A Variance of LogEstimator

We now bound the variance of our estimator by $O(\log^2 k)$. Recall that the output of LogEstimator is given by $\log(\mathbf{X}/t) - g(\mathbf{B}_1, \dots, \mathbf{B}_r)$, where the function g is bounded. Since the variance we seek is $O(\log^2 k)$, it suffices to show that the variance of $\log(\mathbf{X}/t)$ is $O(\log^2 k)$ with $i \sim \mathcal{D}$, since subtracting g changes the estimate by at most a constant (see Lemma 2.3).

Lemma A.1. Let $i \sim D$ and X denote the number of independent trials from $Ber(p_i)$ before we see t successes. Then, $Var[log(X/t)] = O(log^2 k)$.

Proof. Let $X_{\max} = 2kt$, and consider the random variable $\mathbf{X}' = \min{\{\mathbf{X}, X_{\max}\}}$. Then

$$\begin{aligned} \mathbf{Var}[\log(\mathbf{X}/t)] &\leq \mathbf{E} \Big[\left(\log(\mathbf{X}/t) - \log(\mathbf{X}'/t) + \log(\mathbf{X}'/t) \right)^2 \Big] \\ &\leq 2 \cdot \mathbf{E} \Big[\left(\log(\mathbf{X}/t) - \log(\mathbf{X}'/t) \right)^2 \Big] + 2 \cdot \mathbf{E} \Big[\log^2(\mathbf{X}'/t) \Big] \\ &\leq 2 \cdot \mathbf{E} \Big[\log^2(\mathbf{X}/\mathbf{X}') \Big] + 2 \log^2(2k) \\ &\leq \frac{4}{\ln^2(2)} \cdot \mathbf{E} \left[\left(\sqrt{\frac{\mathbf{X}}{\mathbf{X}'} - 1} \right)^2 \right] + 2 \log^2(2k), \end{aligned}$$

where we used that $\log(X'/t) \le \log(2k)$ always, and that $\log(z) \le \sqrt{z-1}/\ln(2)$ for all $z \ge 1$. Then,

$$\mathbf{E}\left[\frac{\mathbf{X}}{\mathbf{X}'} - 1\right] \le \mathbf{E}\left[\frac{\mathbf{X}}{X_{\max}}\right] = \frac{1}{X_{\max}} \sum_{i=1}^{k} p_i \cdot \frac{t}{p_i} = \frac{tk}{X_{\max}} = 2.$$

B Omitted Details from Section 2

Proof of Claim 2.5. Notice that X is the number of trials from $Ber(p_i)$ until we see t successes. We now have the following string of equalities:

$$\mathbf{E}_{\boldsymbol{X},\boldsymbol{B}_{1},\ldots,\boldsymbol{B}_{r}}\left[\boldsymbol{\eta} - \log\left(\frac{1}{p_{i}}\right)\right] = \mathbf{E}_{\boldsymbol{X}}[\log\boldsymbol{Y}] - \mathbf{E}_{\boldsymbol{B}_{1},\ldots,\boldsymbol{B}_{r}}[g\left(\boldsymbol{B}_{1},\boldsymbol{B}_{2},\ldots,\boldsymbol{B}_{r}\right)]$$
$$= \mathbf{E}_{\boldsymbol{X}}[f(\boldsymbol{Y}) + h(\boldsymbol{Y})] - g(p_{i},p_{i}^{2},\ldots,p_{i}^{r}) = \mathbf{E}_{\boldsymbol{X}}[h(\boldsymbol{Y})],$$

where we used the fact that g is a linear function, and that $\mathbf{E}[\mathbf{B}_{\ell}] = p_{i}^{\ell}$ in order to substitute

$$\mathbf{E}_{\boldsymbol{B}_1,\ldots,\boldsymbol{B}_r}[g(\boldsymbol{B}_1,\ldots,\boldsymbol{B}_r)] = g(p_i,p_i^2,\ldots,p_i^r).$$

Furthermore, we divide $\log \mathbf{Y} = f(\mathbf{Y}) + h(\mathbf{Y})$, where f(z) is the degree-*r* Taylor expansion of $\log z$ at 1, and $h(z) = \log z - f(z)$ is the error in the degree-*r* Taylor expansion of $\log(z)$, i.e.,

 $h(z) = \log(z) - f(z).$

Finally, by construction of g, $\mathbf{E}[f(\mathbf{Y})] = g(p_i, p_i^2, \dots, p_i^r)$, which gives the desired equality. \Box

Verifying Y is subgamma. Recall that X is the number of independent draws from a Ber(p) distribution until we see t successes. In other words, we may express $X = X_1 + \cdots + X_t$, where X_i is the number of draws of Ber(p) before we get a single success. Then, we always satisfy

$$\mathbf{E}[\mathbf{X}_i] = \frac{1}{p} \qquad \mathbf{Pr}[\mathbf{X}_i > \ell] = (1-p)^{\lceil \ell \rceil} < e^{-p\ell}$$

This, in turn, implies that for any $r \ge 1$

$$\left(\mathbf{E}[|\boldsymbol{X}_{i}-1/p|^{r}]\right)^{1/r} \leq \left(\mathbf{E}_{\boldsymbol{X}_{i},\boldsymbol{X}_{i}'}[|\boldsymbol{X}_{i}-\boldsymbol{X}_{i}'|^{r}]\right)^{1/r} \leq 2\left(\mathbf{E}[|\boldsymbol{X}_{i}|^{r}]\right)^{1/r} = O(r/p),$$

where the first line is by Jensen's inequality, and the second is by the triangle inequality and Hölder inequality. Finally, we use the tail bound on X_i to upper bound the expectation of $|X_i|^r$. Then, we have

$$\begin{split} \mathbf{E}\Big[e^{\lambda(\boldsymbol{X}_{i}-1/p)}\Big] &= 1 + \lambda \mathbf{E}\big[\boldsymbol{X}_{i}-1/p\big] + \sum_{k=2}^{\infty} \frac{\lambda^{k}}{k!} \cdot \mathbf{E}\big[|\boldsymbol{X}_{i}-1/p|\big] \\ &= 1 + \sum_{k=2}^{\infty} \frac{\lambda^{k}}{k!} \left(O(k/p)\right)^{k} \le 1 + O(\lambda^{2}/p^{2}), \qquad \text{when } |\lambda| \text{ sufficiently smaller than } p \\ &\le \exp\left(O(\lambda^{2}/p^{2})\right) \end{split}$$

Then, since X_1, \ldots, X_t are all independent, we have

$$\mathbf{E}\left[e^{\lambda(\boldsymbol{X}-t/p)}\right] \leq \exp\left(O(\lambda^2 t/p^2)\right) \Longrightarrow \mathbf{E}\left[e^{\lambda(\boldsymbol{Y}-1)}\right] \leq \exp\left(O(\lambda^2/t)\right),$$

and this bound is valid whenever $|\lambda|$ is sufficiently smaller than t.

C Omitted Proofs from Section 3

Proof of Lemma 3.1. The approach is to estimate

$$\mathbf{E}_{\boldsymbol{i}\sim\mathcal{D}}[h_t(p_{\boldsymbol{i}})] = \mathbf{E}_{\boldsymbol{i}\sim\mathcal{D}}[g(p_{\boldsymbol{i}}, p_{\boldsymbol{i}}^2, \dots, p_{\boldsymbol{i}}^r)].$$
(10)

There exists an algorithm using $O(\log(1/\epsilon)/\epsilon^2)$ samples to estimate the above quantity: for $j \in \{0, \ldots, O(1/\epsilon^2)\}$, one takes a sample $i_j \sim \mathcal{D}$ and uses $r = O(\log(1/\epsilon))$ additional samples $s_1, \ldots, s_r \sim \mathcal{D}$ to define

$$\boldsymbol{B}_m^{(j)} \stackrel{\text{def}}{=} \mathbbm{1}\{\boldsymbol{s}_1 = \cdots = \boldsymbol{s}_m = \boldsymbol{i}_j\} \text{ and } \boldsymbol{Z}_j = g(\boldsymbol{B}_1^{(j)}, \dots, \boldsymbol{B}_r^{(j)}).$$

Then, let Z be the average of all Z_j 's, which is an unbiased estimate to $\mathbf{E}_{i\sim\mathcal{D}}\left[g(p_i, p_i^2, \dots, p_i^r)\right]$. Since g is bounded (from Lemma 2.3), the variance of $O(1/\epsilon^2)$ such values is a large constant factor smaller than ϵ^2 . By Chebyshev's inequality, we estimate (10) to error $\pm \epsilon$ with probability at least 0.9. With that estimate, we will now use Lemma 2.4. Specifically, the entropy of \mathcal{D} is exactly $\mathbf{E}_{i\sim\mathcal{D}}\left[\log(1/p_i)\right]$, and we have

$$\begin{aligned} \left| \mathbf{E}_{i \sim \mathcal{D}} [\log(1/p_i)] - (\hat{H} - \mathbf{Z}) \right| &\leq \epsilon + \left| \mathbf{E}_{i \sim \mathcal{D}} [\log(1/p_i)] - (\hat{H} - \mathbf{Z}) \right| \\ &\leq \epsilon + \mathbf{E}_{i \sim \mathcal{D}} \left[\left| \log \left(\frac{1}{p_i} \right) - \mathbf{E}[\boldsymbol{\eta}_i] \right| \right] \leq 2\epsilon, \end{aligned}$$

where η_i is the result of running LogEstimator(\mathcal{D}, i).

Proof of Lemma 3.2. We note that since $\log(\cdot)$ is monotone increasing, we must have $H \ge \tilde{H}$. To see that it is not much larger, note that we always have $\log z = \ln(z)/\ln(2) \le (z-1)/\ln(2)$, which means

$$H - \tilde{H} = \mathbf{E}_{i,\boldsymbol{X}} \left[\log(\boldsymbol{X}/\boldsymbol{X}') \right] \leq \frac{1}{\ln(2)} \mathbf{E}_{i,\boldsymbol{X}} \left[\frac{\boldsymbol{X}}{\min\{\boldsymbol{X}, X_{\max}\}} - 1 \right] \leq \frac{1}{\ln(2)} \mathbf{E}_{i,\boldsymbol{X}} \left[\frac{\boldsymbol{X}}{X_{\max}} \right]$$
$$= \frac{1}{X_{\max} \cdot \ln(2)} \sum_{i=1}^{k} p_i \cdot \frac{t}{p_i} = \frac{tk}{X_{\max} \cdot \ln(2)} = \epsilon.$$

Proof of Lemma 3.4. Substituting the r_{ℓ} values into Lemma 3.3 ensures $\mathbf{E}[\mathsf{Error}^2] \leq \epsilon^2/10$. Hence the estimator is within $\pm \epsilon$ of \tilde{H} with probability 0.9 by Chebyshev's inequality.

For the intervals $\ell = \{1, \ldots, L-1\}$, we always spend r_{ℓ} tries to determine whether a sample falls within a particular interval. Note that we take one sample to determine $i \sim D$, and then we take at

most b_{ℓ} samples. Therefore, the sample complexity for these is

$$\sum_{\ell=1}^{L-1} r_{\ell} \cdot b_{\ell} = \frac{80tk}{\epsilon^2} \cdot \sum_{\ell=1}^{L-1} \frac{\log^2(\log^{(\ell-1)}(k)/\epsilon)}{(\log^{(\ell)}k)^3} = \frac{80tk}{\epsilon^2} \cdot \sum_{\ell=1}^{L-1} \frac{(3\log^{(\ell)}(k) + \log(1/\epsilon))^2}{(\log^{(\ell)}k)^3}$$
$$\leq kt \cdot O(\log^2(1/\epsilon)/\epsilon^2),$$

where we used the fact that

$$\sum_{\ell=1}^{L-1} \frac{1}{(\log^{(\ell)} k)} \le \frac{1}{1} + \frac{1}{\exp(1)} + \frac{1}{\exp(\exp(1))} + \frac{1}{\exp(\exp(\exp(1)))} + \dots = O(1) .$$

Finally, it remains to bound the expected sample complexity of the bucket L. Here, we note

$$r_L = \frac{O(1)}{\epsilon^2} \cdot \log^2\left(\frac{\log^{(L-1)}k}{\epsilon}\right) \le O\left(\frac{\log^2(1/\epsilon)}{\epsilon^2}\right).$$

Therefore, the expected sample complexity for interval L is $r_L \cdot \sum_{i=1}^k p_i \cdot \frac{t}{p_i} = O(k \log^4(1/\epsilon)/\epsilon^2)$.

D Conjectured Lower Bound

Recall that without a memory constraint the sample complexity is known to be $n = \Theta(\max\{\epsilon^{-1} \cdot k/\log(k/\epsilon), \epsilon^{-2}\log^2 k\})$ [VV17, VV11, JVHW15, WY16]. To prove a $\Omega(k/\epsilon^2)$ lower bound for the memory constrained version, we conjecture the following randomized process can be used to generate distributions over [2k] that look alike to any constant space algorithm that uses $o(k/\epsilon^2)$ samples but they have *different* entropies.

Suppose we have k Bernoulli random variables with parameter α : Y_1, \ldots, Y_k . And, we have k Rademacher random variables Z_1, \ldots, Z_k (that are +1 or -1 with probability 1/2). We construct distribution p in such a way that it is uniform over k pairs of elements $(1, 2), (3, 4), \ldots, (2k - 1, 2k)$. However, conditioning on pair (2i - 1, 2i), we may have a constant bias based on the random variable Y_i . And, we decide about the direction of the bias based on Z_i . More precisely, we set the probabilities in p as follows:

$$p_{2i-1} = \frac{1 + Y_i \cdot Z_i/4}{2k}, \qquad p_{2i} = \frac{1 - Y_i \cdot Z_i/4}{2k} \qquad \forall i \in [k].$$

Now, it is not hard to show that if we generate two distributions as above with $\alpha = (1 + \epsilon)/2$ and $\alpha = (1 - \epsilon)/2$, then their entropies are $\Theta(\epsilon)$ separated with a constant probability. Thus, any algorithm that can estimate the entropy has to *distinguish* $\alpha = (1 + \epsilon)/2$ from $\alpha = (1 - \epsilon)/2$. Intuitively, to learn α , we would require to *determine* $\Omega(1/\epsilon^2)$ many of Y_i 's. Since we have only a constant words of memory, we cannot perform the estimation of the Y_i 's in parallels. Thus, any natural algorithm would require to draw $\Omega(k/\epsilon^2)$ samples.