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Summary
We study allocating limited divisible resources to agents who submit requests for the

resources one or multiple times over a finite horizon. This is referred to as the sequential
resource allocation problem, as irrevocable allocations need to be made as the requests arrive,
without observations on the future requests. Existing works on sequential resource allocation
(in the payment-free setting) mainly focus on optimizing social welfare and design mechanisms
under the assumption that the agents make truthful requests. Such mechanisms can be easily
exploitable – strategic agents may misreport their requests and inflate their allocations. Our
aim in this work is to design sequential resource allocation mechanisms that balance the
competing objectives of social welfare maximization (promoting the overall agent satisfaction)
and incentive compatibility (ensuring that the agents do not have incentives to misreport). We
do not design these mechanisms from scratch. As the incentive compatible mechanism design
problem has been well studied in the one-shot setting (horizon length equals one), we propose a
general meta-algorithm of transforming a one-shot mechanism into its sequential counterpart.
The meta-algorithm can plug in any one-shot mechanism and approximately carry over the
properties that the one-shot mechanism already satisfies to the sequential setting. We establish
theoretical results validating these claims and also illustrate the superior performance of the
proposed method through numerical simulations.

Contribution(s)
1. We propose a meta-algorithm, which we name Sequential Allocation Meta Algorithm

(SAMA), which can be regarded as a general framework for reducing a sequential resource
allocation problem into a series of one-shot problems. The key feature of SAMA is that
it accounts for past allocation and unobserved future requests – agents with greater past
allocations are more discounted against in the current round, and resources are withheld for
future requests based on a confidence bound. We mathematically show that if the one-shot
mechanism optimizes NSW and/or achieves incentive compatibility (IC) in the one-shot
sense, SAMA approximately carries over the properties to the sequential setting. To our
knowledge, this is the first time such a result has been established for a sequential mechanism
in the payment-free setting.
Context: Prior papers on sequential resource allocation do not consider achieving IC and
assume that the agents report their requests truthfully. The existing work that considers
optimizing IC jointly with other metrics including social welfare and efficiency is only for the
one-shot setting, in which the supplier fully observes all requests before making an allocation.

2. We numerically illustrate the superior performance of SAMA and its approximate NSW and
IC preserving properties, with a few established one-shot mechanisms as the building block.
Specifically, we plug-in 1) the Proportional Fairness (PF) mechanism, which achieves the
maximum possible NSW but severely violates IC, 2) the Partial Allocation (PA) mechanism,
designed by Cole et al. (2013) to be exactly IC at the cost of a substantial reduction to NSW,
3) ExS-Net, which is a learned neural-network-parameterized mechanism proposed in Zeng
et al. (2024b) that achieves near-optimal NSW and approximate IC simultaneously.
Context: None.
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Abstract

We study allocating limited divisible resources to agents who submit requests for the
resources one or multiple times over a finite horizon. This is referred to as the sequential
or online resource allocation problem, as irrevocable allocations need to be made as
the requests arrive, without observations on the future requests. The existing work on
sequential resource allocation (in the payment-free setting) mainly focuses on optimizing
social welfare and designs mechanisms under the assumption that the agents make
truthful requests. Such mechanisms can be easily exploitable – strategic agents may
misreport their requests to inflate their allocations. Our aim in this work is to design
sequential resource allocation mechanisms that balance the competing objectives of
social welfare maximization (promoting the overall agent satisfaction) and incentive
compatibility (ensuring that the agents do not have incentives to misreport). We do not
design these mechanisms from scratch. Instead, as the incentive compatible mechanism
design problem has been well studied in the one-shot setting (horizon length equals one),
we propose a general meta-algorithm of transforming a one-shot mechanism into its
sequential counterpart. The meta-algorithm can plug in any one-shot mechanism and
approximately carry over the properties that the one-shot mechanism already satisfies
to the sequential setting. We establish theoretical results validating these claims and
illustrate their superior performance relative to baselines in experiments.

1 Introduction

Resource allocation is a fundamental problem in economics and computer science that studies the
distribution of limited resources among requesting agents. We consider sequential (or dynamic,
online) resource allocation, in which a supplier needs to distribute limited resources to a large
number of agents demanding the resources without charging monetary payments. The interaction
between the supplier and the agents occurs over multiple rounds within a finite horizon. In each
round, a subset of the agents send requests for one or multiple types of the resources. Based on the
demands in the current round (and the demands and allocations made previously) but not observing
the future demands, the supplier needs to make an irrevocable allocation, with the goal of optimizing
aggregate performance metrics. Applications of the problem framework span a wide range of domains,
including telecommunication (Su et al., 2019; Guo et al., 2022), cloud computing (Vinothina et al.,
2012; Belgacem, 2022), public health (Cao & Huang, 2012; Ehmann et al., 2021), and poverty relief
(Yang, 2018; Gómez-Pantoja et al., 2021).

A significant challenge in sequential resource allocation stems from the uncertainty of the realized
future requests, even when knowledge of their distribution is available. Successful mechanisms need to
balance between consuming the resources as requests arrive and saving resources for anticipated future
requests. The existing literature handles the uncertainty leveraging techniques such as confidence
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bounds (Sinclair et al., 2020; 2022; Hassanzadeh et al., 2023) and dynamic programming (Powell &
Topaloglu, 2006; Forootani et al., 2020), and focuses on designing payment-free resource allocation
mechanisms to optimize/achieve the following objectives: 1) Nash social welfare (NSW), defined
as the product of all agents’ utilities, 2) efficiency, measuring the utilization rate of resources,
3) competitive ratio, measuring the agents’ utilities compared against those from some optimal
mechanism with hindsight knowledge, 4) envy-freeness, where each agent prefers its own allocation
over the allocation of any other.

A critical assumption made in these works is that the agents report their requests truthfully. Mech-
anisms designed under this assumption are highly exploitable when it does not hold, allowing a
strategic agent to substantially increase its allocation by sending untruthful requests. In real-life ap-
plications, the agents are usually self-interested humans and/or entities that are unlikely to be always
truthful, which is rarely prioritized in academic literature. In this work, our goal is to bridge this gap
by designing mechanisms that (approximately) achieve both NSW and incentive compatibility (IC) in
the sequential setting. IC is a property of a resource allocation mechanism which guarantees that no
agent can obtain a strictly more preferable allocation by misreporting requests, and is formed as the
unilateral deviation in their utility from its rational optimal, a quantity referred to as exploitability.

To the best of our knowledge, IC has not been considered in the literature on payment-free sequential
resource allocation. Even in the one-shot allocation setting (horizon length equals one), ensuring
incentive compatibility necessarily leads to unfair mechanisms (in terms of NSW) (Hartline &
Roughgarden, 2008), and balancing between NSW and exploitability in the sequential setting raises
intrinsic questions regarding scalability with respect to the problem horizon, which are identified in
this work for the first time. Our approach to this problem class is to design a general meta-algorithm
for assembling a one-shot allocation mechanism into its sequential version, which ensures that the
desirable properties of the one-shot mechanism – NSW and IC – are inherited by their sequential
extension. This allows us to avoid designing a mechanism from scratch for the sequential setting,
while exploiting advances in the (better-studied) one-shot resource allocation literature.

Main Contributions

• We propose a meta-algorithm, named Sequential Allocation Meta-Algorithm (SAMA), which can be
regarded as a general framework for reducing a sequential resource allocation problem into a series
of one-shot problems. The key feature of SAMA is that it accounts for past allocation and unobserved
future requests – agents with greater past allocations are more heavily discounted against in the
current round, and resources are withheld for future requests based on a confidence bound.
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Figure 1: SAMA Algorithm & Performance Comparison (see Example 2 for discussion).

• We establish theoretically that if a mechanism optimizes NSW and/or achieves IC in the one-shot
sense, SAMA approximately carries over the properties to the sequential setting. This implies that
if a suitable one-shot mechanism balancing NSW and IC is used as the building block, SAMA will
enjoy approximate NSW and IC guarantees at the same time. To our knowledge, this is the first
time such a result has been established for a sequential mechanism in the payment-free setting.

• We further illustrate the superior performance of SAMA and its approximate NSW and IC
preserving properties using experiments on synthetic data. We plug in the following well-known
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one-shot mechanisms for validation: 1) the Proportional Fairness (PF) mechanism, which achieves
the maximum possible NSW but severely violates IC, 2) the Partial Allocation (PA) mechanism,
designed by Cole et al. (2013) to be exactly IC at the cost of a substantial reduction to NSW, 3)
ExS-Net, which is a learned neural-network-parameterized mechanism proposed in Zeng et al.
(2024b) that achieves near-optimal NSW and approximate IC simultaneously.

1.1 Related Work

One line of work in the related literature formulates the problem in a general online decision making
framework with (possibly non-convex) reward and resource consumption functions (Mirrokni et al.,
2012; Balseiro et al., 2020; 2021b; 2023; An et al., 2024), which may model various payment-based
and payment-free problems with proper choices of the reward function. Most works in this direction
consider stochastic (i.i.d.) and/or adversarial request models, and some do not require distributional
knowledge of the future requests. The algorithm performance is measured by a regret/competitive
ratio defined with respect to the optimal allocation in hindsight. The algorithms developed for such
general frameworks often have a strong connection to bandit algorithms (Zhalechian et al., 2022;
Molina et al., 2023). The latest representative works (Balseiro et al., 2023; An et al., 2024) take
a primal-dual approach where the dual variable is associated with the budget constraints, and they
establish strong performance guarantees in terms of regret/competitive ratio which matches the
worst-case lower bounds. Other related works (Walsh, 2011; Sinclair et al., 2020; 2022; Liao et al.,
2022; Hassanzadeh et al., 2023; Yang et al., 2024) assume a linear additive agent utility function,
and the optimization objectives include social welfare (fairness), efficiency, and/or envy-freeness.
Envy-freeness and certain notions of social welfare may not be conveniently modeled by the reward
function considered in the general frameworks. Therefore, tailored analyses are usually carried out.
The works discussed so far are restricted to the setting where the agents are not strategic and report
requests truthfully, which significantly deviates from our setup.

A second line of work just focuses on incentive compatible mechanism design in the payment-based
(auction) setting (Tan et al., 2020; Deng et al., 2021; Balseiro et al., 2021a), where the monetary
exchange acts an important tool for eliminating the incentive to misreport. Each agent is required
to pay a fees in exchange for receiving the resource. The mechanisms are designed such that
misreporting would increase the cost of acquisition for the same valuation, thereby decreasing the
agent’s utility. However, this tool is unavailable in the payment-free case, which is the setup of our
paper.

Finally, sequential allocation in the presence of strategic agents that achieves fairness and regret
objectives is considered in (Yin et al., 2022). There is a single indivisible resource that arrives
repeatedly in time and is allocated between N agents that all have the same valuation distribution.
The agents have the freedom to misreport the valuations and the proposed algorithm stops allocating
if it detects any misreporting. If there is no misreport detected, the algorithm allocates randomly till a
pre-specified fraction of items is allocated to each agent. We, on the other hand, consider M divisible
resources and N agents, and design a meta algorithm that allows any one-shot allocation mechanism
(including uniform allocation as in (Yin et al., 2022)) to the sequential setting while approximately
maintaining the core properties.

2 Problem Formulation – Sequential Resource Allocation

We consider the sequential resource allocation problem, which is a generalization of the single-period
resource allocation problem with stochastic requests arriving over time. A supplier needs to allocate
a finite number M of divisible resources to N agents over a horizon of T discrete time intervals. Any
agent may come to the supplier in any number of intervals and submit a request for one or multiple
types of the resources every time. We use x

[t]
i,m ∈ [0, x̄] (for some x̄ < ∞) to denote the quantity

of resource m ∈ [M ] requested by agent i ∈ [N ] in time interval t ∈ [T ]1. We assume a clipped

1We use [M ] to represent {1, 2, · · · ,M}.
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linear utility – each unit of resource m increases the utility of agent i by vi,m up to the demand, with
vi,m ∈ [v, v̄], ∀i,m for some 0 < v, v̄ < ∞. This is a standard assumption in the literature (Cole
et al., 2013) – see (1). Both xt

i,m and vi,m are privately known only to agent i.

An agent submits a request by reporting these values to the supplier (possibly untruthfully). The
valuation is only reported the first time an agent submits a request and fixed for the entire horizon.
This is a reasonable assumption that captures the real-world static preferences for resources, with
only changing demand over time. Observing all requests in time interval t, the supplier makes an
irrevocable allocation a

[t]
i,m ≥ 0 to every agent i for every resource m. The supplier may take historical

information into account when making a decision, including the total past allocation denoted by ã,
where ã

[t]
i,m represents the total allocation of resource m made to agent i until time t, i.e.

ã
[1]
i,m ≜ 0, ã

[t]
i,m ≜

∑t−1
t′=1 a

[t′]
i,m, ∀t ≥ 2.

The budget Bm ≥ 0 is the total available quantity of resource m, known to the supplier before
allocation begins and not re-stocked. We denote by b

[t]
m ∈ R+ the remaining quantity of resource m

at the beginning of interval t, which satisfies the relation

b
[1]
m = Bm, b

[t]
m = b

[t−1]
m −

∑N
i=1 a

[t−1]
i,m = Bm −

∑t−1
t′=1

∑N
i=1 a

[t′]
i,m,∀t ≥ 2.

We may aggregate valuations, demands, and budgets across agents, resources, and/or intervals.
For a list of the notations, see Table 3. In particular, we use the bold notation x,a to denote
the aggregation of demands and allocations over time. The valuations v, demands x, budgets
B are random variables following a known joint distribution. Let I [t] represent the historical
information observed by the supplier up to the beginning of time interval t, i.e. I [1] = {b[t]} and
I [t] ≜ {v, x[1], · · · , x[t−1], a[1], · · · , a[t−1], b[1], · · · , b[t]} for t ≥ 2. We denote by I [t] the space of
historical information at time t. For simplicity, we assume that the demands of time t are not affected
by allocations made prior to t, a common setting considered in a number of existing works (Sinclair
et al., 2022; Liao et al., 2022; Hassanzadeh et al., 2023). Given demands x ∈ RTNM , valuations
v ∈ RNM , and allocations a ∈ RTNM , we use ui to represent the utility of agent i from its total
allocation over the horizon

ui(a, v,x) ≜
∑T

t=1 ui(a
[t], v, x[t]), (1)

where ui is the single-interval utility function defined as ui(a, v, x) ≜
∑M

m=1 vi,m min{ai,m, xi,m}.
To allow for the degree of freedom in discounting certain agents, we introduce a bias matrix ã ∈ RNM ,
where ãi models the total allocation made to agent i in the past interactions. A sequential mechanism
is a policy that determines a valid allocation in each time interval based on the current demands and
historical information. A valid allocation must satisfy the budget constraint across time and be no
more than the demand.

Definition 1 (Sequential Allocation Mechanism) A mapping f = {f [t] : RNM
+ × RNM

+ × I [t] →
RNM
+ }t∈[T ] is said to be a sequential allocation mechanism if for all t, v, x[t], I [t]∑N

i=1 f
[t]
i,m(v, x[t], I [t]) ≤ b

[t]
m , ∀m; 0 ≤ f

[t]
i,m(v, x[t], I [t]) ≤ x

[t]
i,m, ∀i,m. (2)

We denote f(v,x, B) = [f [1](v, x[1], I [1]); · · · ; f [T ](v, x[T ], I [T ])] ∈ RTNM
+ .

2.1 Mechanism Design Objectives

We study designing sequential mechanisms that balance NSW and exploitability. The NSW in the
sequential setting can be defined by following the classic one-period definition (Cole et al., 2013).

Definition 2 (Sequential NSW) Given v ∈ RNM
+ , x ∈ RTNM

+ , B ∈ RM
+ , the Nash social welfare

of a sequential mechanism f is defined as

NSW(f , v,x, B) ≜
∏N

i=1 ui(a, v,x), where a = f(v,x, B).
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The definition states that the agents evaluate their satisfaction based on the total allocation they
receive over the horizon, on which an aggregate NSW is computed. A mechanism that maximizes
this NSW aims to ensure a “fair” cumulative allocation over time for all agents. We believe this is
one such definition that matches the objective usually applicable in real-world problems where the
performance is evaluated based on cumulative outcomes, such as in computational resource allocation
and wireless networks.

Definition 3 (Exploitability) For mechanism f and v ∈RNM
+ , x ∈ RTNM

+ , and B ∈ RM
+ , we define

explonline
i (f , v,x, B) ≜ max

t,v′
i∈RM

+ ,x′
i∈RM

+

ui

(
f [t]
(
(v′i, v−i), (x

′
i, x

[t]
−i), I

[t]
)
, v, x[t]

)

− ui

(
f [t]
(
v, x[t], I [t]

)
, v, x[t]

)
,

explfull
i (f , v,x, B) ≜ max

v′
i∈RM

+ ,x′
i∈RTM

+

ui

(
f
(
(v′i, v−i), (x

′
i,x−i), B

)
, v,x

)
−ui

(
f(v,x, B), v,x

)
,

where I [t] is generated under f .

Conceptually, the online exploitability measures the maximum possible utility increase obtained by an
agent in any interval t when it misreports its parameters only in interval t. The full exploitability is a
more ambitious metric – it measures the maximum total utility increase of agent i when it misreports
its parameters across all intervals. Note that explfull

i may be far larger than T · explonline
i . A small

explfull
i necessarily implies a small explonline

i , but the converse is not true (see Example 1 below). We
say that a sequential mechanism f is ϵ-online/full incentive compatible if explonline

i (f , v,x, B) ≤ ϵ
or explfull

i (f , v,x, B) ≤ ϵ for all i, v,x, B.

2.2 One-shot Allocation (T = 1)

We quickly discuss the special case when T = 1, as these will feature in the key allocation component
of Algorithm 1. The definition of a one-shot allocation mechanism is given as follows.

Definition 4 (One-Shot Allocation Mechanism) A mapping f : RNM
+ × RNM

+ × RM
+ × RNM →

RNM
+ is said to be a one-shot mechanism if for all v ∈ RNM

+ , x ∈ RNM
+ , B ∈ RM

+ , and ã ∈ RNM∑N
i=1 fi,m(v, x,B, ã) ≤ Bm, ∀m,

0 ≤ fi,m(v, x,B, ã) ≤ xi,m,∀i,m.

One-shot allocation mechanism design is well-studied in the literature with standard mechanisms
like (i) proportional fairness (PF): By definition fPF achieves the maximum possible NSW, but is
shown to incur a substantial exploitability (Zeng et al., 2024a).

fPF (v, x,B, ã) = argmaxa∈RNM

∑N
i=1 log ui(a+ ã, v, x+ ã)

s.t. 0 ≤ a ≤ x;
∑N

i=1 ai,m ≤ Bm, ∀m ∈ [M ]. (3)

(ii) partial allocation (PA): Motivated to design an “unexploitable” mechanism with guarantees on
NSW, Cole et al. (2013) proposes the Partial Allocation (PA) mechanism, which is built upon the
PF mechanism. PA mechanism assigns to each agent the allocation they would receive under the
PF mechanism scaled by a discount ratio (between 0 and 1), computed according to the externality
each agent introduces to the system. We represent the PA mechanism by fPA and note that the
aforementioned discount ratio is guaranteed to be at least 1/e in the worst case when ã = 0, i.e., we
have for any v, x,B

fPA
i,m (v, x,B, 0)

fPF
i,m (v, x,B, 0)

≥ 1/e. (4)
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However, defined as the product of agents’ utilities, the NSW of the PA mechanism deteriorates
exponentially with N and is numerically shown in Zeng et al. (2024b) to be negligibly low (less than
1/1000 of that of the PF mechanism) in 10-agent systems.

(iii) ExS-Net: Balancing between the two ends of the spectrum, Zeng et al. (2024b) introduces a
neural-network-parameterized mechanism ExS-Net. Trained with samples from a distribution of
truthful parameters, the mechanism ensures that no agent can benefit from untruthful reporting by
more than a user-specified parameter ϵ > 0. With a suitable choice of ϵ, ExS-Net substantially
reduces the exploitability relative to the PF mechanism, while still achieving near-optimal NSW. We
denote the mechanism as fExS in the rest of paper.

Example 1 We discuss a simple mechanism which incurs zero online exploitability but a non-zero
full exploitability. Suppose that T = 2 and we run the mechanism f = {f [1], f [2]} defined as follows

a
[1]
i,m = f

[1]
i,m(v, x[1], I [1]) = fPA

i,m (v, x[1],
1

2
B, 0),

f
[2]
i,m(v, x[2], I [2]) =

{
fPA
i,m (v, x[2], 1

2B, 0), if a[1]i,m ≤ 1
4x

[1]
i,m,

0, otherwise.

(5)

Eq. (5) says that we allocate according to the PA mechanism in the first interval, with half of the total
available budget. In the second interval, we do not allocate anything unless the allocation made
in the first interval is much smaller than what the agent requests – in that case, we allocate to the
specific agent on the specific resource according to the PA mechanism. This is a valid sequential
mechanism, as the budget constraint is never violated. It can also be seen that the online exploitability
of the mechanism is zero, as fPA satisfies IC. However, the full exploitability is non-zero, as an
agent supposed to receive zero allocation in the second interval with a truthful report can suitably
under-report its demand in the first interval to increase its second-round allocation.

Why is sequential setting with IC & NSW non-trivial? First, consider the one-shot setting. NSW
as an objective can be optimized by considering the allocation that solves (3). IC on the other hand,
can only be evaluated and optimized given a mechanism. This is what makes it challenging to address
both these simultaneously, and the literature on hand-designed mechanisms with exact guarantees
solve either NSW (ex. PF) or IC (ex. PA). The sequential version only exacerbates this challenge.
Ensuring full IC over multiple rounds increases the difficulty, as it is unclear how to prevent agents
from manipulating future allocations by adjusting their current reports. We take the first step in
tackling this problem by instead designing mechanisms that approximately preserve the properties of
the well-understood one-shot mechanisms. In doing so, however, we reveal potentially unimprovable
dependence on the problem horizon, unless additional structure is assumed regarding the interaction
between demand and time, which we defer to future work.

3 Meta-Algorithm for Sequential Allocation

In this section, we introduce the Sequential Allocation Meta-Algorithm (SAMA), a framework for
applying one-shot mechanisms to the sequential setting. The key challenge of sequential resource
allocation lies in the future request uncertainty. SAMA is designed to account for the worst case in
the face of uncertainty by following the simple idea of pre-allocating to future requests pretending
that they will arrive exactly as their lower confidence bounds. A similar idea has been considered in
Hassanzadeh et al. (2023) in the design of their SAFFE algorithm. Interestingly, SAMA with the PF
mechanism plugged in can be regarded as a generalization of SAFFE to the multi-resource setting.

We denote the one-shot/ single-period allocation mechanism as f one-shot, which takes arguments v
(valuation), x (demand), B (budget), and ã (past allocation) and produces an allocation outcome a.
In the rest of the paper, we use the notation SAMA(f one-shot) to represent the sequential mechanism
built from f one-shot according to Algorithm 1. Formally presented in Algorithm 1 and illustrated in
Figure 1, SAMA initializes the budget b[1] = B ∈ RM and total past allocation ã[1] = 0 ∈ RMN , and
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operates in every interval t as follows. First, SAMA determines an “allocation factor” β
[t]
i as the ratio

between the expected demand in the current interval and the total expected demand from t till the end
of the horizon. This factor is used to scale the current demand to produce y

[t]
i,m as an estimate of the

total demands for the remaining intervals. For simplicity of presentation, we assume that the expected
demand E[x[t]

i,m] is always positive, which makes the allocation factor well-defined, but we note that

the generalization can be easily made by fixing β
[t]
i,m to 1 when the denominator of (6) is zero. Second,

we apply the one-shot mechanism to calculate an tentative allocation c[t] ∈ RMN based on y[t] using
the full remaining budget. However, we cannot allocate c[t] as it contains a portion associated with
future requests. We determine the actual allocation by scaling c[t] back with the allocation factor β[t],
update the remaining budget and past allocation information, and proceed to the next iteration. As
the allocation in every iteration only uses the remaining budget and the allocation factor β[t]

i always
lies between 0 and 1, SAMA always returns a feasible allocation for every t.

Remark 1 When the exact future request distribution is unknown, SAMA can be applied using
expectations and standard deviations estimated from data. If no such data is available, we can use
SAMA with β

[t]
i = 1, ensuring that at least past allocations are considered when making current

decisions. Although constantly setting β
[t]
i = 1 results in a loss of the mathematical guarantees

on NSW, the approach remains preferable to independently applying one-shot mechanism in each
iteration, as it still accounts for past allocations.

Algorithm 1 Sequential Allocation Meta-Algorithm (SAMA)

1: Initialize: budget b[1] = B ∈ RM , past allocations ã[1] = 0 ∈ RMN

2: for interval t = 1, · · · , T do
3: Receive reported valuation vi for all i (only the first time that agent i reports) and demand x[t]

4: Calculate β[t], y[t] ∈ RN such that

β
[t]
i,m =

E[x[t]
i,m]

E[x[t]
i,m] +

∑
τ>t max

{
E[x[τ ]

i,m]− λ[τ ] std(x
[τ ]
i,m), 0

} ,
β
[t]
i = 1

M

∑M
m=1 β

[t]
i,m, y

[t]
i,m = x

[t]
i,m/β

[t]
i . (6)

5: Apply one-shot allocation mechanism with bias and allocate a
[t]
i to agent i

c[t] = f one-shot(v, y[t], b[t], ã[t]),

a
[t]
i,m = min{β[t]

i c
[t]
i,m, x

[t]
i,m}.

(7)

6: Update remaining budget b[t+1]
m = b

[t]
m −

∑N
i=1 a

[t]
i,m for all m ∈ [M ]

7: Update past allocation
ã
[t+1]
i,m = ã

[t]
i,m + a

[t]
i,m, ∀i,m

8: end for

Example 2 Consider the following simple case of 2 agents requesting a single resource over T = 2

time periods. Let the total budget B = 6 units and the demands be as follows: a
[1]
1 = 2, a

[1]
2 = 0

and a
[2]
1 = 2, a

[2]
2 = 4 units over the two time periods; as illustrated in the first sub-figure in

Fig. 1. Suppose we are interested in maximizing the NSW over the two time periods. We know that
PF allocation achieves the largest welfare in a single time-period (Cole et al., 2013; Zeng et al.,
2024b). We known that for a single source allocation problem, PF can be seen as a water-filling
solution (Hassanzadeh et al., 2023). If we myopically solve for PF allocations in each period, we
obtain the allocation in the second sub-figure in Fig. 1. Intuitively, first period allocation of 2 units
goes to Agent-2. In the second period, with a remaining budget of 4 units, following a water-filling
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strategy each of the agents get 2 units. On the other hand, if we use, SAMA, which accounts for
the past and future allocations we obtain the third sub-figure in Fig. 1. The first period allocation
proceeds as it is. In the second period, SAMA employs a bias-adjusted water-filling strategy where
Agent-2 having already received 2 units can receive at most 1 unit, while the remaining 3 units goes
to Agent-1. Comparing the two allocations, we see that independent PF has 4 units for Agent-2 and 2
units for Agent-1, while SAMA has 3 units for each overall achieving a higher welfare.

4 Theoretical Guarantees

The important feature of SAMA is that it achieves approximate IC and NSW maximization, provided
that the one-shot mechanism from which it is built upon enjoys such properties. In this section,
we establish a few bounds for SAMA on 1) the online incentive compatibility, 2) the full incentive
compatibility under a “correction” condition, and 3) the optimality gap (regret) in NSW compared
against the NSW maximization allocation in hindsight.

Theorem 1 (Online Incentive Compatibility) Suppose that the one-shot mechanism is ϵ-incentive
compatible, i.e. it satisfies for all agent i

explone-shot
i (f one-shot, v, x,B, ã) ≤ ϵ, ∀v, x,B, ã. (8)

Then, we have for any valuation and demand and budget profile v,x, B and agent i

explonline
i (SAMA(f one-shot), v,x, B) ≤ ϵ.

The first theorem states that if the one-shot mechanism is ϵ-incentive compatible, SAMA is guaranteed
to build a sequential mechanism that is ϵ-online incentive compatible in the sense of Definition 3. We
defer the all proofs to the supplementary material, but point that Theorem 1 follows from a simple
argument – SAMA straightforwardly inherits the online IC property from the one-shot mechanism as
it applies a scaled version of the one-shot mechanism in each interval.

Theorem 2 (Full Incentive Compatibility) Suppose that the one-shot is ϵ-incentive compatible in
the sense of (8) and satisfies the correction condition. Then, we have for any valuation and demand
profile v,x, budget B, and agent i

explfull
i (f , v,x, B) ≤ Tϵ.

This result importantly says that if our aim is to design a sequential mechanism with ∆ full ex-
ploitability and the horizon is T , we simply need to enforce that the f one-shot is ∆

T -IC. We make use
of the following “correction" property of f one-shot to rule out the possibility of the worst case and
show that the full exploitability of SAMA is only linear in T . Given ã, ã′ ∈ RM , suppose the one-shot
mechanism satisfies for all i, v, x,B

|ui(f
one-shot(v, x,B −

∑
i

ãi, ã) + ã, v, x+ ã)− ui(f
one-shot(v, x,B −

∑
i

ã′i, ã
′) + ã′, v, x+ ã′)|

≤ |ui(ã, v, ã)− ui(ã
′, v, ã′)|. (9)

We argue that the correction property is a mild condition, which conceptually says the following.
Consider the same agent in two scenarios. In scenario 1, the agent is over-allocated in the past and
has a high utility resulting from the past allocation. In scenario 2, the agent is less allocated and has a
lower utility. After a new round of allocation is made by the one-shot mechanism (accounting for the
past allocation), the difference in the utilities between the two scenario should be “corrected” and not
become larger. Note that establishing this bound requires more than simply applying the online IC
bound across time. As we have seen in Example 1, it can happen that an exactly online-IC sequential
mechanism has a non-zero full exploitability. Even with SAMA, there is the possibility in the worst
case that the full exploitability scales exponentially with respect to T , as an earlier misreport can
have a long-lasting and recurring effect on later allocations (since the allocation mechanism needs to
account for the past allocation).
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Theorem 3 (Nash Social Welfare) Suppose that the one-shot mechanism f one-shot satisfies the cor-
rection property in (9) and is δ-NSW optimal in the sense that the difference between the allocation
under f one-shot and that under the PF mechanism fPF is at most δ, i.e. for any i

∥f one-shot
i (v, x,B, a)− fPF

i (v, x,B, a)∥ ≤ δ. (10)

Let stdmax = maxi,m,t std(x
[t]
i,m). Given a target failure probability ξ > 0, let λ[τ ] =

√
(T − τ)/ξ

in (6). With the number of resources M = 1, it holds with probability at least 1− ξ

regretNSW(SAMA(f one-shot) ≤ 2T 3/2Nv̄√
ξ

stdmax +Tvδ,

where regretNSW(f) = Ev,x,B [NSWone-shot(fPF , v,
∑T

t=1 x
[t], B, 0) − NSW(f , v,x, B)].

With NSWone-shot defined in (13) in the supplementary material, the first term of the regret ex-
presses the maximum possible NSW that can be achieved in hindsight.

This theorem establishes a bound on the optimality gap (regret) in NSW, in the special case of a
single resource. We define regret by comparing against the maximum achievable NSW with the
complete and truthful observation of v,x, attainable by the PF mechanism with hindsight knowledge
– we simply need to apply the PF mechanism on the demands aggregated over time. Similar to full
exploitability, we note that in the worst case the sequential NSW may scale exponentially with T ,
which we rule out by leveraging the correction property. The bound states that a NSW maximizing
one-shot mechanism can be used to built an approximate NSW optimal sequential one, up to a gap
scaling with the standard deviation of the demand distribution.

Mechanism NSW Efficiency (%) Full Exploitability

SAMA(PF) 2.28±1.19 95.41±6.27 5.47e-2±2.78e-2
SAMA(PA) 1.00±0.77 54.39±13.64 0.0±0.0

SAMA(ExS-Net) 2.14±1.14 95.33±6.28 2.55e-2±1.78e-2
Independent(PF) 1.96±1.03 90.96±8.72 6.12e-2±4.84e-2
Independent(PA) 8.20e-1±6.63e-1 49.83±14.02 0.0±0.0

Independent(ExS-Net) 1.89±9.95e-1 90.66±8.71 3.25e-2±1.96e-2

Table 1: Mechanism performance in 2x2 system.

Mechanism NSW Efficiency (%) Full Exploitability

SAMA(PF) 1.74e+4±1.67e+4 100.0±0.0 1.62e-1±4.00e-2
SAMA(PA) 8.63±9.08 39.52±4.58 0.0±0.0

SAMA(ExS-Net) 2.71e+3±2.03e+3 99.89±0.16 2.83e-3±1.16e-3
Independent(PF) 9.15e+3±9.05e+3 99.72±0.67 1.61e-1±3.02e-2
Independent(PA) 3.73±3.89 36.84±5.20 0.0±0.0

Independent(ExS-Net) 2.29e+3±1.71e+3 98.48±1.07 3.79e-3±1.27e-3

Table 2: Mechanism performance in 10x3 system.

5 Numerical Simulations

The purpose of this section is to provide insight into the performance of SAMA through a range of
simulations. Specifically, we examine 1) how SAMA performs relative to the baseline sequential
mechanism built by applying one-shot mechanisms independently in each interval until the budget
runs out, 2) the behavior of SAMA as the budget level and horizon length vary. Given f one-shot, this
baseline sequential mechanism, which we denote as Independent(f one-shot), operates as follows. In
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Figure 2: Algorithm Performance in 2x2 System under Varying Budget.

Figure 3: Algorithm Performance in 2x2 System with Varying Horizon.

each interval t, the supplier observes v, x[t], allocates a[t] = f one-shot(v, x[t], b[t], 0), and updates the
budget b[t+1] = b[t] −

∑N
i=1 a

[t]
i with b[1] = B.

Data Generation. In all experiments, we consider valuations and demands that element-wise follow
the uniform and Bernoulli-uniform distributions within the range [0.1, 1]. Specifically, for all i,m, t

vi,m ∼ Unif(0.1, 1), x̆[t]
i,m ∼ Unif(0.1, 1), x̂

[t]
i,m ∼ Bern(0.5), x

[t]
i,m = x̆

[t]
i,mx̂

[t]
i,m. (11)

Unless otherwise noted, we set the budget for each resource to NT
4 , which means that on average

every agent expects to receive an allocation slightly lower than a half of its demand. This budget level
creates reasonable competition for the resources.

Metrics. Our evaluation metrics include NSW and full exploitability introduced in Section 2, as well
as efficiency. Given v ∈ RTNM

+ , x ∈ RTNM
+ , and B ∈ RM

+ , the efficiency of a sequential mechanism
f on resource m is

efficiencym(f , v,x, B) ≜ 1
Bm

∑T
t=1

∑N
i=1 f

[t]
i,m(v, x[t], I [t]),

where I [t] is generated under f . Mechanisms with high efficiency reduces the waste of resources and
are hence preferable. In our simulations, we report the averaged efficiency over resources.

We first present in Tables 1 (2-agent 2-resource system) and 2 (10-agent 3-resource system) the
performance of SAMA against Independent with PF mechanism, PA mechanism, and properly trained
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ExS-Net as the one-shot mechanism backbone. As we have discussed earlier in Section 2.2, PF
and PA mechanisms are hand designed and do not require specifying any hyperparameters. In our
experiments, we parameterize ExS-Net by a four-layer neural network and pre-train it on one-shot
problems where the valuation and demand data are sampled i.i.d. from uniform and Bernoulli-uniform
distributions as in (11). The parameter λτ in SAMA is selected to be 0.1

√
T − τ .

Note that the to exactly calculate the full exploitability an optimization program needs to be solved to
find the optimal misreported parameters for each agent. We approximate the optimal misreports by a
local grid search around the true parameters.

Across meta-algorithms, we see that SAMA outperforms Independent across all metrics. Within
SAMA, it is observed that the properties of the one-shot mechanism are preserved. In the one-shot
setting, the PF mechanism achieves the largest NSW, the PA mechanism has zero exploitability, and
ExS-Net strikes a balance between them. This relationship remains consistent in the sequential setting.

Varying Budget Level. We also visualize the mechanism performance as a budget scaling α
parameter, which leads to the budget Bm = αNT

2 for every resource m, varies from 0.2 (scarce) to
1.6 (abundant). The budget for The expected behavior in terms of NSW, efficiency, and exploitability
is 1) that NSW should constantly move up as more resources are available, 2) that the efficiency
drops as the chance of the budget exceeding the total demand increases, thus creating a waste, 3) that
the exploitability exhibit an increase-then-decrease movement, as misreporting helps little under a
small budget and is unnecessary when the resources are excessive. The simulation results for the
2-agent 2-resource problem, plotted in Figure 2, match the expectation and show that SAMA again
consistently achieves better metrics than Independent. We note that experimental results on the
10-agent 3-resource problem can be found in Section 9 of the supplementary material.

Varying Horizon. We also investigate the effect of varying horizon on the mechanism performance.
Shown in Figure 3 for the 2-agent 2-resource problem, NSW increases as T goes up as the overall
budget increases with T , while the full exploitability also increases, matching the behavior predicted
by the bound in Theorem 2. The trend is consistently observed in the 10-agent 3-resource problem as
well, and we defer the plot to Section 9 of the supplementary material.

6 Conclusion & Future Work

There is a gap in the literature on sequential mechanisms that can (approximately) optimize both
IC and NSW without monetary payments. We proposed a simple method that builds sequential
mechanisms from one-shot mechanisms approximately preserving their properties.

A interesting future direction is to learn sequential IC mechanism. In the one-shot setting, Dütting et al.
(2024); Ivanov et al. (2022); Zeng et al. (2024b;a) have explored parameterizing the mechanism using
neural networks and learning them end-to-end from data. While one sacrifices strong theoretical guar-
antees associated with the so-obtained mechanisms, this approach achieves favorable empirical trade-
offs between the competing objectives. It would be of interest to extend this approach to the sequential
problem, which can be formulated as a Markov decision process, leveraging reinforcement learning.

DISCLAIMER

This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and
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7 Notation

Variable Physical Meaning Aggregate Notation

a
[t]
i,m

allocation of resource m
made to agent i in time t

a
[t]
i = [a

[t]
i,1, a

[t]
i,2, · · · , a

[t]
i,M ] ∈ RM

+

a[t] = [(a
[t]
1 )⊤, (a

[t]
2 )⊤, · · · , (a[t]

N )⊤]⊤ ∈ RNM
+

a = [(a[1])⊤, (a[2])⊤, · · · , (a[T ])⊤]⊤ ∈ RTNM
+

x
[t]
i,m

demand of resource m
from agent i in time t

x
[t]
i = [x

[t]
i,1, x

[t]
i,2, · · · , x

[t]
i,M ] ∈ RM

+

x[t] = [(x
[t]
1 )⊤, (x

[t]
2 )⊤, · · · , (x[t]

N )⊤]⊤ ∈ RNM
+

xi = [(x
[1]
i )⊤, (x

[2]
i )⊤, · · · , (x[T ]

i )⊤]⊤ ∈ RTM
+

x = [(x[1])⊤, (x[2])⊤, · · · , (x[T ])⊤]⊤ ∈ RTNM
+

Bm total budget of resource m B = [B1, B2, · · · , BM ] ∈ RM
+

b
[t]
m

remaining budget of resource m
in the beginning of time t

b[t] = [b
[t]
1 , b

[t]
2 , · · · , b[t]M ] ∈ RM

+

v
[t]
i,m

agent i’s valuation for
one unit of resource m

vi = [vi,1, vi,2, · · · , vi,M ] ∈ RM
+

v = [v⊤1 , v⊤2 , · · · , v⊤N ]⊤ ∈ RNM
+

Table 3: Frequently Used Notations.

8 Preliminaries – One-Shot Allocation of Divisible Resources

Consider the problem in which a supplier allocates a finite number M of divisible resources to
N agents. Each resource m ∈ [M ] has a limited quantity, which we refer to as budget Bm ≥ 0.
The allocation is represented as a vector a ∈ RNM , with ai,m denoting the quantity of resource
m ∈ [M ] allocated to agent i ∈ [N ]. For simplicity, our work assumes that every agent i evaluates
the allocation with a (thresholded) linear additive utility function, a common assumption made in the
literature Sinclair et al. (2020); Liao et al. (2022); Hassanzadeh et al. (2023); Konda et al. (2024),
parameterized by demands xi ∈ RM and valuation vi ∈ RM

ui(a, v, x) ≜
M∑

m=1

vi,m min{ai,m, xi,m}. (12)

The supplier knows the functional form of the utility but relies on each agent i to report the parameters
vi, xi. A mechanism determines the allocation based on {Bm}m∈[M ] and the reported parameters,
which may differ from the true parameters vi, xi. The problem setting is called “one-shot” to
differentiate with the sequential problem – all agents come to the supplier and submit their requests at
once, and the supplier makes a decision with complete knowledge of the requests under no uncertainty.

8.1 Mechanism Design Objectives

Social welfare and incentive compatibility and common objectives in one-shot resource allocation.
Social welfare quantifies the overall agents’ satisfaction with their allocation on an aggregate social
level. There are many social welfare notions, among which we consider Nash social welfare, which
strikes a balance between pure egalitarian welfare (focusing on the worst-off agents), and utilitarian
welfare (focusing on agents with utility functions of the largest magnitude).
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Definition 5 (Nash Social Welfare of One-Shot Mechanism) Given v ∈ RNM
+ , x ∈ RNM

+ , B ∈
RM
+ , ã ∈ RNM , and an agent importance weight vector w ∈ RN

+ , the (bias-adjusted) Nash social
welfare of a one-shot mechanism f is defined as

NSWone-shot(f, v, x,B, ã) ≜
∏N

i=1

(
ui(f(v, x,B, ã) + ã, v, x+ ã)

)wi
. (13)

The supplier does not know the true demands and valuations relies on the agents to report them.
A self-interested agent may report untruthfully on purpose if doing so increases its allocation.
Since untruthful reporting may lead to unpredictable allocation outcome, it is highly desirable for a
mechanism to be incentive compatible (IC), meaning that it enforces that the agents cannot obtain a
more preferable allocation by misreporting in any way. IC is a binary property – a mechanism is said
to be IC if misreporting does not benefit any agent at all, and not IC otherwise. We use the notion of
exploitability to characterize the degree of IC.

Definition 6 (Exploitability of One-Shot Mechanism) Under v ∈ RNM
+ , x ∈ RNM

+ , and B ∈ RM
+ ,

the exploitability of mechanism f with respect to agent i is

explone-shot
i (f, v, x,B, ã) ≜ max

v′
i∈RM

+ ,x′
i∈RM

+

ui

(
f((v′i, v−i), (x

′
i, x−i), B, ã), v, x

)
−ui(f(v, x,B, ã), v, x).

9 Additional Simulation Results

We include the plots on 10-agent 3-resource systems under 1) varying budget levels, and 2) varying
horizon length, in the setup discussed in Section 5. See Figures 4 and 5.

10 Proof of Theorems

In this section, we present the proofs of Theorems 1-3.

10.1 Proof of Theorem 1

Let c[t]truth, a
[t]
truth ∈ RM denote the solution to (7) and the allocation in time t when agent i reports its

true values vi and demands x[t]
i , and c

[t]
lie , a

[t]
lie ∈ RM those when agent i reports some untruthful vi,lie

and x
[t]
i,lie

c
[t]
truth = f one-shot

(
v,

x[t]

β[t]
, b[t], ã[t]

)
, a

[t]
truth = β[t]c

[t]
truth (14)

c
[t]
lie = f one-shot

(
(vi,lie, v−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b[t], ã[t]

)
, a

[t]
lie = β[t]c

[t]
lie . (15)

By the definition of c[t]truth and c
[t]
lie and the fact that f one-shot is ϵ-IC, we have

ui(c
[t]
lie , v,

x[t]

β[t]
)− ui(c

[t]
truth, v,

x[t]

β[t]
) ≤ ϵ. (16)

The linearity of the utility function allows us to write

ui(a
[t]
lie , v, x

[t])− ui(a
[t]
truth, v, x

[t]) = ui(β
[t]c

[t]
lie , v, x

[t])− ui(β
[t]c

[t]
truth, v, x

[t])

= β
[t]
i

(
ui(c

[t]
lie , v,

x[t]

β[t]
)− ui(c

[t]
truth, v,

x[t]

β[t]
)
)

≤ β
[t]
i ϵ.

where the inequality follows from (16). Recognizing that 0 ≤ β
[t]
i ≤ 1 completes the proof.

■
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Figure 4: Algorithm Performance in 2x2 and 10x3 Systems under Varying Budget.

10.2 Proof of Theorem 2

Suppose an agent i may misreport vi,lie and {x[t]
i,lie}t∈[T ]. We denote

a
[t]
truth = β[t]f one-shot(v,

x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), (17)

a
[t]
lie = β[t]f one-shot((vi,lie, v−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b

[t]
lie , ã

[t]
lie), (18)

b
[t]
truth = B − ã

[t]
truth, b

[t]
lie = B − ã

[t]
lie , (19)

u
[t]
truth = u(a

[t]
truth, v, x

[t]), u
[t]
lie = u(a

[t]
lie , v, x

[t]), (20)

ũ
[t]
truth =

t−1∑
t′=1

u
[t′]
truth, ũ

[t]
lie =

t−1∑
t′=1

u
[t′]
lie . (21)

By definition,

u
[t]
i,lie − u

[t]
i,truth
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Figure 5: Algorithm Performance in 2x2 and 10x3 Systems with Varying Horizon.

= ui(β
[t]f one-shot((vi,lie, v−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b

[t]
lie , ã

[t]
lie), v, x

[t])

− ui(β
[t]f one-shot(v,

x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v, x

[t])

= β
[t]
i

(
ui(f

one-shot((v
[t]
i,lie, v

[t]
−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)

− ui(f
one-shot(v,

x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)
)

+ β
[t]
i

(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)− ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v,

x[t]

β[t]
)
)

≤ ϵ+
(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)− ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v,

x[t]

β[t]
)
)
,

where the inequality follows from the ϵ-IC of f one-shot and β
[t]
i ≤ 1.

Considering the utility from the total allocations up to time t,

ũ
[t+1]
i,lie − ũ

[t+1]
i,truth



Building Sequential Resource Allocation Mechanisms without Payments

=
(
ũ
[t]
i,lie − ũ

[t]
i,truth

)
+
(
u
[t]
i,lie − u

[t]
i,truth

)
≤
(
ũ
[t]
i,lie − ũ

[t]
i,truth

)
+ ϵ

+
(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)− ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v,

x[t]

β[t]
)
)

≤ ϵ+
(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie) + ã

[t]
lie , v,

x[t]

β[t]
+ ã

[t]
lie)

− ui(f
one-shot(v,

x[t]

β[t]
, b

[t]
truth, ã

[t]
truth) + ã

[t]
truth, v,

x[t]

β[t]
+ ã

[t]
truth)

)
.

Note that b[t]truth +
∑

i ã
[t]
truth = b

[t]
lie +

∑
i ã

[t]
lie = B. This allows us to apply the correction property of

f one-shot in (9), which leads to

|ũ[t+1]
i,lie − ũ

[t+1]
i,truth| ≤ ϵ+ |ũ[t]

i,lie − ũ
[t]
i,truth|.

Applying the inequality recursively

T∑
t=1

(
u(a

[t]
i,lie, v

[t]
i,truth, x

[t]
i,truth)− u(a

[t]
i,truth, v

[t]
i,truth, x

[t]
i,truth)

)
≤
∣∣∣ũ[T+1]

i,lie − ũ
[T+1]
i,truth

∣∣∣ ≤ Tϵ.

■

10.3 Proof of Theorem 3

Given the valuation and demand profile v ∈ RNM ,x ∈ RTNM and budget B ∈ RM , let
Aone-shot(v,x, b) ∈ RTNM denote the allocation returned by SAMA(f one-shot).

To bound the distance between NSWone-shot(fPF , v, x̃[T ], B, 0) (the maximum NSW that
can be possibly achieved with hindsight knowledge on demands and valuations) and
NSW(SAMA(f one-shot), v,x, B), we introduce a middle point SAMA(fPF ), which is the sequen-
tial mechanism built by SAMA from a one-shot PF mechanism. We use APF (v,x, B) ∈ RTMN

to denote the allocation made by SAMA(fPF ) given agent valuations and demands v,x and bud-
get B, under λ[τ ] specified in the theorem statement. Note that with a single resource to allocate,
SAMA(fPF ) reduces to the SAFFE-D mechanism proposed in Hassanzadeh et al. (2023). Under the
choice of λ[t] specified in the theorem statement, we have from Hassanzadeh et al. (2023)[Theorem
1] that the following inequality holds with probability at least 1− ξ

Ev,x,B [max
i,m

|fPF
i,m (v, x̃[T ], B, 0)−

T∑
t=1

A
[t],PF
i,m (v,x, B)|] ≤ 2T 3/2

√
ξ

stdmax,

which obviously implies

Ev,x,B [∥fPF (v, x̃[T ], B, 0)−
T∑

t=1

A[t],PF(v,x, B)∥] ≤ 2T 3/2NM√
ξ

stdmax,

and further by the Lipschitz continuity of the utility function

Ev,x,B [|ui(f
PF , v, x̃[T ], 0)−

T∑
t=1

ui(A
[t],PF(v,x, B), v, x[t])|]

≤ v̄Ev,x,B [∥fPF (v, x̃[T ], B, 0)−
T∑

t=1

A[t],PF(v,x, B)∥1]
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≤ 2T 3/2NM3/2v̄√
ξ

stdmax . (22)

Next, we bound the distance between the utilities resulting from allocations returned by
SAMA(f one-shot) and SAMA(fPF ).∣∣∣∣∣

T∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
=
∣∣∣ui(A

[T ],one-shot, v, x[T ])− ui(A
[T ],PF , v, x[T ]) +

(
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

)∣∣∣
=
∣∣∣β[T ]

i

(
ui(f

one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])− ui(f
PF (v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])

)
+ β

[T ]
i

(
ui(f

one-shot(v, y[T ], b[T ],one-shot, Ã[T ],one-shot), v, x[T ])− ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])

)
+

(
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

)∣∣∣
≤ β

[T ]
i

∣∣∣ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])− ui(f

PF (v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])
∣∣∣

+
∣∣∣β[T ]

i

(
ui(f

one-shot(v, y[T ], b[T ],one-shot, Ã[T ],one-shot), v, x[T ])− ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])

)
+ β

[T ]
i

( T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

)∣∣∣
+ (1− β

[T ]
i )
∣∣∣ T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣
≤ β

[T ]
i

∣∣∣ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])− ui(f

PF (v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])
∣∣∣

+ β
[T ]
i

∣∣∣∣∣
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
+ (1− β

[T ]
i )

∣∣∣∣∣
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
≤ vδ +

∣∣∣∣∣
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
≤ Tvδ, (23)

where the second inequality follows from the correction property of the one-shot mechanism (9),
the third inequality is a result of (10) and the relation β

[T ]
i ≤ 1, the final inequality is obtained by

applying the one above recursively.

Combining (22)-(23) and noting M = 1,

Ev,x,B [NSWone-shot(fPF , v, x̃[T ], B, 0)−NSW(SAMA(f one-shot), v,x, B)]

= Ev,x,B [ui(f
PF , v, x̃[T ], 0)− ui(A

one-shot(v,x, B), v,x)]

= Ev,x,B [ui(f
PF , v, x̃[T ], 0)−

T∑
t=1

ui(A
[t],one-shot, v, x[t])]

≤ Ev,x,B [|ui(f
PF , v, x̃[T ], 0)−

T∑
t=1

ui(A
[t],PF(v,x, B), v, x[t])|]
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+ Ev,x,B [|ui(A
[t],PF (v,x, B), v, x[t])−

T∑
t=1

ui(A
[t],one-shot(v,x, B), v, x[t])|]

≤ 2T 3/2Nv̄√
ξ

stdmax +Tvδ.

■


