj , xk} and all the other nodes. Lemma 13 says that
the condition that

d̂(xl, xk) < d̂(xl, xj) ∀xl ∈ Vobs, xl 6= xk, xj (J.3)

is sufficient to guarantee xj is not connected to other nodes. This condition is equivalent to

∆lk < ∆lj + d(xk, xj) ∀xl ∈ Vobs, xl 6= xk, xj , (J.4)

which is guaranteed by choosing ∆MST = dct(xk;T,Vobs).

A similar proof can be used to guarantee (xi, xk) can be identified correctly. Then we can contract
xi, xj to xk to form a super node in the subsequent edges identification for Lemma 13.

Now we discuss the edges involving one observed node and one hidden node. There are two cases:
(i) The hidden node xk′ should be contracted to either xi or xj . (ii) The hidden node xk′ should be
contracted to xl ∈ Vobs, xl 6= xi, xj .

We first consider the case (i). Without loss of generality, we assume that xk′ should be contracted to
xj . Contracting xk′ to xj is equivalent to that xi is not connected to other nodes except xj . Lemma
13 shows that

d̂(xi, xj) < d̂(xi, xl) d̂(xj , xl) < d̂(xi, xl) ∀xl ∈ Vobs, xl 6= xi, xj (J.5)

is sufficient to achieve that xi is not connected to other nodes except xj . This condition is equivalent
to

∆ij + d(xk′ , xj) < ∆lj + d(xk′ , xl) and ∆jl + d(xk′ , xj) < ∆il + d(xk′ , xi)

∀xl ∈ Vobs, xl 6= xk, xj , (J.6)

which is guaranteed by choosing ∆MST = dct(xk′ ;T,Vobs). Then we can contract xi to xj to form
a super node in the subsequent edges identification for Lemma 13.

Then we consider the case (ii). Here we need to prove that xk′ will not be contracted to xi or xj .
Without loss of generality, we assume that xk′ is contracted to xl, which guaranteed by that there is
no edge between xi and xj . Lemma 13 shows that

d̂(xi, xl) < d̂(xi, xj) d̂(xj , xl) < d̂(xi, xj) (J.7)

is sufficient to guarantee that there is no edge between xi and xj . This condition is equivalent to

∆il + d(xk′ , xl) < ∆ij + d(xk′ , xj) ∆jl + d(xk′ , xl) < ∆ij + d(xk′ , xi), (J.8)

which is guaranteed by choosing ∆MST = dct(xk′ ;T,Vobs).

Assume that all the edges related to the nodes with depths larger than l are identified or contracted
correctly. We now consider the edges related to the nodes with depths l. For the edges between
two observed nodes and edges of case (i) and (ii), similar procedures can be adopted to prove the
statements. Here we discuss the case where xl should contract the hidden nodes which are its
descendants. Contracting xk′ to xl is equivalent to that there are edges between (xl, xi) and (xl, xj),
and there is no other edges related to xi and xj . Recall that condition (J.7) is satisfied by the induction
hypothesis. Lemma 13 shows that

d̂(xi, xl) < d̂(xi, xk) d̂(xk, xl) < d̂(xk, xi) ∀xk ∈ Vobs, xk 6= xi, xj , xl (J.9)

d̂(xj , xl) < d̂(xj , xk) d̂(xk, xl) < d̂(xk, xj) ∀xk ∈ Vobs, xk 6= xi, xj , xl (J.10)

is sufficient to guarantee that xk′ is contracted to xl. This condition is equivalent to

∆il < ∆ik + d(xk, xl) ∆kl < ∆ki + d(xi, xl) ∀xk ∈ Vobs, xk 6= xi, xj , xl (J.11)
∆jl < ∆jk + d(xk, xl) ∆kl < ∆kj + d(xj , xl) ∀xk ∈ Vobs, xk 6= xi, xj , xl (J.12)

which is guaranteed by choosing ∆MST = dct(xl;T,Vobs). Then we can contract xi and xj to xl to
form a super node in the subsequent edges identification for Lemma 13.

Thus, the results are proved by induction.
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Theorem 9. If Assumptions 1–4, RCLRG constructs the correct latent tree with probability at least
1− η if

n2 ≥ max

{
4

ε2

(9

2

)2LC−2

,
1

∆2
MST

}
16λ2κ2

c
log

17l2maxs
LC−1|Vobs|3 + l2max|Vobs|2

η
, (J.13)

n2

n1
≥ max

{
2

ε

(9

2

)LC−1

,
1

∆MST

}
64λκ

3
log

34l2maxs
LC−1|Vobs|3 + 2l2max|Vobs|2

η
, (J.14)

where

λ =
2l2maxe

ρmax/lmax

δ
1/lmax

min

κ = max{σ2
max, ρmin} s = d2

max + 2d3
max(1 + 2Nτ ) ε =

ρmin

2
,

(J.15)

c is an absolute constant, and LC is the number of iterations of RCLRG needed to construct the tree.

Proof of Theorem 9. It is easy to see by substituting the constants λ, κ, s and ε into (J.13) and (J.14)
that Theorem 9 implies Theorem 4, so we provide the proof of Theorem 9 here.

The RCLRG algorithm consists of two stages: Calculation of MST and implementation of RRG on
internal nodes. The probability of error of RCLRG could be decomposed as

P(E) = P
(
EMST ∪ (EcMST ∩ ERRG)

)
= P(EMST) + P(EcMST ∩ ERRG) ≤ P(EMST) + P(ERRG)

We define the correct event of calculation of the MST as

CMST =
⋂

xi,xj∈Vobs

{∣∣d̂(xi, xj)− d(xi, xj)
∣∣ < ∆MST

2

}
=

⋂
xi,xj∈Vobs

Cij (J.16)

Proposition 7 shows that

P(EMST) ≤ 1− P(CMST) = P
(
(

⋂
xi,xj∈Vobs

Cij)c
)

(J.17)

= P
( ⋃
xi,xj∈Vobs

Ccij
)
≤

∑
xi,xj∈Vobs

P(Ccij) ≤
(
|Vobs|

2

)
f
(∆MST

2

)
(J.18)

We define the event that RRG yields the correct subtree based on nbd[xi,T]

CRRG =
⋂

xi∈Int(MST(Vobs;D̂))

{Output of RRG is correct with input nbd[xi,T]} (J.19)

=
⋂

xi∈Int(MST(Vobs;D̂))

Ci (J.20)

Then we have

P(ERRG) = 1−P(CRRG)=P
(( ⋂

xi∈Int(MST(Vobs;D̂))

Ci
)c)

= P
( ⋃
xi∈Int(MST(Vobs;D̂))

Cci
)
. (J.21)

By defining LC = dDeg(MST(Vobs;D̂))
2 − 1e, we have

P(E) ≤ P(EMST) + P(ERRG) (J.22)

≤
(
|Vobs|

2

)
f
(∆MST

2

)
+
(
|Vobs| − 2

){[
4
(

1 +
|Vobs|2

2(s− 1)

)
+

3

2
(dmax − 1)

(
1 +

|Vobs|
2(s− 1)

)]

× h(LC−1)
(2ρmin − ε

4

)
+

[
3
(

1 +
|Vobs|2

4(s− 1)

)
+ 2(dmax − 1)

(
1 +

|Vobs|3

8(s− 1)

)]
h(LC−1)(

ε

4
)

}
(J.23)
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To derive the sufficient conditions of P(E) ≤ η, we consider the following conditions

P(EMST) ≤ (1− r)η and P(ERRG) ≤ rη for some r ∈ (0, 1) (J.24)

Following the same calculations with inequalities (13), we have

n2 ≥ max

{
64λ2κ2

cε2

(9

2

)2LC−2

log
17l2maxs

LC−1|Vobs|3

rη
,

16λ2κ2

c∆2
MST

log
l2max|Vobs|2

(1− r)η

}
(J.25)

n2

n1
≥ max

{
128λκ

3ε

(9

2

)LC−1

log
34l2maxs

LC−1|Vobs|3

rη
,

64λκ

3∆MST
log

2l2max|Vobs|2

(1− r)η

}
(J.26)

By choosing r = 17sLC−1|Vobs|3
17sLC−1|Vobs|3+|Vobs|2

, we have

n2 ≥ max

{
4

ε2

(9

2

)2LC−2

,
1

∆2
MST

}
16λ2κ2

c
log

17l2maxs
LC−1|Vobs|3 + l2max|Vobs|2

η
, (J.27)

n2

n1
≥ max

{
2

ε

(9

2

)LC−1

,
1

∆MST

}
64λκ

3
log

34l2maxs
LC−1|Vobs|3 + 2l2max|Vobs|2

η
(J.28)

Following a similar proof as that for RRG, we claim that

n2 ≥ max

{
4

ε2

(9

2

)2LC−2

,
1

∆2
MST

}
16λ2κ2

c
log

17l2maxs
LC−1|Vobs|3 + l2max|Vobs|2

η
, (J.29)

n1 = O
( √n2

log n2

)
(J.30)

are sufficient to guarantee P(E) ≤ η.

K Discussions and Proofs of results in Section 3.5

In this section, we provide more discussions of the results in Table 1. We also provide the proofs of
results listed in Table 1.

The sample complexities of RRG and RCLRG are achieved w.h.p., since the number of iterations
LR and LC depend on the quality of the estimates of the information distances. The parameter t for
RSNJ scales as O( 1

lmax
+ log |Vobs|). For the dependence on Diam(T), RRG and RSNJ have the

worst performance. This is because RRG constructs new hidden nodes and estimates the information
distances related to them in each iteration (or layer), which results in more severe error propagation
on larger and deeper graphs. In contrast, our impossibility result in Theorem 5 suggests that RNJ
has the optimal dependence on Diam(T). RCLRG also has the optimal dependence on the diameter
of graphs on HMM, which demonstrates that the Chow-Liu initialization procedure greatly reduces
the sample complexity from O

(
( 9

2 )Diam(T)
)

to O
(

log Diam(T)
)
. Since the dependence on ρmax

only relies on the parameters, the dependence of ρmax of all these algorithms remains the same
for graphical models with different underlying structures. RRG, RCLRG and RNJ have the same
dependence O(e2 ρmax

lmax ), while RSNJ has a worse dependence on ρmax.

K.1 Proofs of entries in Table 1

Double-binary tree For RRG, the number of iterations needed to construct the tree LR =
1
2 (Diam(T)− 1). Thus, the sample complexity of RRG is O

(
e2 ρmax

lmax ( 9
2 )Diam(T)

)
.

For RCLRG, as mentioned previously, the MST can be obtained by contracting the hidden nodes to
its closest observed node. For example, the MST of the double-binary tree with Diam(T) = 5 could
be derived by contracting hidden nodes as Fig. 10. Then LC = dDiam(T)+1

4 e − 1, and the number of

observed nodes is |Vobs| = 2
Diam(T)+1

2 . Thus, the sample complexity is O
(
e2 ρmax

lmax ( 9
2 )

Diam(T)
2

)
.
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Figure 10: The contraction of hidden nodes in double-binary trees.

For RSNJ, the number of observed nodes is |Vobs| = 2
Diam(T)+1

2 , so the sample complexity is
O
(
e2tρmaxDiam(T)

)
.

For RNJ, the number of observed nodes is |Vobs| = 2
Diam(T)+1

2 , so the sample complexity is
O
(
e2 ρmax

lmax Diam(T)
)
.

HMM For RRG, the number of iterations needed to construct the tree LR = dDiamT
2 − 1e. Thus,

the sample complexity of RRG is O
(
e2 ρmax

lmax ( 9
2 )Diam(T)

)
.

For RCLRG, MST could be derived as contracting hidden nodes as shown in Fig. 11. Then LC = 1

and |Vobs| = Diam(T) + 1. The sample complexity is thus O
(
e2 ρmax

lmax log Diam(T)
)
.

Figure 11: The contraction of hidden nodes in HMMs.

For RSNJ, the number of observed nodes is |Vobs| = Diam(T) + 1, so the sample complexity is
O
(
e2tρmax log Diam(T).

For RNJ, the number of observed nodes is |Vobs| = Diam(T) + 1, so the sample complexity is
O
(
e2 ρmax

lmax log Diam(T)
)
.

Full m-tree For RRG, the number of iterations needed to construct the tree LR = 1
2Diam(T).

Thus, the sample complexity of RRG is O
(
e2 ρmax

lmax ( 9
2 )Diam(T)

)
.

For RCLRG, the MST can be derived by contracting hidden nodes as shown in Fig. 12. Then LC = 2

and |Vobs| = mDiam(T)/2. Thus, its sample complexity is O
(
e2 ρmax

lmax Diam(T)
)
.

Figure 12: The contraction of hidden nodes in full m-trees.
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Double star For RRG, the number of iterations needed to construct the tree LR = 1. Thus, the
sample complexity of RRG is O(e2 ρmax

lmax ).

For RCLRG, the maximum number of iterations over each RRG step (over each internal node of the
constructed Chow-Liu tree) in RCLRG is. LC = 1 and |Vobs| = 2dmax, so the sample complexity of
RCLRG is O

(
e2 ρmax

lmax log dmax

)
.

L Additional numerical details and results

L.1 Standard deviations of results in Fig. 2

We first report the standard deviations of the results presented in Fig. 2 in the main paper. All results
are averaged over 100 independent runs.

Constant magnitude corruptions (Fig. 2(a))

Algorithm

σ/(σ/AVG)×100 # Samples
500 1000 1500 2000 5000 10000 20000

RRG 9.7/9.3 4.4/5.0 3.7/4.5 4.0/5.0 5.0/6.8 14.4/24.1 21.0/75.0
RSNJ 3.3/3.8 3.0/7.0 3.9/28.8 0.3/703.5 0.0/0.0 0.0/0.0 0.0/0.0

RCLRG 2.1/52.0 0.5/229.1 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0
RNJ 5.6/4.3 9.0/7.1 12.3/10.0 17.1/15.1 28.4/28.3 35.4/47.9 32.2/68.1
RG 9.2/9.5 8.8/8.8 8.3/8.3 7.8/7.8 5.7/6.2 4.1/4.9 1.9/2.3
SNJ 0.4/0.3 0.6/0.4 1.4/0.9 2.7/1.8 3.2/2.6 3.6/3.7 3.2/5.9

CLRG 3.0/2.2 3.5/2.6 3.4/2.5 4.0/3.0 11.2/19.9 4.7/22.4 2.1/43.5
NJ 1.8/1.3 2.2/1.6 2.2/1.5 3.1/2.3 6.0/4.8 11.5/9.8 17.9/16.35

Table 2: The standard deviations and standard deviations divided by the means of the Robinson-Foulds
distances for different algorithms

Uniform corruptions (Fig. 2(b))

Algorithm

σ/(σ/AVG)×100 # Samples
500 1000 1500 2000 5000 10000 20000

RRG 4.5/5.0 3.3/4.0 3.8/4.6 3.1/4.0 4.3/5.9 10.9/17.4 23.0/103.2
RSNJ 3.3/4.0 2.9/6.7 5.0/30.1 0.7/230.3 0.0/0.0 0.0/0.0 0.0/0.0

RCLRG 4.6/9.7 2.5/35.8 0.6/197.1 0.1/1971.0 0.0/0.0 0.0/0.0 0.0/0.0
RNJ 9.2/6.9 11.5/9.4 16.4/14.1 18.7/16.6 31.1/35.0 31.4/50.9 33.7/74.5
RG 9.2/9.0 9.8/9.6 8.0/7.8 8.1/8.0 9.0/9.0 7.8/7.4 5.9/6.1
SNJ 0.0/0.0 0.0/0.0 0.0/0.0 0.2/0.1 0.5/0.3 4.4/3.0 3.5/3.0

CLRG 3.3/2.4 3.4/2.5 3.3/2.4 3.5/2.5 3.0/2.2 6.0/4.5 8.0/17.5
NJ 1.7/1.2 1.9/1.3 2.0/1.4 2.0/1.4 2.1/1.5 3.9/2.8 6.1/4.8

Table 3: The standard deviations and standard deviations divided by the means of the Robinson-Foulds
distances for different algorithms

HMM corruptions (Fig. 2(c))

Algorithm

σ/(σ/AVG)×100 # Samples
500 1000 1500 2000 5000 10000 20000

RRG 4.0/4.5 5.3/5.8 3.8/4.5 3.3/4.0 3.4/4.6 7.5/10.9 21.1/49.6
RSNJ 5.9/6.0 3.5/6.4 3.4/9.7 3.6/35.2 0.0/0.0 0.0/0.0 0.0/0.0

RCLRG 13.1/17.4 4.9/14.1 3.4/29.1 1.6/54.6 0.0/0.0 0.0/0.0 0.0/0.0
RNJ 6.7/4.5 11.3/8.9 12.7/10.5 19.2/16.7 29.3/30.7 38.0/48.7 32.3/65.4
RG 9.3/9.1 8.4/8.3 8.7/8.5 8.6/8.3 9.0/8.8 8.6/8.2 5.5/5.7
SNJ 0.3/0.2 0.4/0.3 0.4/0.3 0.5/0.3 2.0/1.2 4.8/3.4 3.9/3.2

CLRG 3.4/2.5 3.3/2.4 3.2/2.3 3.1/2.3 3.5/2.6 15.0/12.7 8.2/13.7
NJ 1.8/1.3 1.6/1.2 2.0/1.4 1.9/1.3 2.8/2.0 4.5/3.3 5.7/4.4

Table 4: The standard deviations and standard deviations divided by the means of the Robinson-Foulds
distances for different algorithms

We note that most of the standard deviations (relative to the means) are reasonably small. However,
some entries in Tables 2–4 appear to be rather large, for example 0.5/229.1. The reason is that the
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mean value of the errors are already quite small in these cases, so any deviation from the small means
result in large standard deviations. This, however, seems unavoidable.

L.2 More simulation results complementing those in Section 3.6

In the following more extensive simulations, we consider eight corruption patterns:

• Uniform corruptions: Uniform corruptions are independent additive noises in [−2A, 2A]
and distributed randomly in the data matrix Xn

1 .

• Constant magnitude corruptions: Constant magnitude corruptions are independent additive
noises but taking values in {−A,+A} with probability 0.5 and distributed randomly in Xn

1 .

• Gaussian corruptions: Gaussian corruptions are independent additive Gaussian noises
N (0, A2) and distributed randomly in Xn

1 .

• HMM corruptions: HMM corruptions are generated by a HMM which shares the same
structure as the original HMM but has different parameters. They replace the entries in Xn

1
with the samples generated by the variables in the same positions.

• Double binary corruptions: Double binary corruptions are generated by a double binary
tree-structured graphical model which shares the same structure as the original double binary
graphical model but has different parameters. They replace the entries in Xn

1 with the
samples generated by the variables in the same positions.

• Gaussian outliers: Gaussian outliers are outliers that are generated by independent Gaussian
random variables distributed as N (0, A2).

• HMM outliers: HMM outliers are outliers that are generated by a HMM that shares the
same structure as the original HMM but has different parameters.

• Double binary outliers: Double binary outliers are outliers that are generated by a double
binary tree-structured graphical model which shares the same structure as the original HMM
but has different parameters.

In all our experiments, the parameter A is set to 60 and the number of corruptions n1 is set to 100.

Samples are generated from two graphical models: HMM (Fig. 5(b)) and double binary tree (Fig. 5(a)).
The dimensions of the random vectors at each node are lmax = 3. The Robinson-Foulds distance [21]
between the nominal tree and the estimate and the error rate (zero-one loss) are adopted to measure
the performance of learning algorithms. These are computed based on 100 independent trials. We use
the code for RG and CLRG provided by Choi et al. [4]. All our experiments are run on an Intel(R)
Xeon(R) CPU E5-2697 v4 @ 2.30 GHz.

L.2.1 HMM

Just as in the experiments in Choi et al. [4], the diameter of the HMM (Fig. 5(b)) is chosen to
be Diam(T) = 80. The matrices (A,Σr,Σn) are chosen so that the condition in Proposition 14
are satisfied with α = 1, and we set A commutable with Σr. The information distances between
neighboring nodes are chosen to be the same value 0.24, which implies that ρmin = 0.24 and
ρmax = 0.24 ·Diam(T) = 19.2.
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Figure 13: Performances of robustified and original learning algorithms with constant magnitude
corruptions
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Figure 14: Performances of robustified and original learning algorithms with uniform corruptions
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Figure 15: Performances of robustified and original learning algorithms with HMM corruptions
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Figure 16: Performances of robustified and original learning algorithms with Gaussian corruptions
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Figure 17: Performances of robustified and original learning algorithms with double binary corrup-
tions
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Figure 18: Performances of robustified and original learning algorithms with Gaussian outliers
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Figure 19: Performances of robustified and original learning algorithms with HMM outliers
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Figure 20: Performances of robustified and original learning algorithms with double binary outliers

These figures show that for the HMM, RCLRG performs best among all these algorithms. The
reason is that the Chow-Liu initialization greatly reduces the effective depth of the original tree,
which mitigates the error propagation. These simulation results also corroborate the effectiveness
of the truncated inner product in combating any form of corruptions. We observe that the errors of
robustified algorithms are significantly less that those of original algorithms.

Table 1 shows that for the HMM, RCLRG and RNJ both have optimal dependence on the diameter of
the tree. In fact, by changing the parameters ρmin and ρmax, we find that RNJ can sometimes perform
better than RCLRG when ρmin and ρmax are both very small. In the experiments shown above, the
parameters favor RCLRG.

Finally, it is also instructive to observe the effect of the different corruption patterns. By comparing
the simulation results of HMM (resp. Gaussian and double binary) corruptions and HMM (resp.
Gaussian and double binary) outliers, we can see that the algorithms perform worse in the presence
of HMM (resp. Gaussian and double binary) corruptions. Since the truncated inner product truncates
the samples with large absolute values, if corruptions appear in the same positions for all the samples,
i.e., they appear as outliers, it is easier for the truncated inner product to identify these outliers and
truncate them, resulting in higher quality estimates.

L.2.2 Double binary tree

The diameter of the double binary tree (Fig. 5(a)) is Diam(T) = 11. The matrices (A,Σr,Σn) are
chosen so that the condition in Proposition 14 are satisfied with α = 1, and we set A commutable
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with Σr. The information distance between neighboring nodes is 1, which implies that ρmin = 1 and
ρmax = Diam(T) = 11.
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(b) Structure recovery error rate

Figure 21: Performances of robustified and original learning algorithms with constant magnitude
corruptions
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(b) Structure recovery error rate

Figure 22: Performances of robustified and original learning algorithms with uniform corruptions
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(b) Structure recovery error rate

Figure 23: Performances of robustified and original learning algorithms with Gaussian corruptions
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(b) Structure recovery error rate

Figure 24: Performances of robustified and original learning algorithms with HMM corruptions
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(b) Structure recovery error rate

Figure 25: Performances of robustified and original learning algorithms with double binary corrup-
tions
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(b) Structure recovery error rate

Figure 26: Performances of robustified and original learning algorithms with Gaussian outliers
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(b) Structure recovery error rate

Figure 27: Performances of robustified and original learning algorithms with HMM outliers
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(b) Structure recovery error rate

Figure 28: Performances of robustified and original learning algorithms with double binary outliers

These figures reinforce that the robustification procedure is highly effective in combating the corrup-
tions. Furtheremore, we observe that RNJ performs the best among all these algorithms for the double
binary tree. However, the simulation results in Jaffe et al. [6] shows that SNJ performs better than NJ.
This does not contradict our observations here. The reason lies on the choice of the parameters of
the model ρmin and ρmax. In the simulations of [6], the parameter δ (defined in therein) is set to 0.9,
but in our simulation, the equivalent parameter e−2ρmax/Diam(T) is 0.1. The exponential dependence
on ρmax of RSNJ listed in Table 1 explains the difference between simulation results in [6] and our
simulation results.

M Proofs of results in Section 4

To derive the impossibility results, we will apply Fano’s inequality on two special families of
graphical models, each contained in T (|Vobs|, ρmax, lmax). Each graphical model in the families is
parameterized by a quartet (A,Σr,Σn, α). This quartet defines the Gaussian graphical model as
follows. We choose a node in the tree as the root node xr, and define the parent node and set of
children nodes (in the rooted tree) of any node xi as pa(i) and C(xi) respectively. The depth of a
node xi (with respect to the root node xr) is dT(xi, xr). We specify the model in which

xi = Axpa(i) + ni for all xi ∈ V (M.1)

where A ∈ Rlmax×lmax is non-singular, ni ∼ N (0, αdT(xi,xr)−1Σn) and ni’s are mutually indepen-
dent. Since the root node has no parent, it is natural to set xpa(r) = 0 and nr ∼ N (0,Σr). It is easy
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to verify that the model specified by (M.1) and this initial condition is an undirected GGM. Then the
covariance matrix of the random vector xi is αdT(xi,xr)Σr.

Proposition 14. If ni’s for the variables at depth l are distributed as N (0, αl−1Σn), and

AΣrA
> + Σn = αΣr (M.2)

where α > 0 is a constant, then the covariance matrix of the variable at depth l is αlΣr.

We term (M.2) as the (A,Σr,Σn)-homogenous condition, which guarantees that covariance matrices
of the random vectors in the tree are same up to a scale factor.

Proof of Proposition 14. The statement in Proposition 14 is equivalent to

AlΣr(A
l)> +

l∑
i=1

αi−1Al−iΣn(Al−i)> = αlΣr. (M.3)

We prove (M.3) by induction.

When l = 1, the homogenous condition guarantees that AΣrA
> + Σn = αΣr.

If (M.3) holds for l = 1, . . . , n, then for l = n+ 1

An+1Σr(A
n+1)> +

n+1∑
i=1

αi−1An+1−iΣn(An+1−i)>

= A(AnΣr(A
n)> +

n+1∑
i=1

αi−1An−iΣn(An−i)>)A> (M.4)

= A(αnΣr + αnA−1ΣnA−>)A> (M.5)

= αn(AΣrA
> + Σn) (M.6)

= αn+1Σr (M.7)

as desired.

Proposition 15. The undirected graphical model specified by (M.1) and the initial condition xpa(r) =
0, nr ∼ N (0,Σr) is GGM.

Proof of Proposition 15. To prove that the specified model is a GGM, we need to prove that the joint
distribution of all variables is Gaussian and that the conditional independence relationship induced by
the edges is achieved.

According to (M.1) and the initial condition, it is easy to see that any linear combination of variables
is the linear combination of independent Gaussian variables, which is Gaussian. Thus, the joint
distribution of all variables is indeed Gaussian.

To show that the conditional independence is guaranteed, we show that

A ⊥⊥ B | S for any S separates A and B. (M.8)

where S, A and B are all sets of nodes, and S separates A and B means that any path connected
nodes in A and B goes through a node in S.

Without loss of generality, we consider the case where S, A and B consist of a single node for
conciseness of the proof. The case where these sets consist of multiple nodes can be easily proved by
generalizing the proof we show here.
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Figure 29: Illustration of the relationship among xn, xm and xs.

We first consider the case where xn and xm belong to different branches, as shown in Fig. 29, and
the depths of xn and xm are n and m, respectively. The separator node xs can be anywhere along the
path connecting xn and xm. Without loss of generality, we assume it sits in the same branch as xn,
and its depth is s, where s < n. Then we have

E[xnx>n ] = AnΣr(A
n)> +

n∑
i=1

An−iΣi(A
n−i)> (M.9)

E[xmx>m] = AmΣr(A
m)> +

m∑
i=1

Am−iΣ′i(A
m−i)> (M.10)

E[xtx
>
n ] = AtΣr(A

n)> +

t∑
i=1

At−iΣi(A
n−i)>, (M.11)

where Σi and Σ′i are the covariance matrices of the independent noises in each branch.

Then we calculate the distribution of conditional distribution[
xn
xm

]
| xt ∼ N (µ̃, Σ̃), (M.12)

where

Σ̃ =

[
Σ̃11 Σ̃12

Σ̃21 Σ̃22

]
. (M.13)

We have

Σ̃12 = AnΣr(A
m)> −

(
AnΣr(A

t)> +

t∑
i=1

An−iΣiA
(t−i)>

)
×
(
AtΣr(A

t)> +

t∑
i=1

At−iΣiA
(t−i)>

)−1

AtΣr(A
m)> = 0. (M.14)

Thus, the conditional independence of xn and xm given xs is proved.

When xn and xm are on the same branch, a similar calculation can be performed to prove the
conditional independence property.

Proposition 16. For a tree graph T = (V, E) where V = {x1, x2, . . . , xp} and any symmetric matrix
A ∈ Rd×d whose absolute values of all the eigenvalues are less than 1, the determinant of the matrix
D̄(T,A), which is defined below, is

[
det(I−A2)

]p−1

D̄(T,A) =


AdT(x1,x1) AdT(x1,x2) · · · AdT(x1,xp)

AdT(x2,x1) AdT(x2,x2) · · · AdT(x2,xp)

...
...

. . .
...

AdT(xp,x1) AdT(xp,x2) · · · AdT(xp,xp)

 , (M.15)
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Proof of Proposition 16. Since the underlying structure is a tree, we can always find a leaf and its
neighbor. Without loss of generality, we assume xp is a leaf and xp−1 is xp’s neighbor, otherwise we
can exchange the rows and columns of D̄(T,A) to satisfy this assumption. Then we have

dT(xp−1, xp) = 1 and dT(xp, xi) = dT(xp−1, xi) + 1 for all i ∈ [p− 2]. (M.16)

Thus, we have

D̄(T,A) =


A0 AdT(x1,x2) · · · AdT(x1,xp−1) AdT(x1,xp−1)+1

AdT(x2,x1) A0 · · · AdT(x2,xp−1) AdT(x2,xp−1)+1

...
...

. . .
...

...
AdT(xp−1,x1) AdT(xp−1,x2) · · · A0 A1

AdT(xp−1,x1)+1 AdT(xp−1,x2)+1 · · · A1 A0

 .
(M.17)

Subtracting A times the penultimate row of D̄(T,A) from the last row of D̄(T,A), we have
A0 AdT(x1,x2) · · · AdT(x1,xp−1) AdT(x1,xp−1)+1

AdT(x2,x1) A0 · · · AdT(x2,xp−1) AdT(x2,xp−1)+1

...
...

. . .
...

...
AdT(xp−1,x1) AdT(xp−1,x2) · · · A0 A1

0 0 · · · 0 A0 −A2

 . (M.18)

Applying the similar column transformation, we have
A0 AdT(x1,x2) · · · AdT(x1,xp−1) 0

AdT(x2,x1) A0 · · · AdT(x2,xp−1) 0
...

...
. . .

...
...

AdT(xp−1,x1) AdT(xp−1,x2) · · · A0 0
0 0 · · · 0 A0 −A2

 . (M.19)

By repeating these row and column transformations, we will acquire

diag(I, I−A2, . . . , I−A2), (M.20)

which has the same determinant as D̄(T,A). Thus, det(D̄(T,A)) =
[

det(I−A2)
]p−1

.

The proof of Theorem 5 follows from the following non-asymptotic result.
Theorem 10. Consider the class of graphs T (|Vobs|, ρmax, lmax), where |Vobs| ≥ 3. If the number
of i.i.d. samples n is upper bounded as follows,

n < max

{
2(1− δ)

(
log 31/3blog3(|Vobs|)c − 1

)
− 2
|Vobs|

−lmax log
(
1− e−

ρmax
blog3(|Vobs|)clmax

) ,
(1− δ)/5− 2

|Vobs|

−lmax log
(
1− e−

2ρmax
3lmax

)} (M.21)

then for any graph decoder φ : Rn|Vobs|lmax → T (|Vobs|, ρmax, lmax)

max
θ(T)∈T (|Vobs|,ρmax,lmax)

Pθ(T)(φ(Xn
1 ) 6= T) ≥ δ. (M.22)

Proof of Theorem 5. To prove Theorem 5, we simply implement the Taylor expansion log(1 + x) =∑∞
k=1(−1)k+1 xk

k on (M.21) in Theorem 10 taking ρmax →∞ and |Vobs| → ∞.

It remains to prove Theorem 10.

Proof of Theorem 10. To prove this non-asymptotic converse bound, we consider M models in
T (|Vobs|, ρmax, lmax), whose parameters are enumerated as {θ(1), θ(2), . . . , θ(M)}. We choose a
model K = k uniformly in {1, . . . ,M} and generate n i.i.d. samples Xn

1 from Pθ(k) . A latent tree
learning algorithm is a decoder φ : Rn|Vobs|lmax → {1, . . . ,M}.
Two families are built to derive the converse bound. We separately describe the families of M
graphical models we consider here.

41



Graphical model family A We specify the structure of trees as full-m trees, except the top layer,
as shown in Fig. 30. All the observed nodes are leaves. The parameters of each tree are set to satisfy
the conditions in Proposition 14. Additionally, we set α = 1 in the homogeneous condition (M.2)
and set A to be a symmetric matrix that commutes with Σr. We set m = 3 and L = blog3(|Vobs|)c,
then the number of residual nodes is r = |Vobs| − 3L. All these residual nodes are connected to one
of parents of the observed nodes.

(a) The full 3-tree. All the observed nodes are leaves, and residual nodes are connected to one of parents
of the observed nodes.

(b) The full tree with depth k, where all the internal nodes have three children except the root node.

Figure 30: The family A of graphical models considered in the impossibility result.

To derive the converse result, we use the Fano’s method. Namely, Fano’s method says that if the
sample size

n <
(1− δ) logM

I(X1;K)
, (M.23)

then for any decoder

max
k=1,...,M

Pθ(k)
[
φ(Xn

1 ) 6= k
]
≥ δ − 1

logM
. (M.24)

We first evaluate the cardinality of this family of graphical models. We first count the number of
graphical models with depth 1 ≤ k ≤ L in Fig. 30. For a specific order of labels (e.g., 1, 2, . . . ,mL),
exchanging the labels in a family does not change the topology of the tree. For instance, exchanging
the position of node 1 and node m, we obtain an identical tree. By changing the orders in the last
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layer, it is obvious that there are (m!)m
L−1

different orders representing the same structure. For the
penultimate layer, there are (m!)m

L−2

different orders represent an identical structure. Thus, for a
specific graphical model with depth k, there are

(mL−k+1)!

L−k+1∏
i=L−1

(m!)m
i

= (mL−k+1)!(m!)
mL−mL−k+1

m−1 (M.25)

graphical models with the same distribution.

Then the number of different structures of graphical models with depth k can be calculated as

(mL)!

(mL−k+1)!(m!)
mL−mL−k+1

m−1

. (M.26)

The total number of different graphical models in the family we consider is

M =

L∑
k=1

(mL)!

(mL−k+1)!(m!)
mL−mL−k+1

m−1

. (M.27)

Using Stirling’s formula, we have the following simplification of M :

M ≥
L∑
k=1

√
2π(mL)m

L+1/2e−m
L

e(mL−k+1)mL−k+1+1/2e−mL−k+1

1

(e−(m−1)mm+1/2)(mL−mL−k+1)/(m−1)
(M.28)

=

L∑
k=1

√
2π

e
mLmL−(L−k+1)mL−k+1+(k−1)/2−(m+1/2)(mL−mL−k+1)/(m−1) (M.29)

=

√
2π

e
m(L−(m+1/2)/(m−1))mL

L∑
k=1

m−(L−k+1−(m+1/2)/(m−1))mL−k+1+(k−1)/2 (M.30)

>

√
2π

e
m(L−(m+1/2)/(m−1))mLm3m/(2m−2)+(L−1)/2 (M.31)

and

logM > log
(√2π

e

)
+mL

(
L−

m+ 1
2

m− 1

)
logm+

( 3m

2m− 2
+
L− 1

2

)
logm (M.32)

Thus,

logM

|Vobs|
>

1

|Vobs|
log
(√2π

e

)
+

mL

|Vobs|

(
L−

m+ 1
2

m− 1

)
logm+

1

|Vobs|

( 3m

2m− 2
+
L− 1

2

)
logm

(M.33)

>
logm

m

(
L−

m+ 1
2

m− 1

)
+

1

|Vobs|
log
(√2π

e

)
(M.34)

(a)
>

log 3

3
L− 1, (M.35)

where inequality (a) is derived by substituting m = 3.

Next we calculate an upper bound of I(X1;K). Since PTk = N (0,Σobs(Tk)), where Σobs is the
covariance matrix of observed variables, we have [26]

I(X1;K) ≤ ETk
[
D(PTk‖Q)

]
, (M.36)

for any distribution Q. By choosing Q = N (0, Ilmax|Vobs|×lmax|Vobs|), we have

D(PTk‖Q) =
1

2

{
log
(

det
(
Θobs(Tk)

))
+ trace

(
Σobs(Tk)

)
− lmax|Vobs|

}
(M.37)

=
1

2

{
− log

(
det
(
Σobs(Tk)

))
+ trace

(
Σobs(Tk)

)
− lmax|Vobs|

}
(M.38)
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Since we consider models that satisfy the conditions in Proposition 14, the covariance matrix of any
two variables is

E
[
xix
>
j

]
= ΣrA

dT(xi,xj). (M.39)
The covariance matrix Σ(Tk) for all the observed variables and latent variables Vobs ∪ Vhid is

ΣrA
dT(x1,x1) · · · ΣrA

dT(x1,x|Vobs|) ΣrA
dT(x1,y1) · · · ΣrA

dT(x1,y|Vhid|)

...
. . .

...
...

. . .
...

ΣrA
dT(x|Vobs|,x1) · · · ΣrA

dT(x|Vobs|,x|Vobs|) ΣrA
dT(x|Vobs|,y1) · · · ΣrA

dT(x|Vobs|,x|Vhid|)

ΣrA
dT(y1,x1) · · · ΣrA

dT(y1,x|Vobs|) ΣrA
dT(y1,y1) · · · ΣrA

dT(y1,y|Vhid|)

...
. . .

...
...

. . .
...

ΣrA
dT(y|Vhid|,x1) · · · ΣrA

dT(y|Vhid|,x|Vobs|) ΣrA
dT(y|Vhid|,y1) · · · ΣrA

dT(y|Vhid|,y|Vhid|)


=
(
I|V|×|V| ⊗Σr

)[ V B
B> H

]
(M.40)

=
(
I|V|×|V| ⊗Σr

)
D̄(Tk,A) (M.41)

where A ⊗ B is the Kronecker product of matrices A and B. Letting Σr = I, it is obvious that
D̄(T,A) is a positive definite matrix. Furthermore, H−B>V−1B is positive semi-definite matrix,
since it is the inverse of the principal minor of D̄−1. Thus we have

det
(
D̄(Tk,A)

)
= det(V) det

(
H−B>V−1B

)
(M.42)

(a)

≤ det(V) det
(
H
) (b)

= det(V)
[

det(I−A2)
]|Vhid|−1

, (M.43)
where inequality (a) is derived from Minkowski determinant theorem [27], and (b) comes from the
fact that all the latent variables themselves form a tree. Also, we have that

det
(
D̄(Tk,A)

)
=
[

det(I−A2)
]|Vhid|+|Vobs|−1

. (M.44)
Thus, we have

det(V) ≥
[

det(I−A2)
]|Vobs|, (M.45)

which implies that

log
(

det
(
Σobs(Tk)

))
≥ log

((
det(Σr)

)|Vobs|[det(I−A2)
]|Vobs|) (M.46)

= |Vobs| log
(

det(Σr) det(I−A2)
)
. (M.47)

The mutual information can thus be upper bounded as

I(X1;K) ≤ 1

2
|Vobs|(− log

(
det(I−A2)

)
+ trace(Σr)− log

(
det(Σr)

)
− lmax) (M.48)

Combining inequalities (M.28) and (M.48), we can deduce that the any decoder will construct the
wrong tree with probability at least δ if

n <
2(1− δ)

(
log 31/3L− 1

)
− log

(
det(I−A2)

)
+ trace(Σr)− log

(
det(Σr)

)
− lmax

(M.49)

By choosing Σr = I and letting the eigenvalues of A are all the same, we have

ρmax = −2L

2
log
(

det(A2)
)

= −2lmaxL log
(
λ(A)

)
(M.50)

and
trace(Σr)− log

(
det(Σr)

)
− lmax = 0. (M.51)

Furthermore, we have
log
(

det(I−A2)
)

= lmax log
(
1− λ(A)2

)
= lmax log

(
1− e−

ρmax
Llmax

)
. (M.52)

By choosing δ′ = δ + 1
log(M) , we have that the condition

n <
2(1− δ′)

(
log 31/3L− 1

)
− 2
|Vobs|

−lmax log
(
1− e−

ρmax
Llmax

) (M.53)

guarantees that
max

θ(T)∈T (|Vobs|,ρmax,lmax)
Pθ(T)(φ(Xn

1 ) 6= T) ≥ δ′ (M.54)
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Figure 31: The family B of graphical models considered in the impossibility result.

Graphical model family B We consider the family of graphical models with double-star substruc-
tures, as shown in Fig. 31. Then the number of graphical models M in this family is lower bounded
as

M >
1

2

(
|Vobs|
d|Vobs|/2e

)
>

√
2π|Vobs||Vobs|+1/2e−|Vobs|

2
(
enn+1/2e−n

)(
e(|Vobs| − n)|Vobs|−n+1/2e−(|Vobs|−n)

)
=

√
2π

2e2

|Vobs||Vobs|+1/2

nn+1/2(|Vobs| − n)|Vobs|−n+1/2
(M.55)

when n = d|Vobs|/2e. Since n ≥ |Vobs| − n, we further have

M >

√
2π

2e2

|Vobs||Vobs|+1/2

n|Vobs|+1
=

√
π

2e4|Vobs|

( |Vobs|
n

)|Vobs|+1

(M.56)

and

log(M)

|Vobs|
>
|Vobs|+ 1

|Vobs|
log
( |Vobs|
d|Vobs|/2e

)
+

1

|Vobs|
log
(√ π

2e4|Vobs|

)
(M.57)

>
|Vobs|+ 1

|Vobs|
log 2 +

1

|Vobs|
log
(√ π

2e4|Vobs|

)
>

1

10
(M.58)

By choosing Σr = I and letting all the eigenvalues of A to be the same, we have

ρmax = −3

2
log
(

det(A2)
)

= −3lmax log
(
λ(A)

)
(M.59)

and

trace(Σr)− log
(

det(Σr)
)
− lmax = 0. (M.60)

Furthermore, we have

log
(

det(I−A2)
)

= lmax log
(
1− λ(A)2

)
= lmax log

(
1− e−

2ρmax
3lmax

)
. (M.61)

By choosing δ′ = δ + 1
log(M) , we have that the condition

n <
(1− δ′)/5− 2

|Vobs|

−lmax log
(
1− e−

2ρmax
3lmax

) (M.62)

guarantees that

max
θ(T)∈T (|Vobs|,ρmax,lmax)

Pθ(T)(φ(Xn
1 ) 6= T) ≥ δ′ (M.63)

as desired.
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