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FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial
Expression Recognition with AdaptERs

Anonymous Authors

Abstract
Dynamic Facial Expression Recognition (DFER) is crucial for under-
standing human behavior. However, current methods exhibit lim-
ited performancemainly due to the scarcity of high-quality data, the
insufficient utilization of facial dynamics, and the ambiguity of ex-
pression semantics, etc. To this end, we propose a novel framework,
named Multi-modal Fine-grained CLIP for Dynamic Facial Expres-
sion Recognition with AdaptERs (FineCLIPER), incorporating the
following novel designs: 1) To better distinguish between similar
facial expressions, we extend the class labels to textual descriptions
from both positive and negative aspects, and obtain supervision
by calculating the cross-modal similarity based on the CLIP model;
2) Our FineCLIPER adopts a hierarchical manner to effectively
mine useful cues from DFE videos. Specifically, besides directly em-
bedding video frames as input (low semantic level), we propose to
extract the face segmentation masks and landmarks based on each
frame (middle semantic level) and utilize the Multi-modal Large Lan-
guage Model (MLLM) to further generate detailed descriptions of
facial changes across frames with designed prompts (high semantic
level). Additionally, we also adopt Parameter-Efficient Fine-Tuning
(PEFT) to enable efficient adaptation of large pre-trainedmodels (i.e.,
CLIP) for this task. Our FineCLIPER achieves SOTA performance
on the DFEW, FERV39k, and MAFW datasets in both supervised
and zero-shot settings with few tunable parameters. Analysis and
ablation studies further validate its effectiveness. Code and dataset
will be released upon the paper notification.

CCS Concepts
• Computing methodologies→ Computer vision; • Human-
centered computing → Human computer interaction (HCI).

Keywords
Dynamic Facial Expression Recognition, Multi-Modal, Model Adap-
tation, Parameter-Efficient Transfer Learning, Contrastive Learning

1 Introduction
Facial expressions are important signals to convey human emo-
tions, thus accurately recognizing them has significant meaning
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Our Multi-modal Data Expansion

...

Face Parsing

...

Landmarks

“The girl's eyes widen, 
eyebrows furrow, and her 
mouth turns downward. 
The gazebecomes more 
distant, and her breathing 
rate increases.”

Facial Movements DescriptionVideo Datasets

Name Samples

RAF-DB 29,672

AffectNet 420,000+

FERPlus 35,887

Name Samples

CREMA-D 7,442

RAVDESS 1,440

eNTERFACE05 1,287

Name Samples

DFEW 11,697

FERV39k 38,935

MAFW 9,172

Figure 1: Visualization of dataset example and quantity.

for various tasks, including interpersonal communication, human-
computer interaction (HCI) [16, 22, 36], mental health diagnos-
ing [2, 21, 47], driving safety monitoring [56, 62, 63], etc. Tradi-
tional Facial Expression Recognition (FER) resorts to static im-
ages. However, since dynamic emotional changes could not be
well-represented within a single image, research attention has been
shifted to Dynamic Facial Expression Recognition (DFER), which
distinguishes the temporally displayed facial expressions in videos.

The study of DFER algorithms starts from highly-controlled
environments [3, 37, 42], where faces are frontal and non-blurry [30,
59] as shown in the upper right of Fig. 1. However, such an ideal
assumption makes the obtained models vulnerable to real-world
situations. Therefore, researchers have turned to more open scenes
and constructed several in-the-wild DFER datasets, e.g., DFEW [18],
FERV39k [60], and MAFW [33], to facilitate the development of
correspondingmethods [27, 28, 35, 39, 57, 68].While category labels
are treated without semantic meanings (e.g., Happiness may only be
represented by a class id "0"), recent research on DFER [11, 26, 52,
70] has further delved into the exploration of vision-language multi-
modal learning beyond the traditional classification paradigm based
on CNNs [10, 20, 24, 50], RNNs [1, 61], and transformers [25, 69].

Although huge efforts have been spent, the performance of DFER
methods still suffers from noisy frames, small inter-class differences,
and ambiguity between expressions, making it inappropriate to
adopt video/action recognition techniques directly. Specifically, to
distinctly improve the performance of DEFR algorithms, we have to
face the following unique and tough challenges: 1) The ambiguity
of semantic labels for dynamic facial expressions, and 2) The subtle
and nuanced movements of local face parts (i.e., skeletons, muscles,
etc.). The first challenge originates in the difficulty of accurate
human labeling and complex expression ways adopted by different
persons, while the latter demands additional focus on fine-grained
details that happen in specific regions within a human face.

To tackle the above challenges, we propose a novel framework
called FineCLIPER, short for Multi-modal Fine-grained CLIP for

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Dynamic Facial Expression Recognition with AdaptERs. Specifi-
cally, we utilize the Contrastive Language-Image Pretraining (CLIP)
model [46], which is particularly suitable for providing a cross-
modal latent space. To avoid the huge cost of fine-tuning such large
pre-trained models, FineCLIPER adopts the Parameter-Efficient
Fine-Tuning (PEFT) strategy by adding several adaption modules
with small parameters for tuning (as shown in Fig. 2), achieving
high efficiency while preserving the remarkable performance.

Specifically, our FineCLIPER has the following characteristics
that distinguish it from previous works:

Firstly, by adopting the vision-text learning paradigm, we trans-
form the ground truth label to form the textual supervision (e.g., "A
person with an expression of {Label}"). But one noteworthy innova-
tion is that we meanwhile generate and use the negative counter-
parts (e.g., "A person with an expression of No {Label}"). Such label
augmentation via PN (Positive-Negative) descriptors is inspired
by the negative prompting strategy [7, 43], and found to be useful
here for differentiating between ambiguous categories. A notable
progress is observed in the "Disgust" category of the DFEW dataset,
while most baselines [4, 25, 29, 34, 57] suffer from a nearby 0%
accuracy, our FineCLIPER significantly promotes the performance
by more than 25%, as shown in Tab. 2.

Furthermore, we adopt a semantically hierarchical strategy to
comprehensively mine useful information from the input video
data. Specifically, features from directly embedding video frames
stand at a relatively low semantic level. For middle semantic level,
we utilize a well-trained face analysis model (i.e. FaceXFormer [44])
to extract the face segmentation masks and landmarks from each
frame. Intuitively, the former offers prior about face structures
while the latter provides specific pivots for model attention. Addi-
tionally, we try to obtain descriptions at a high semantic level for
describing dynamic facial changes across frames. This is realized by
leveraging a well-trained MLLM, Video-LLaVA [31] to act as a facial
expression analyst following given template-based prompts, and
the generated descriptions will be carefully refined. All the above
features at various semantic levels will be integrated to obtain the
final representation of a given video.

To summarize, our contributions are as follows:

• We introduce FineCLIPER, a novel multi-modal framework
that enhances Dynamic Facial Expression Recognition (DFER)
through extensively mining useful information at different
semantic levels from the video data, and all the obtained
features (i.e., features embedded from visual frames, face
segmentation, face landmarks, and the extra fine-grained
descriptions obtained via MLLM) are integrated finally to
serve as a more comprehensive overall representation;

• To address the ambiguity between categories, we propose a
label augmentation strategy, not only transforming the class
label to textual supervision but also using a combination of
both positive and negative descriptors;

• Extensive experiments conducted on DFER datasets, i.e.,
DFEW, FERV39k, and MAFW, show that our FineCLIPER
framework achieves new state-of-the-art performance on
both supervised and zero-shot settings with only a small
number of tunable parameters. Comprehensive ablations and
analyses further validate the effectiveness of FineCLIPER.

2 Related Work
Dynamic Facial Expression Recognition. In early DFER re-
search, the focus was on developing diverse local descriptors on
lab-controlled datasets [3, 37, 38]. Then the rise of deep learn-
ing and accessible in-the-wild DFER datasets [18, 33, 60] leads
to new trends towards DFER research. The first trend [10, 20, 24]
involves the direct use of 3DCNNs [12, 54, 55] to extract joint spatio-
temporal features from raw videos. The second trend [9, 19, 50, 61]
combines 2D CNNs [5, 48] with RNNs [5, 13] for feature extrac-
tion and sequence modeling. The third emerging trend integrates
transformer [8], as demonstrated in works like Former-DFER [69],
STT [40], and IAL [25]. These methods combine convolutional and
attention-based approaches to enhance the understanding of vi-
sual data, especially in distinguishing samples based on varying
visual dynamics. However, in prior efforts, the semantic meaning
of class labels is neglected, and insufficient attention has been paid
to the subtle and nuanced movements of the human face. There-
fore, based on the well-trained large cross-modal models (i.e. CLIP),
we propose to extend the class label to textual supervision both
positively and negatively. Moreover, to fully exploit the visual in-
formation within videos, we also design a hierarchical information
mining strategy to generate representative video features, which is
a weighted fusion of various features involving different semantic
levels, including video frame feature, the middle-level facial seman-
tics from segmentation maps and detected landmarks, we well as
the high-level semantics encoded from fine-grained descriptions
provided by MLLM.
CLIP in Classification. Vision-Language Models (VLMs), e.g.,
CLIP [46], have recently demonstrated superior performance across
various tasks, including video understanding [6, 45, 58, 66], 3D gen-
eration or editing [15, 17, 32], and region profiling [53, 64], etc.
CLIP leverages a vast corpus of image-text pairs to ground its
framework in contrastive learning, resulting in robust pre-trained
image and text encoders that demonstrate remarkable feature ex-
traction capabilities. Recent studies [26, 52, 70] have also applied
CLIP to the DFER task. Among them, A3lign-DFER [52] introduces
a comprehensive alignment paradigm for DFER through a compli-
cated design. CLIPER [26] adopts a two-stage training paradigm
instead of end-to-end training; however, it is limited in capturing
temporal information. Furthermore, DFER-CLIP [70] incorporates
a transformer-based module to better capture temporal information
in videos, but it requires fully fine-tune the image encoder and the
proposed temporal module during training, leading to inefficiency.

However, while these works have explored the semantic infor-
mation of labels compared to traditional DFER, they often overlook
the interrelations among facial expressions and the individual dif-
ferences among humans as they directly extend labels into relevant
action descriptions (e.g., Happiness→smiling mouth, raised cheeks,
wrinkled eyes, ... [70]). This oversight can lead to further ambigu-
ity. In light of this, we propose PN (Positive-Negative) descriptors,
extending the ground truth labels from contrastive views to better
distinguish between ambiguous categories.

3 Methodology
In this section, we first briefly go through the overall pipeline and
basic notations of the framework in Sec. 3.1. Then, we elaborate
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Figure 2: The FineCLIPER framework can be divided into three main components: Label Encoder, Multi-Modal Encoders,
and Similarity Calculation. The Label Encoder augments labels using PN descriptors, followed by PN adaptors within text
encoder; The Multi-Modal Encoders handle hierarchical information mined from low semantic levels to high semantic levels
of human face; The Similarity Calculation module further integrates and computes the similarities of the representations
obtained earlier via contrastive learning.

on how to augment the original class labels to obtain positive-
negative textual supervision in Sec. 3.2, followed by details about
our hierarchical information mining strategy to obtain multi-modal
features in Sec. 3.3. The integration of diverse features is introduced
in Sec. 3.4. The overall pipeline is illustrated in Fig. 2.

3.1 Overall Pipeline
Formally, given a video clip 𝑉 , the task of DFER aims to recognize
the facial expression label𝐶𝑙𝑠 . Using text templates as "A person with
an expression of {Cls}", the class label could be further transformed
into textual supervision, which could better utilize the semantic
meaning of the category name.

Let V represents a set of videos and C denotes collections of
augmented textual descriptions of labels, our framework could pro-
duce the embedded representations for both a given video and its
corresponding textual supervision, resulting in vi and ci. Note that
in our cases, vi is an integration of features from different semantic
levels, namely low-level (video frames), middle-level (face parsing
and landmarks), and high-level semantics (fine-grained captions
of facial action changes obtained using MLLM). The similarity be-
tween vi and ci is calculated as 𝑠𝑖𝑚𝑖 . To employ the cross-entropy

loss, we calculate the prediction probability over class 𝑐𝑙𝑠𝑖 as:

𝑝 (𝑐𝑙𝑠𝑖 |vi) =
exp(𝑠𝑖𝑚𝑖/𝜏)∑𝑁−1

𝑖=0 exp(𝑠𝑖𝑚𝑖/𝜏)
, (1)

where 𝑁 is the number of total classes and 𝜏 represents the tem-
perature parameter of CLIP.

3.2 Label Augmentation via PN Descriptors
Although in-the-wild DFER usually comprises limited categories
(e.g., 7 in DFEW [18] and FERV39k [60], or 11 in MAFW [33]), the
recognition difficulty does not reduce due to the high inter-class
ambiguity (as shown in Tab. 2). Therefore, as stated in Sec. 3.1, class
labels are transformed into textual supervision for utilizing their
semantic meanings.

While existing CLIP-based DFERmodels [26, 52, 70] mostly focus
on enriching the textual descriptions for ground truth labels from a
positive view, in this work, we devise a different label augmentation
strategy by extending the original class labels from both positive
and negative perspectives. Specifically, the Positive-Negative (PN)
descriptors are derived as follows: i.e., P(ositive): "A person with an
expression of {Cls}.", and N(egative): "A person with an expression
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a r e  s q u i n t i n g .  T h e  f a c i a l 
expression is characterized by a 
s l ight  upturned mouth,  and 
relaxed eyebrows.

Figure 3: Fine-grained Text Generation and Refinement.

of no {Cls}.". Correspondingly, the augmented textual supervision
C could contain two different collections, namely C𝑃 for positive
collections and C𝑁 for negative collections. Then, both text collec-
tions are tokenized and projected into word embeddings obtaining
X𝑇𝑃 ,X𝑇𝑁 ∈ R𝑙×𝑑𝑇 , where 𝑙 represents the text length. The inputs
are further constructed as:

z(0)
𝑇𝑃

= X𝑇𝑃 + E𝑇𝑃 , z(0)
𝑇𝑁

= X𝑇𝑁 + E𝑇𝑁 , (2)

where E denotes the positional encoding.
To further encode z(0)

𝑇𝑃
and z(0)

𝑇𝑁
, we resort to the pre-trained

textual part of VLM [46], a model with 𝐿𝑇 pre-trained transformer
layers, devoted by {E (𝑖 )

𝑇
}𝐿𝑇
𝑖=1. Keeping the original weights of these

well-trained layers, we introduce trainable lightweight adapters
after each frozen layer E ( 𝑗 )

𝑇
. denoted as {A ( 𝑗 )

𝑇𝑃
} and {A ( 𝑗 )

𝑇𝑁
} for

positive and negative textual supervision, respectively. Then the
encoded positive and negative textual features could be obtained
via:

z( 𝑗 )
𝑇𝑃

= E ( 𝑗 )
𝑇𝑃

(A ( 𝑗 )
𝑇𝑃

(z𝑇𝑃
( 𝑗−1) )), z( 𝑗 )

𝑇𝑁
= E ( 𝑗 )

𝑇𝑁
(A ( 𝑗 )

𝑇𝑁
(z( 𝑗−1)
𝑇𝑁

)) .
(3)

We adopt the basic Adapter structure proposed in [14] for all
adapters in our FineCLIPER framework. The structure of the adapter
is illustrated in the middle of Fig. 2. Then the final positive and
negative text representations can be obtained by:

c𝑃 = h𝑇 (z(𝐿𝑇 )
𝑇𝑃 ,𝑙

), c𝑁 = h𝑇 (z(𝐿𝑇 )
𝑇𝑁 ,𝑙

), (4)

where z(𝐿𝑇 )
𝑇,𝑙

is the last token of z(𝐿𝑇 )
𝑇

and h𝑇 is a projection layer.

3.3 Hierarchical Information Mining
Our FineCLIPER adopts a hierarchical manner to mine useful in-
formation from: 1) low semantic level, where video frames are di-
rectly embedded; 2) middle semantic level, where face segmentation
and landmarks are exploited, and 3) high semantic level, where
fine-grained descriptions are obtained via MLLM to depict facial
dynamics across frames. Details can be found as follows:

Video Frames Embedding could provide semantically low-level
features since the model operates at pixel-level. To effectively ex-
plore the spatial-temporal visual information, we resort to the
strong spatial modeling abilities displayed by CLIP and utilize a
temporal-expanded version inspired by [65].

Formally, given a video clip 𝑉 ∈ R𝑇×𝐻×𝑊 ×3, where 𝐻 ×𝑊

is the spatial size and 𝑇 is the temporal length. For 𝑡-th frame,
we spatially divide it into non-overlapping patches {P𝑡,𝑖 }𝑀𝑖=1 ∈
R𝑃

2×3, where𝑀 = 𝐻𝑊 /𝑃2. These patches are then projected into
patch embeddingsX𝑣,𝑡 ∈ R𝑀×𝑑 , where 𝑑 represents the embedding
dimension. Therefore, the representation for the given video 𝑉

could be z ∈ R𝑇×𝑀×𝑑 . After the temporal information undergoes
processing by the temporal adapter, the spatially adapted feature
can be derived through the following procedure:

z( 𝑗 )
𝑇𝑒𝑚𝑉

= E ( 𝑗 )
𝑉

(A ( 𝑗 )
𝑉

(z( 𝑗 ) )), (5)

z( 𝑗 )
𝑆𝑝𝑎𝑉

= E ( 𝑗 )
𝑉

(A ( 𝑗 )
𝑉

(z( 𝑗 )
𝑇𝑒𝑚𝑉

)), (6)

where z( 𝑗 )
𝑇𝑒𝑚𝑉

and z( 𝑗 )
𝑆𝑝𝑎𝑉

denotes the temporally and spatially adapted
features, respectively.

As a result, the adapter, operating in parallel with the MLP layer,
aims to collectively refine the representation of spatiotemporal
information. The final feature, scaled by a factor 𝑠 (set to 0.5 in our
framework), can be expressed as follows:

z( 𝑗 )
𝑉

= z( 𝑗 )
𝑆𝑝𝑎𝑉

+𝑀𝐿𝑃 (𝐿𝑁 (z( 𝑗 )
𝑆𝑝𝑎𝑉

)) + 𝑠 · A ( 𝑗 )
𝑉

(𝐿𝑁 (z( 𝑗 )
𝑆𝑝𝑎𝑉

)) . (7)

Thus, the ultimate video representation at a low semantic level is
derived as v = h𝑉 (z(𝐿𝑉 )

𝑉
).

Face Parsing and Landmarks Detection. Based on a given frame,
we could further mine middle-level semantic information from it.
In our task, as the main part of a frame is mostly human faces, we
choose to utilize a powerful facial analysis model, FaceXFormer [44],
to obtain generalized and robust face representations. Specifically,
we extract the facial segmentation map and perform landmark
detection. Intuitively, the former implies the semantically grouped
facial regions, while the latter could provide accurate locations
indicating different face parts (e.g., eyes, nose, etc.)

Specifically, given a specific video clip 𝑉 , the extracted parsing
results and landmark maps are represented as 𝑃 and 𝐿, respectively.
Following patch embedding, both 𝑃 and 𝐿 are fed into the cor-
responding segmentation encoder E𝑃 and landmark encoder E𝐿 ,
similar to the operation done for the frame data. The encoders E𝑃
and E𝐿 share weights to collaboratively capture middle-level face
semantics. Finally, the parsing and landmark representations can
be obtained as p = h𝑃 (z(𝐿𝑃 )𝑃

) and l = h𝐿 (z(𝐿𝐿 )𝐿
), and h𝑃 and h𝐿 are

projection layers for 𝑃 and 𝐿, respectively.
Additional Fine-grained Descriptions. In this part, we try to
achieve fine-grained details describing the facial dynamics across
video frames to serve as high-level semantics. Specifically, for each
video clip 𝑉 , we adopt Video-LLaVA [31], a MLLM, to generate
detailed descriptions under the guidance of an elaborately designed
prompt, where themodel is asked to play a role as a facial expression
analyst to provide details of facial changes, as illustrated in Fig. 3.
To elaborate, the provided text prompt raises requirements for the
granularity of the descriptions, explicitly specifying movements
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involving various local facial regions. However, the generated de-
scription may include emotion-related words associated with the
label or contain some redundant information. Hence, we thoroughly
refined all generated descriptions to achieve a concise and high-
quality summary. The refinement works as follows. Initially, we
employed a rule-based approach, utilizing pre-configured regular
filters to eliminate redundant and irrelevant textual information.
Popular text processing tools from the NLTK package were then
utilized to remove noise. Subsequently, each data entry will go
through manual inspection to filter out abnormal descriptions.

The average number of tokens in our refined descriptions is
approximately 35 tokens. However, research [67] demonstrates the
actual effective length of CLIP’s text encoder is even less than 20
tokens. Hence, to better explore the fine-grained description of
facial changes, we adopt the text encoder of Long-CLIP [67] as our
fine-grained text encoder E𝐹 , which can support text inputs of up
to 248 tokens. The refined fine-grained description, denoted as 𝐹 , is
further tokenized and projected into embeddings X𝐹 . Following a
procedure similar to the text encoder described in Sec. 3.2, the input
is further constructed as z(0)

𝐹
= X𝐹 + E𝐹 , where E𝐹 is the positional

encoding of 𝐹 . Subsequently, by feeding it into the projector h𝐹 ,
we could contain the final feature vector of 𝐹 as: f = h𝐹 (z(𝐿𝐹 )𝐹,𝑙

).

3.4 Weighted Integration.
Through the aforementioned semantically hierarchical information
mining process, we obtain: 1) low-level video frame feature v, 2)
middle-level face parsing features p and face landmark features l,
and 3) high-level fine-grained description features f . The integration
of these features is done using an adaptive fusion strategy.

Specifically, given a specific video 𝑉 , the supervision for the
𝑖𝑡ℎ class is represented by both the positive c𝑖

𝑃
and negative c𝑖

𝑁
.

Suppose any representation m ∈ {v, p, l, f}, the similarity between
m and c𝑃 , as well as m and c𝑁 is defined by calculating the cosine
similarity:

𝑠𝑖𝑚
𝑝𝑜𝑠

𝑖,m =
c𝑖
𝑃
·mc𝑖

𝑃

 ∥m∥
, 𝑠𝑖𝑚

𝑛𝑒𝑔

𝑖,m =
c𝑖
𝑁
·mc𝑖

𝑁

 ∥m∥
, (8)

and the final similarity is obtained by: 𝑠𝑖𝑚𝑖,m = 𝑠𝑖𝑚
𝑝𝑜𝑠

𝑖,m − 𝑠𝑖𝑚
𝑛𝑒𝑔

𝑖,m ,
which further distinguishes similarity among similar categories

Then, by finding the max similarity across all the categories,
we obtain 𝑠𝑖𝑚v = 𝑚𝑎𝑥𝑁

𝑖=0 (𝑠𝑖𝑚𝑖,v). Similarly, we could get 𝑠𝑖𝑚f ,
𝑠𝑖𝑚p, and 𝑠𝑖𝑚l following corresponding max-similarity category.
Normalizing these similarities, we obtain theweights corresponding
to that representation as:

𝑤m =
𝑒𝑠𝑖𝑚m

𝑒𝑠𝑖𝑚v + 𝑒𝑠𝑖𝑚f + 𝑒𝑠𝑖𝑚p + 𝑒𝑠𝑖𝑚l
. (9)

Such weights could be calculated for p, l, f similarly, resulting in
the corresponding weights 𝑤v, 𝑤f , 𝑤p, and 𝑤l. Then the overall
multi-modal representation v𝑚𝑚 of Multi-Modal Encoders can be
obtained as follows:

v𝑚𝑚 = 𝑤v · v +𝑤f · f +𝑤p · p +𝑤l · l. (10)

where the weights also correspond to the weights of the cross-
entropy loss for each modality. Then the overall loss function can

...

V
id

eo

Ours
The woman’s eyes widen, her eyebrows 
raise, and her mouth opens. Her gaze 
is directed upward, and her breathing 
appears to be shallow and quick.

MAFW
The woman sits with her eyes slowly 
widening, then suddenly shivers back 
and asks in a confused voice. The wide 
eyes.

...

V
id

eo

Ours
T h e  g i r l ’ s  m o u t h  c o r n e r s 
downturn, chin protrudes, eyes 
narrow, gaze intensifies, and 
breathing appears heavier. Her 
face is contorted.

MAFW
A girl with tears in her eyes shouts at the 
person opposite her. The deep frown,a 
downward pull on the lip corners,the 
higher inner corners of eyebrows and the 
lower outer corners of eyebrows.

Figure 4: Comparison of video caption examples between
our generated captions and those of the MAFW dataset. Our
captions precisely describe facial activities (highlighted in
green), in contrast to the MAFW descriptions, which are
overly broad and tedious (highlighted in red).

thus be expressed as:

L =
1
B

B∑︁
𝑖=1

(H (𝑦𝑖 , 𝑝 (𝑐𝑙𝑠𝑖 |v𝑚𝑚))+

𝑤v · H (𝑦𝑖 , 𝑝 (𝑐𝑙𝑠𝑖 |v)) +𝑤p · H (𝑦𝑖 , 𝑝 (𝑐𝑙𝑠𝑖 |p))
+𝑤l · H (𝑦𝑖 , 𝑝 (𝑐𝑙𝑠𝑖 |l)) +𝑤f · H (𝑦𝑖 , 𝑝 (𝑐𝑙𝑠𝑖 |f))) .

(11)

4 Experiment
4.1 Setup
Datasets and Evaluation. Following previous works, we adopt
both supervised and zero-shot learning paradigms, evaluating our
proposed FineCLIPER together with the baselines on the various
in-the-wild DFER datasets, including DFEW [18], FERV39k [60],
and MAFW [33]. We utilize UAR (Unweighted Average Recall)
and WAR (Weighted Average Recall) as evaluation metrics for our
assessments. Both DFEW and FERV39k have 7 dynamic facial ex-
pression categories to recognize, while MAFW has 11 categories. It
is noteworthy that MAFW dataset comes with video captions for
each video, making it a choice for pretraining in zero-shot setting.
Implementation Details. All the experiments of our FineCLIPER
are built on a CLIP model with the backbone of ViT-B/16 using a
single NVIDIA RTX 4090 GPU for fairness and consistency. We
process the input by resizing and cropping 16 video frames to a
uniform size of 224×224 pixels. The SGD optimizer is employed
with an initial learning rate of 3 × 10−4. FineCLIPER is trained
in an end-to-end manner over 30 epochs with the temperature
hyper-parameter 𝜏 = 0.01.

4.2 Main Results
Supervised Setting. The quantitative results in the supervised set-
ting on three standard DFER datasets are depicted in Tab. 1. It can
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Table 1: Comparisons of our FineCLIPER with the state-of-the-art Supervised DFER methods on DFEW, FERV39k, and MAFW.
∗: FineCLIPER with face parsing and landmarks modalities; †: FineCLIPER with fine-grained text modality. The best results are
highlighted in Bold, and the second-best Underlined.

Method Backbone Tunable DFEW FERV39k MAFW

Param (M) UAR WAR UAR WAR UAR WAR

EC-STFL (MM’20) [18] C3D / P3D 78 45.35 56.51 - - - -
Former-DFER (MM’21) [69] Transformer 18 53.69 65.70 37.20 46.85 31.16 43.27
CEFLNet (IS’22) [34] ResNet-18 13 51.14 65.35 - - - -
NR-DFERNet (ArXiv’22) [29] CNN-Transformer - 54.21 68.19 33.99 45.97 - -
STT (ArXiv’22) [40] ResNet-18 - 54.58 66.65 37.76 48.11 - -
DPCNet (MM’22) [61] ResNet-50 (first 5 layers) - 57.11 66.32 - - - -
T-ESFL (MM’22) [33] ResNet-Transformer - - - - - 33.28 48.18
EST (PR’23) [35] ResNet-18 43 53.94 65.85 - - - -
Freq-HD (MM’23) [51] VGG13-LSTM - 46.85 55.68 33.07 45.26 - -
LOGO-Former (ICASSP’23) [41] ResNet-18 - 54.21 66.98 38.22 48.13 - -
IAL (AAAI’23) [25] ResNet-18 19 55.71 69.24 35.82 48.54 - -
AEN (CVPRW’23) [23] ResNet-18 - 56.66 69.37 38.18 47.88 - -
M3DFEL (CVPR’23) [57] ResNet-18-3D - 56.10 69.25 35.94 47.67 - -
MAE-DFER (MM’23) [49] ViT-B/16 85 63.41 74.43 43.12 52.07 41.62 54.31
S2D (ArXiv’23) [4] ViT-B/16 9 65.45 74.81 43.97 46.21 43.40 52.55
CLIPER (ArXiv’23) [26] CLIP-ViT-B/16 88 57.56 70.84 41.23 51.34 - -
DFER-CLIP (BMVC’23) [70] CLIP-ViT-B/32 90 59.61 71.25 41.27 51.65 39.89 52.55
EmoCLIP (FG’24) [11] CLIP-ViT-B/32 - 58.04 62.12 31.41 36.18 34.24 41.46
A3lign-DFER (ArXiv’24) [52] CLIP-ViT-L/14 - 64.09 74.20 41.87 51.77 42.07 53.24

FineCLIPER (Ours) CLIP-ViT-B/16 13 62.81 72.86 42.88 52.01 42.19 53.12
FineCLIPER∗ (Ours) CLIP-ViT-B/16 19 64.89 75.05 44.15 52.12 43.02 54.69
FineCLIPER† (Ours) CLIP-ViT-B/16 14 65.72 75.01 43.86 53.02 43.91 54.11
FineCLIPER∗† (Ours) CLIP-ViT-B/16 20 65.98 76.21 45.22 53.98 45.01 56.91

Table 2: Comparative analyses of accuracy across various emotion categories: FineCLIPER vs. other approaches on DFEW.

Method Tunable Accuracy of Each Emotion DFEW

Param (M) Hap. Sad. Neu. Ang. Sur. Dis. Fea. UAR WAR

Former-DFER (MM’21) [69] 18 84.05 62.57 67.52 70.03 56.43 3.45 31.78 53.69 65.70
CEFLNet (IS’22) [34] 13 84.00 68.00 67.00 70.00 52.00 0.00 17.00 51.14 65.35
NR-DFERNet (ArXiv’22) [29] - 88.47 64.84 70.03 75.09 61.60 0.00 19.43 54.21 68.19
STT (ArXiv’22) [40] - 87.36 67.90 64.97 71.24 53.10 3.49 34.04 54.58 66.65
EST (PR’23) [35] 43 86.87 66.58 67.18 71.84 47.53 5.52 28.49 53.43 65.85
IAL (AAAI’23) [25] 19 87.95 67.21 70.10 76.06 62.22 0.00 36.44 55.71 69.24
M3DFEL (CVPR’23) [57] - 89.59 68.38 67.88 74.24 59.69 0.00 31.64 56.10 69.25
S2D (ArXiv’23) [4] 9 93.87 83.25 75.31 84.19 64.33 0.00 37.07 62.57 75.98

FineCLIPER (Ours) 13 89.99 81.79 75.42 80.12 61.03 7.12 32.98 62.81 72.86
FineCLIPER∗ (Ours) 19 92.86 83.88 76.10 83.56 64.69 13.02 38.13 64.89 75.05
FineCLIPER† (Ours) 14 94.59 85.17 78.03 85.09 64.03 22.98 37.11 65.72 75.01
FineCLIPER∗† (Ours) 20 94.71 86.22 78.19 86.19 65.01 26.58 38.20 65.98 76.21

be observed that our proposed FineCLIPER achieves state-of-the-art
performance compared with other DFER approaches. In addition,
our method outperforms all CLIP-based DFER methods with the
most lightweight architecture and also the least tunable parame-
ters. Furthermore, we investigate three variants of our FineCLIPER,

incorporating face parsing and landmark modalities, along with
fine-grained text descriptions of facial changes, which justify the
combination of these strategies. The superiority of our FineCLIPER
is also supported by the substantial improvement in the most chal-
lenging category for previous methods, i.e., “Disgust (Dis.)”, as
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Table 3: Comparison with state-of-the-art Zero-Shot DFER methods. †: FineCLIPER with fine-grained text modality.

Method Backbone Pre-training DFEW FERV39k MAFW

Dataset UAR WAR UAR WAR UAR WAR

CLIP (ICML’21) [46] ViT-B/32 LAION-400M 23.34 20.07 20.99 17.09 18.42 19.16
FaRL (CVPR’22) [71] ViT-B/16 LAION Face-20M 23.14 31.54 21.67 25.65 14.18 11.78
EmoCLIP (FG’24) [11] CLIP-ViT-B/32 MAFW (class description) 22.85 24.96 39.35 41.60 24.12 24.74
EmoCLIP (FG’24) [11] CLIP-ViT-B/32 MAFW (video caption) 36.76 46.27 26.73 35.30 25.86 33.49

FineCLIPER† (Ours) CLIP-ViT-B/16 MAFW (video caption) 47.52 57.12 34.59 42.28 34.02 40.23
FineCLIPER† (Ours) CLIP-ViT-B/16 MAFW (fine-grained caption) 52.26 62.03 39.72 46.01 38.77 46.12
FineCLIPER† (Ours) CLIP-ViT-B/16 DFEW (fine-grained caption) 57.48 65.45 40.10 46.91 - -
FineCLIPER† (Ours) CLIP-ViT-B/16 FERV39k (fine-grained caption) 55.13 63.89 40.79 48.63 - -

Table 4: Performance of FineCLIPER∗ w.r.t. data from parsing
and landmark modalities on DFEW, FERV39k, and MAFW.

Parsing Land. DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

✗ ✗ 62.81 72.86 42.88 52.01 42.19 53.12
✓ ✗ 63.66 73.86 43.66 52.00 42.78 53.59
✗ ✓ 63.71 74.16 43.53 52.08 42.56 53.16
✓ ✓ 64.89 75.05 44.15 52.12 43.02 54.69

shown in Tab. 2. It is worth noting that even without the hier-
archical information modeling, FineCLIPER, which only has PN
descriptors with adapters, still achieves competitive performance.
This demonstrates the effectiveness of the label augmentation strat-
egy via PN descriptors and the usage of PEFT techniques. Further
ablation studies can be found in Sec. 4.3.
Zero-shot Setting.To assess the generalization ability of FineCLIPER,
we perform zero-shot DFER using captions extracted directly from
each video. Our main baseline is EmoCLIP [11], which is the first
CLIP-based zero-shot DFER model, utilizes the MAFW [33] dataset
for pertaining. The comparison between captions in MAFW and
our generated fine-grained descriptions is shown in Fig. 4.

Tab. 3 reports the recognition performance of our FineCLIPER
compared with other approaches in the zero-shot DFER setting.
Not only did we surpass the previous methods when the pretrain-
ing data was consistent, but employing our generated fine-grained
captions also led to a significant performance improvement. This
further demonstrates the effectiveness of the fine-grained descrip-
tion obtained and used by our FineCLIPER, which focuses more
on facial changes instead of video scenes (as in MAFW). In other
words, fine-grained descriptions play a pivotal role in guiding the
model’s attention toward detailed aspects of specific facial regions
in the zero-shot setting.

4.3 Ablation Studies
Performance w.r.t. middle-level facial features.We investigate
the effectiveness of using the middle-level face semantics obtained
by face parsing and landmark detection, and the results are shown
in Tab. 4. We have the following observations: 1) By comparing

Table 5: Performance w.r.t. diverse adapter configurations.
𝑝𝑜𝑠 and 𝑛𝑒𝑔 are positive and negative adapters, respectively.

Text Video DFEW FERV39k MAFW

UAR WAR UAR WAR UAR WAR

✗ ✗ 59.61 71.25 41.27 51.65 39.89 52.55
✓𝑝𝑜𝑠 ✗ 60.32 71.55 41.51 51.70 40.47 52.62

✓𝑝𝑜𝑠+𝑛𝑒𝑔 ✗ 61.19 71.95 42.29 51.72 40.71 52.86
✗ ✓ 61.88 72.08 41.56 51.77 41.26 51.44

✓𝑝𝑜𝑠+𝑛𝑒𝑔 ✓ 62.81 72.86 42.88 52.01 42.19 53.12
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Figure 5: Visualizations of class-wise cosine similarity values
between video and text embeddings in DFEW, where the
positive value is in green and the negative one is in red.

results from rows 1-2, as well as rows 1-3, we find that employing
either one kind of the middle-level facial features could improve the
performance, justifying the usefulness of middle-level semantic fea-
tures; 2) Combining both face segmentation and landmarks yields
the best results across all datasets, showing their complementary
nature and further verifying our choice for using both.
Performance w.r.t. label augmentation strategies. Since the
DEFR is a classification task, the supervision is originally in the form



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Input

w/ Adapters

w/ Parsing
& Landmarks

Baseline

w/ Fine-grained
Text

Input

w/ Adapters

w/ Parsing
& Landmarks

Baseline

w/ Fine-grained
Text

Figure 6: Attention visualizations for DFEWw.r.t. two ground-truth expression labels—’Happiness’ (Top) and ’Surprise’ (Bottom).

of class labels. However, we follow the recent practice of extend-
ing the label to semantically textual meaningful supervision and
propose a novel idea to construct supervision from both positive
and negative aspects. The ablations involving such label augmen-
tation strategy are represented in the first three rows of Tab. 5.
When we control other conditions, using our Pos-Neg augmenta-
tion achieves the best results across all metrics. Next, to further
understand why the Pos-Neg descriptors perform well, we visualize
class-wise cosine similarity between video representation and the
positive text supervision (colored in green) as well as the negative
supervision(colored in red), as shown in Fig. 5. It can be observed
that since the positive supervision could sometimes fail to work
(as we can see that for some categories the pos-similarity is really
low), the existence of its negative counterpart could address such a
problem to a certain extent.
Performance w.r.t. the usage of trainable adapters.We adopted
several lightweight trainable adapters in our FineCLIPER to ef-
ficiently adapt the ability of large pre-trained models. The cor-
responding ablation studies are demonstrated in Tab. 5. We can
see that given the same supervision settings (e.g. pose+neg for
FineCLIPER), adding small adaptive modules could effectively boost
the performance with only limited trainable parameters (e.g. 20M
for all adapters in FineCLIPER).
Effect of each components. To validate the effectiveness of each
component module in our FineCLIPER, we visualize the attention
map of the last transformer block, as shown in Fig. 6. Specifically,
we sequentially add components from top to bottom, including

adding the Adapterers, using the parsing results and landmarks
of faces, as well as using the high-level semantics from the fine-
grained descriptions generated by MLLM. We can see that the
model’s attention is shrinking to more crucial and concentrated
face parts w.r.t. to certain categories. For example, it focuses on
the mouth, eyes, and eyebrows when identifying Happiness, which
aligns well with expression recognition using human vision. Such
visualization results provide a vivid interpretation to explain the
superior recognition performance of FineCLIPER.

5 Conclusion
Dynamic Facial Expression Recognition (DFER) is vital for under-
standing human behavior. However, current methods face chal-
lenges due to noisy data, neglect of facial dynamics, and confusing
categories. To this end, We propose FineCLIPER, a novel framework
with two key innovations: 1) augmenting class labels with textual
PN (Positive-Negative) descriptors to differentiate semantic ambigu-
ity based on the CLIP model’s cross-modal latent space; 2) employ-
ing a hierarchical information mining strategy to mine cues from
DFE videos at different semantic levels: low (video frame embed-
ding), middle (face segmentation masks and landmarks), and high
(MLLM for detailed descriptions). Additionally, we use Parameter-
Efficient Fine-Tuning (PEFT) to adapt all the pre-trained models
efficiently. FineCLIPER achieves SOTA performance on various
datasets with minimal tunable parameters. Detailed ablations and
analysis further verify the effectiveness of each design.
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