
A Variance of LogEstimator

We now bound the variance of our estimator by O(log2 k). Recall that the output of LogEstimator
is given by log(X/t) � g(B1, . . . ,Br), where the function g is bounded. Since the variance we
seek is O(log2 k), it suffices to show that the variance of log(X/t) is O(log2 k) with i ⇠ D, since
subtracting g changes the estimate by at most a constant (see Lemma 2.3).
Lemma A.1. Let i ⇠ D and X denote the number of independent trials from Ber(pi) before we see

t successes. Then, Var[[[ log(X/t)]]] = O(log2 k).

Proof. Let Xmax = 2kt, and consider the random variable X 0 = min{X, Xmax}. Then
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where we used that log(X 0/t)  log(2k) always, and that log(z) 
p
z � 1/ ln(2) for all z � 1.

Then,

E


X

X 0 � 1

���
 E


X

Xmax

���
=

1

Xmax

kX

i=1

pi ·
t

pi
=

tk

Xmax
= 2.

B Omitted Details from Section 2

Proof of Claim 2.5. Notice that X is the number of trials from Ber(pi) until we see t successes. We
now have the following string of equalities:
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where we used the fact that g is a linear function, and that E[[[B` ]]] = p`
i

in order to substitute
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Furthermore, we divide logY = f(Y ) + h(Y ), where f(z) is the degree-r Taylor expansion of
log z at 1, and h(z) = log z � f(z) is the error in the degree-r Taylor expansion of log(z), i.e.,

h(z) = log(z)� f(z).

Finally, by construction of g, E[[[f(Y )]]] = g(pi, p2i , . . . , p
r

i
), which gives the desired equality.

Verifying Y is subgamma. Recall that X is the number of independent draws from a Ber(p)
distribution until we see t successes. In other words, we may express X = X1 + · · ·+Xt, where
Xi is the number of draws of Ber(p) before we get a single success. Then, we always satisfy
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This, in turn, implies that for any r � 1
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where the first line is by Jensen’s inequality, and the second is by the triangle inequality and Hölder
inequality. Finally, we use the tail bound on Xi to upper bound the expectation of |Xi|r. Then, we
have
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Then, since X1, . . . ,Xt are all independent, we have
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and this bound is valid whenever |�| is sufficiently smaller than t.

C Omitted Proofs from Section 3

Proof of Lemma 3.1. The approach is to estimate

Ei⇠D[[[ht(pi)]]] = Ei⇠D
⇥⇥⇥
g(pi, p

2
i , . . . , p

r

i)
⇤⇤⇤
. (10)

There exists an algorithm using O(log(1/✏)/✏2) samples to estimate the above quantity: for j 2
{0, . . . , O(1/✏2)}, one takes a sample ij ⇠ D and uses r = O(log(1/✏)) additional samples
s1, . . . , sr ⇠ D to define
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Since g is bounded (from Lemma 2.3), the variance of O(1/✏2) such values is a large constant factor
smaller than ✏2. By Chebyshev’s inequality, we estimate (10) to error ±✏ with probability at least
0.9. With that estimate, we will now use Lemma 2.4. Specifically, the entropy of D is exactly
Ei⇠D[[[ log(1/pi)]]], and we have
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Ĥ �Z

⌘���  ✏+
���Ei⇠D[[[ log(1/pi)]]]�

⇣
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where ⌘i is the result of running LogEstimator(D, i).

Proof of Lemma 3.2. We note that since log(·) is monotone increasing, we must have H � H̃ . To
see that it is not much larger, note that we always have log z = ln(z)/ ln(2)  (z � 1)/ ln(2), which
means
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Proof of Lemma 3.4. Substituting the r` values into Lemma 3.3 ensures E
⇥⇥⇥
Error2

⇤⇤⇤
 ✏2/10. Hence

the estimator is within ±✏ of H̃ with probability 0.9 by Chebyshev’s inequality.

For the intervals ` = {1, . . . , L� 1}, we always spend r` tries to determine whether a sample falls
within a particular interval. Note that we take one sample to determine i ⇠ D, and then we take at
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most b` samples. Therefore, the sample complexity for these is
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Finally, it remains to bound the expected sample complexity of the bucket L. Here, we note
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Therefore, the expected sample complexity for interval L is rL ·
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D Conjectured Lower Bound

Recall that without a memory constraint the sample complexity is known to be n = ⇥(max{✏�1 ·
k/ log(k/✏), ✏�2 log2 k}) [VV17, VV11, JVHW15, WY16]. To prove a ⌦(k/✏2) lower bound for
the memory constrained version, we conjecture the following randomized process can be used to
generate distributions over [2k] that look alike to any constant space algorithm that uses o(k/✏2)
samples but they have different entropies.

Suppose we have k Bernoulli random variables with parameter ↵: Y1, . . . , Yk. And, we have k
Rademacher random variables Z1, . . . , Zk (that are +1 or �1 with probability 1/2). We construct
distribution p in such a way that it is uniform over k pairs of elements (1, 2), (3, 4), . . . , (2k� 1, 2k).
However, conditioning on pair (2i � 1, 2i), we may have a constant bias based on the random
variable Yi. And, we decide about the direction of the bias based on Zi. More precisely, we set the
probabilities in p as follows:

p2i�1 =
1 + Yi · Zi/4

2k
, p2i =

1� Yi · Zi/4

2k
8i 2 [k] .

Now, it is not hard to show that if we generate two distributions as above with ↵ = (1 + ✏)/2
and ↵ = (1 � ✏)/2, then their entropies are ⇥(✏) separated with a constant probability. Thus, any
algorithm that can estimate the entropy has to distinguish ↵ = (1 + ✏)/2 from ↵ = (1 � ✏)/2.
Intuitively, to learn ↵, we would require to determine ⌦(1/✏2) many of Yi’s. Since we have only
a constant words of memory, we cannot perform the estimation of the Yi’s in parallels. Thus, any
natural algorithm would require to draw ⌦(k/✏2) samples.
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