A Variance of LogEstimator

We now bound the variance of our estimator by O(log2 k). Recall that the output of LogEstimator
is given by log(X /t) — g(Bj1,..., B,), where the function g is bounded. Since the variance we

seek is O(log? k), it suffices to show that the variance of log(X /t) is O(log® k) with i ~ D, since
subtracting g changes the estimate by at most a constant (see Lemma 2.3).

Lemma A.1. Let ¢ ~ D and X denote the number of independent trials from Ber(p;) before we see
t successes. Then, Var[log(X /t)] = O(log® k).

Proof. Let Xy, = 2kt, and consider the random variable X' = min{ X, X,,.x}. Then
Var([log(X /)] < E [ (log(X /t) — log(X'/t) + log(X’ /t))z]

<2.E [ (log(X /t) — log(X’ /t))2] +2-E[log(X'/1)]
<2-E[log’(X/X")] + 2log*(2k)

2
X
-E — -1 + 21og?(2k),
2@ ( X ) og”(2k)

where we used that log(X'/t) < log(2k) always, and that log(z) < v/z — 1/In(2) for all z > 1.
Then,

B Omitted Details from Section 2

Proof of Claim 2.5. Notice that X is the number of trials from Ber(p;) until we see ¢ successes. We
now have the following string of equalities:

1
Ex B, . .B. [77 — log <p)] =Ex[logY]—Eg,. . B [g(Bi,Bs,...,B,)]
where we used the fact that g is a linear function, and that E[ B;] = p! in order to substitute

EBl,.A.,BT[g(Bla .. '7B7>)] = g(pl7pz27 .. 7p;“)

Furthermore, we divide logY = f(Y) + h(Y'), where f(z) is the degree-r Taylor expansion of
log z at 1, and h(z) = log z — f(2) is the error in the degree-r Taylor expansion of log(2), i.e.,

h(z) = log(z) — f(2).
Finally, by construction of g, E[ f(Y)] = g(pi, p?, . - ., p}), which gives the desired equality. [

Verifying Y is subgamma. Recall that X is the number of independent draws from a Ber(p)
distribution until we see ¢ successes. In other words, we may express X = X1 + --- + X, where
X ; is the number of draws of Ber(p) before we get a single success. Then, we always satisfy
1
E[X;]=- Pr[X;>(=0-pll <e?.
p

This, in turn, implies that for any r > 1

E[X: — 1/p"' D" < (Bx, x:[1X: = XD <2E@[XDY =00 /p),
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where the first line is by Jensen’s inequality, and the second is by the triangle inequality and Holder
inequality. Finally, we use the tail bound on X ; to upper bound the expectation of | X ;|". Then, we
have

e}
- Ak
B[ X0 ] <14 AB[X: — 1/p] + Y 57 ElIX — 1/p]
k=2
=1+ Z = (O(k/p)F <14+ 0(\2/p?), when || sufficiently smaller than p
k=2
< exp (O(N?/p?))
Then, since X1, ..., X} are all independent, we have

E[e)‘(X*t/p)] < exp (O()\Qt/pQ)) = E[e’\(Y*U] < exp (O()\z/t)) ,

and this bound is valid whenever || is sufficiently smaller than ¢.

C Onmitted Proofs from Section 3

Proof of Lemma 3.1. The approach is to estimate
Eip[hi(pi)] = Bivn[g(ps 1. -, 97)]. (10)

There exists an algorithm using O(log(1/€)/e?) samples to estimate the above quantity: for j €
{0,...,0(1/€?)}, one takes a sample i; ~ D and uses 7 = O(log(1/e€)) additional samples
S81,...,8, ~ D to define

) def

BYY1{sy=-..=s,=4;} and Z;=gBY,... BY).

Then, let Z be the average of all Z;’s, which is an unbiased estimate to E;p [g(pi,pf, e ,p;?)] .
Since g is bounded (from Lemma 2.3), the variance of O(1/€?) such values is a large constant factor
smaller than 2. By Chebyshev’s inequality, we estimate (10) to error 4-¢ with probability at least
0.9. With that estimate, we will now use Lemma 2.4. Specifically, the entropy of D is exactly
E;p[log(1/p;)], and we have

Ei.p[log(1/p;)] — (H - z)‘ <e+ ‘EiND[log(l/pi)] _ (H _ z)\

log (pi) - E[n,]

where 7, is the result of running LogEstimator (D, 7). O

§€+Ei~D[

<=

Proof of Lemma 3.2. We note that since log(+) is monotone increasing, we must have H > H.To
see that it is not much larger, note that we always have log z = In(z)/In(2) < (2 — 1)/ In(2), which
means

H—H=E; x[log(X/X")] <

1 X 1 X
E; -1 < —E; -
In(2) % [min{X,Xmax} ] = In(2) “¥ [Xmax]

O

Proof of Lemma 3.4. Substituting the 7, values into Lemma 3.3 ensures E [ Error2] < €2/10. Hence
the estimator is within +e of H with probability 0.9 by Chebyshev’s inequality.

For the intervals £ = {1, ..., L — 1}, we always spend ry tries to determine whether a sample falls
within a particular interval. Note that we take one sample to determine ¢ ~ D, and then we take at
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most by samples. Therefore, the sample complexity for these is

L—

= , _ 80tk = log?(log ™ D(k)/e) 80tk <= (3log'®) (k) + log(1/e))?
ZTZ' ¢ = €2 Z (10()k3 - €2 ’ ) 1.\3
=1 g k) (log"™ k)

=1
< kt-O(log®(1/€)/€?),
where we used the fact that

= 1 1 1
Z < + + +...=0(1).

log exp(1) = exp(exp(1))  exp(exp(exp(1)))

—_

Finally, it remains to bound the expected sample complexity of the bucket L. Here, we note

(L-1) 2
. 06(21) log? <10g k> <0 <1og (21/e)>_

€ €

t

Therefore, the expected sample complexity for interval L is r, - Z  pi-— = O(klog*(1/€)/é?).
bi

O

D Conjectured Lower Bound

Recall that without a memory constraint the sample complexity is known to be n = ©(max{e !
k/log(k/e), e 2log® k}) [VV17, VV11, IVHWI5, WY16]. To prove a Q(k/e?) lower bound for
the memory constrained version, we conjecture the following randomized process can be used to
generate distributions over [2k] that look alike to any constant space algorithm that uses o(k/€?)
samples but they have different entropies.

Suppose we have k& Bernoulli random variables with parameter a:: Y7, ...,Y%;. And, we have k
Rademacher random variables Z1, . .., Zy (that are +1 or —1 with probability 1/2). We construct
distribution p in such a way that it is uniform over k pairs of elements (1, 2), (3,4),..., (2k — 1, 2k).
However, conditioning on pair (2i — 1,2i), we may have a constant bias based on the random
variable Y;. And, we decide about the direction of the bias based on Z;. More precisely, we set the
probabilities in p as follows:

14Y;-Z;/4 ‘_1—Y;-Zi/4
2% ’ P2i = 2%

Now, it is not hard to show that if we generate two distributions as above with o = (1 + €)/2
and o = (1 — €)/2, then their entropies are ©(¢) separated with a constant probability. Thus, any
algorithm that can estimate the entropy has to distinguish o« = (1 + €)/2 from o = (1 — €)/2.
Intuitively, to learn a, we would require to determine €2(1/€?) many of Y;’s. Since we have only
a constant words of memory, we cannot perform the estimation of the Y;’s in parallels. Thus, any
natural algorithm would require to draw Q(k/€?) samples.

P2i-1 = Vi e [k].
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