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Summary
We study allocating divisible resources of limited quantities to agents who submit requests

for the resources one or multiple times over a finite horizon. This is referred to as the sequential
resource allocation problem, as irrevocable allocations need to be made as the requests arrive,
without observations on the future requests. Existing works on sequential resource allocation
(in the payment-free setting) mainly focus on optimizing social welfare and design mechanisms
under the assumption that the agents make truthful requests. Such mechanisms can be easily
exploitable – strategic agents may misreport their requests and inflate their allocations. Our
aim in this work is to design sequential resource allocation mechanisms that balance the
competing objectives of social welfare maximization (promoting the overall agent satisfaction)
and incentive compatibility (ensuring that the agents do not have incentives to misreport). We
do not design these mechanisms from scratch. As the incentive compatible mechanism design
problem has been well studied in the one-shot setting (horizon length equals one), we propose a
general meta-algorithm of transforming a one-shot mechanism into its sequential counterpart.
The meta-algorithm can plug in any one-shot mechanism and approximately carry over the
properties that the one-shot mechanism already satisfies to the sequential setting. We establish
theoretical results validating these claims and also illustrate the superior performance of the
proposed method through numerical simulations.

Contribution(s)
1. We propose a meta-algorithm, which we name Sequential Allocation Meta Algorithm

(SAMA), which can be regarded as a general framework for reducing a sequential resource
allocation problem into a series of one-shot problems. The key feature of SAMA is that
it accounts for past allocation and unobserved future requests – agents with greater past
allocations are more discounted against in the current round, and resources are withheld for
future requests based on a confidence bound. We mathematically show that if the one-shot
mechanism optimizes NSW and/or achieves incentive compatibility (IC) in the one-shot
sense, SAMA approximately carries over the properties to the sequential setting. This implies
that with suitable one-shot mechanisms plugged in as the building block, SAMA enjoys both
approximate NSW and IC guarantees at the same time. To our knowledge, this is the first time
such a result has been established for a sequential mechanism in the payment-free setting.
Context: Prior papers on sequential resource allocation do not consider achieving IC and
assume that the agents report their requests truthfully. The existing work that considers
optimizing IC jointly with other metrics including social welfare and efficiency is only for
the one-shot setting, in which the supplier fully observes all requests before making an
allocation.

2. We numerically illustrate the superior performance of SAMA and its approximate NSW and
IC preserving properties, with a few established one-shot mechanisms as the building block.
Specifically, we plug in 1) the Proportional Fairness (PF) mechanism, which achieves the
maximum possible NSW but severely violates IC, 2) the Partial Allocation (PA) mechanism,
designed by Cole et al. (2013) to be exactly IC at the cost of a substantial reduction to NSW,
3) ExS-Net, which is a learned neural-network-parameterized mechanism proposed in Zeng
et al. (2024b) that achieves near-optimal NSW and approximate IC simultaneously.
Context: None.
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Abstract

We study allocating divisible resources of limited quantities to agents who submit1
requests for the resources one or multiple times over a finite horizon. This is referred2
to as the sequential or online resource allocation problem, as irrevocable allocations3
need to be made as the requests arrive, without observations on the future requests. The4
existing work on sequential resource allocation (in the payment-free setting) mainly5
focuses on optimizing social welfare and designs mechanisms under the assumption that6
the agents make truthful requests. Such mechanisms can be easily exploitable – strategic7
agents may misreport their requests to inflate their allocations. Our aim in this work is to8
design sequential resource allocation mechanisms that balance the competing objectives9
of social welfare maximization (promoting the overall agent satisfaction) and incentive10
compatibility (ensuring that the agents do not have incentives to misreport). We do not11
design these mechanisms from scratch. Instead, as the incentive compatible mechanism12
design problem has been well studied in the one-shot setting (horizon length equals one),13
we propose a general meta-algorithm of transforming a one-shot mechanism into its14
sequential counterpart. The meta-algorithm can plug in any one-shot mechanism and15
approximately carry over the properties that the one-shot mechanism already satisfies16
to the sequential setting. We establish theoretical results validating these claims and17
illustrate their superior performance relative to baselines in experiments.18

1 Introduction19

Resource allocation is a fundamental problem in economics and computer science that studies the20
distribution of limited resources among requesting agents. We consider sequential (or dynamic,21
online) resource allocation, in which a supplier needs to distribute limited resources to a large22
number of agents demanding the resources without charging monetary payments. The interaction23
between the supplier and the agents occurs over multiple rounds within a finite horizon. In each24
round, a subset of the agents send requests for one or multiple types of the resources. Based on the25
demands in the current round (and the demands and allocations made previously) but not observing26
the future demands, the supplier needs to make an irrevocable allocation, with the goal of optimizing27
aggregate performance metrics. Applications of the problem framework span a wide range of domains,28
including telecommunication (Su et al., 2019; Guo et al., 2022), cloud computing (Vinothina et al.,29
2012; Belgacem, 2022), public health (Cao & Huang, 2012; Ehmann et al., 2021), and poverty relief30
(Yang, 2018; Gómez-Pantoja et al., 2021).31

A significant challenge in sequential resource allocation stems from the uncertainty of the realized32
future requests, even when knowledge of their distribution is available. Successful mechanisms need to33
balance between consuming the resources as requests arrive and saving resources for anticipated future34
requests. The existing literature handles the uncertainty leveraging techniques such as confidence35
bounds (Sinclair et al., 2020; 2022; Hassanzadeh et al., 2023) and dynamic programming (Powell &36
Topaloglu, 2006; Forootani et al., 2020), and focuses on designing payment-free resource allocation37
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mechanisms to optimize/achieve the following objectives: 1) Nash social welfare (NSW), defined38
as the product of all agents’ utilities, 2) efficiency, measuring the utilization rate of resources,39
3) competitive ratio, measuring the agents’ utilities compared against those from some optimal40
mechanism with hindsight knowledge, 4) envy-freeness, where each agent prefers its own allocation41
over the allocation of any other.42

A critical assumption made in these works is that the agents report their requests truthfully. Mech-43
anisms designed under this assumption are highly exploitable when it does not hold, allowing a44
strategic agent to substantially increase its allocation by sending untruthful requests. In real-life ap-45
plications, the agents are usually self-interested humans and/or entities that are unlikely to be always46
truthful, which is rarely prioritized in academic literature. In this work, our goal is to bridge this gap47
by designing mechanisms that (approximately) achieve both NSW and incentive compatibility (IC) in48
the sequential setting. IC is a property of a resource allocation mechanism which guarantees that no49
agent can obtain a strictly more preferable allocation by misreporting requests, and is formed as the50
unilateral deviation in their utility from its rational optimal, a quantity referred to as exploitability.51

To the best of our knowledge, IC has not been considered in prior art on payment-free sequential52
resource allocation. Even in the one-shot allocation setting (horizon length equals one), ensuring53
incentive compatibility necessarily leads to unfair mechanisms (in terms of NSW) (Hartline &54
Roughgarden, 2008), and balancing between NSW and exploitability in the sequential setting raises55
intrinsic questions regarding scalability with respect to the problem horizon, which are identified in56
this work for the first time. Our approach to this problem class is to design a general meta-algorithm57
for assembling a one-shot allocation mechanism into its sequential version, which ensures that the58
desirable properties of the one-shot mechanism – NSW and IC – are inherited by their sequential59
extension. This allows us to avoid designing a mechanism from scratch for the sequential setting,60
while exploiting advances in the (better-studied) one-shot resource allocation literature.61

Main Contributions62

• We propose a meta-algorithm, named Sequential Allocation Meta-Algorithm (SAMA), which can63
be regarded as a general framework for reducing a sequential resource allocation problem into a64
series of one-shot problems. The key feature of SAMA is that it accounts for past allocation and65
unobserved future requests – agents with greater past allocations are more heavily discounted66
against in the current round, and resources are withheld for future requests based on a confidence67
bound.68
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Figure 1: SAMA Algorithm & Performance Comparison (see Example 2 for discussion).

• We establish theoretically that if a mechanism optimizes NSW and/or achieves IC in the one-shot69
sense, SAMA approximately carries over the properties to the sequential setting. This implies that70
with a suitable one-shot mechanisms plugged in as the building block, SAMA enjoys approximate71
NSW and IC guarantees at the same time. To our knowledge, this is the first time such a result has72
been established for a sequential mechanism in the payment-free setting.73

• We further illustrate the superior performance of SAMA and its approximate NSW and IC preserving74
properties using experiments on synthetic data. We plug in the following well-known one-shot75
mechanisms for validation: 1) the Proportional Fairness (PF) mechanism, which achieves the76
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maximum possible NSW but severely violates IC, 2) the Partial Allocation (PA) mechanism,77
designed by Cole et al. (2013) to be exactly IC at the cost of a substantial reduction to NSW, 3)78
ExS-Net, which is a learned neural-network-parameterized mechanism proposed in Zeng et al.79
(2024b) that achieves near-optimal NSW and approximate IC simultaneously.80

1.1 Related Work81

We note two (inter-connected) lines of approaches to sequential resource allocation in the literature.82
The first formulates the problem in a general online decision making framework with (possibly83
non-convex) reward and resource consumption functions (Mirrokni et al., 2012; Balseiro et al., 2020;84
2021b; 2023; An et al., 2024), which may model various payment-based and payment-free problems85
with proper choices of the reward function. Most works in this direction consider stochastic (i.i.d.)86
and/or adversarial request models, and some do not require distributional knowledge of the future87
requests. The algorithm performance is measured by a regret/competitive ratio defined with respect88
to the optimal allocation in hindsight. The algorithms developed for such general frameworks often89
have a strong connection to bandit algorithms (Zhalechian et al., 2022; Molina et al., 2023). The90
latest representative works (Balseiro et al., 2023; An et al., 2024) take a primal-dual approach where91
the dual variable is associated with the budget constraints, and they establish strong performance92
guarantees in terms of regret/competitive ratio which matches the worst-case lower bounds. The93
works so far are restricted to the setting where the agents report requests truthfully.94

The second line of work approaches specific resource allocation problems with grounded formulation95
(Walsh, 2011; Sinclair et al., 2020; 2022; Liao et al., 2022; Hassanzadeh et al., 2023; Yang et al., 2024).96
Typically the existing work assumes a linear additive agent utility function, and the optimization97
objectives include social welfare (fairness), efficiency, and/or envy-freeness. Envy-freeness and98
certain notions of social welfare may not be conveniently modeled by the reward function considered99
in the general frameworks. Therefore, tailored analyses are usually carried out. It is worth noting100
again that incentive compatibility has not been considered in this line of work.101

Finally, we point out that incentive compatible mechanism design has been studied in the payment-102
based (auction) setting (Tan et al., 2020; Deng et al., 2021; Balseiro et al., 2021a), where the monetary103
exchange acts an important tool for eliminating the incentive to misreport. This tool is unavailable in104
the payment-free case.105

2 Problem Formulation – Sequential Resource Allocation106

We consider the sequential resource allocation problem, which is a generalization of the single-period107
resource allocation problem with stochastic requests arriving over time. A supplier needs to allocate108
a finite number M of divisible resources to N agents over a horizon of T discrete time intervals. Any109
agent may come to the supplier in any number of intervals and submit a request for one or multiple110
types of the resources every time. We use x

[t]
i,m ∈ [0, x̄] (for some x̄ < ∞) to denote the quantity111

of resource m ∈ [M ] requested by agent i ∈ [N ] in time interval t ∈ [T ]1. We assume a clipped112
linear utility – each unit of resource m increases the utility of agent i by vi,m up to the demand, with113
vi,m ∈ [v, v̄], ∀i,m for some 0 < v, v̄ < ∞. This is a standard assumption in the literature (Cole114
et al., 2013) – see (1). Both xt

i,m and vi,m are privately known only to agent i.115

An agent submits a request by reporting these values to the supplier (possibly untruthfully). The116
valuation is only reported the first time an agent submits a request and fixed for the entire horizon.117
This is a reasonable assumption that captures the real-world static preferences for resources, with118
only changing demand over time. Observing all requests in time interval t, the supplier makes an119
irrevocable allocation a

[t]
i,m ≥ 0 to every agent i for every resource m. The supplier may take historical120

information into account when making a decision, including the total past allocation denoted by ã,121

1We use [M ] to represent {1, 2, · · · ,M}.
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where ã
[t]
i,m represents the total allocation of resource m made to agent i until time t, i.e.122

ã
[1]
i,m ≜ 0, ã

[t]
i,m ≜

∑t−1
t′=1 a

[t′]
i,m, ∀t ≥ 2.

The budget Bm ≥ 0 is the total available quantity of resource m, known to the supplier before123
allocation begins and not re-stocked. We denote by b

[t]
m ∈ R+ the remaining quantity of resource m124

at the beginning of interval t, which satisfies the relation125

b
[1]
m = Bm, b

[t]
m = b

[t−1]
m −

∑N
i=1 a

[t−1]
i,m = Bm −

∑t−1
t′=1

∑N
i=1 a

[t′]
i,m,∀t ≥ 2.

We may aggregate valuations, demands, and budgets across agents, resources, and/or intervals.126
For a list of the notations, see Table 3. In particular, we use the bold notation x,a to denote127
the aggregation of demands and allocations over time. The valuations v, demands x, budgets128
B are random variables following a known joint distribution. Let I [t] represent the historical129
information observed by the supplier up to the beginning of time interval t, i.e. I [1] = {b[t]} and130
I [t] ≜ {v, x[1], · · · , x[t−1], a[1], · · · , a[t−1], b[1], · · · , b[t]} for t ≥ 2. We denote by I [t] the space of131
historical information at time t. For simplicity, we assume that the demands of time t are not affected132
by allocations made prior to t, a common setting considered in a number of existing works (Sinclair133
et al., 2022; Liao et al., 2022; Hassanzadeh et al., 2023). Given demands x ∈ RTNM , valuations134
v ∈ RNM , and allocations a ∈ RTNM , we use ui to represent the utility of agent i from its total135
allocation over the horizon136

ui(a, v,x) ≜
∑T

t=1 ui(a
[t], v, x[t]), (1)

where ui is the single-interval utility function defined as ui(a, v, x) ≜
∑M

m=1 vi,m min{ai,m, xi,m}.137
To allow for the degree of freedom in discounting certain agents, we introduce a bias matrix ã ∈ RNM ,138
where ãi models the total allocation made to agent i in the past interactions. A sequential mechanism139
is a policy that determines a valid allocation in each time interval based on the current demands and140
historical information. A valid allocation must satisfy the budget constraint across time and be no141
more than the demand.142

Definition 1 (Sequential Allocation Mechanism) A mapping f = {f [t] : RNM
+ × RNM

+ × I [t] →143
RNM
+ }t∈[T ] is said to be a sequential allocation mechanism if for all t, v, x[t], I [t]144 ∑N

i=1 f
[t]
i,m(v, x[t], I [t]) ≤ b

[t]
m , ∀m; 0 ≤ f

[t]
i,m(v, x[t], I [t]) ≤ x

[t]
i,m, ∀i,m. (2)

We denote f(v,x, B) = [f [1](v, x[1], I [1]); · · · ; f [T ](v, x[T ], I [T ])] ∈ RTNM
+ .145

2.1 Mechanism Design Objectives146

We study designing sequential mechanisms that balance NSW and exploitability. The NSW in the147
sequential setting can be defined by following the classic one-period definition (Cole et al., 2013).148

Definition 2 (Sequential NSW) Given v ∈ RNM
+ , x ∈ RTNM

+ , B ∈ RM
+ , the Nash social welfare149

of a sequential mechanism f is defined as150

NSW(f , v,x, B) ≜
∏N

i=1 ui(a, v,x), where a = f(v,x, B).

The definition states that the agents evaluate their satisfaction based on the total allocation they151
receive over the horizon, on which an aggregate NSW is computed. A mechanism that maximizes152
this NSW aims to ensure a “fair” cumulative allocation over time for all agents. We believe this is153
one such definition that matches the objective usually applicable in real-world problems where the154
performance is evaluated based on cumulative outcomes, such as in computational resource allocation155
and wireless networks.156
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Definition 3 (Exploitability) For mechanism f and v ∈RNM
+ , x ∈ RTNM

+ , and B ∈ RM
+ , we define157

explonline
i (f , v,x, B) ≜ max

t,v′
i∈RM

+ ,x′
i∈RM

+

ui

(
f [t]
(
(v′i, v−i), (x

′
i, x

[t]
−i), I

[t]
)
, v, x[t]

)

− ui

(
f [t]
(
v, x[t], I [t]

)
, v, x[t]

)
,

explfull
i (f , v,x, B) ≜ max

v′
i∈RM

+ ,x′
i∈RTM

+

ui

(
f
(
(v′i, v−i), (x

′
i,x−i), B

)
, v,x

)
−ui

(
f(v,x, B), v,x

)
,

where I [t] is generated under f .158

Conceptually, the online exploitability measures the maximum possible utility increase obtained by an159
agent in any interval t when it misreports its parameters only in interval t. The full exploitability is a160
more ambitious metric – it measures the maximum total utility increase of agent i when it misreports161
its parameters across all intervals. Note that explfull

i may be far larger than T · explonline
i . A small162

explfull
i necessarily implies a small explonline

i , but the converse is not true (see Example 1 below). We163
say that a sequential mechanism f is ϵ-online/full incentive compatible if explonline

i (f , v,x, B) ≤ ϵ164
or explfull

i (f , v,x, B) ≤ ϵ for all i, v,x, B.165

2.2 One-shot Allocation (T = 1)166

We quickly discuss the special case when T = 1, as these will feature in the key allocation component167
of Algorithm 1. The definition of a one-shot allocation mechanism is given as follows.168

Definition 4 (One-Shot Allocation Mechanism) A mapping f : RNM
+ × RNM

+ × RM
+ × RNM →169

RNM
+ is said to be a one-shot mechanism if for all v ∈ RNM

+ , x ∈ RNM
+ , B ∈ RM

+ , and ã ∈ RNM170 ∑N
i=1 fi,m(v, x,B, ã) ≤ Bm, ∀m,

0 ≤ fi,m(v, x,B, ã) ≤ xi,m,∀i,m.

One-shot allocation mechanism design is well-studied in the literature with standard mechanisms171
like (i) proportional fairness (PF): By definition fPF achieves the maximum possible NSW, but is172
shown to incur a substantial exploitability (Zeng et al., 2024a).173

fPF (v, x,B, ã) = argmaxa∈RNM

∑N
i=1 log ui(a+ ã, v, x+ ã)

s.t. 0 ≤ a ≤ x;
∑N

i=1 ai,m ≤ Bm, ∀m ∈ [M ]. (3)

(ii) partial allocation (PA): Motivated to design an “unexploitable” mechanism with guarantees on174
NSW, Cole et al. (2013) proposes the Partial Allocation (PA) mechanism, which is built upon the175
PF mechanism. PA mechanism assigns to each agent the allocation they would receive under the176
PF mechanism scaled by a discount ratio (between 0 and 1), computed according to the externality177
each agent introduces to the system. We represent the PA mechanism by fPA and note that the178
aforementioned discount ratio is guaranteed to be at least 1/e in the worst case when ã = 0, i.e., we179
have for any v, x,B180

fPA
i,m (v, x,B, 0)

fPF
i,m (v, x,B, 0)

≥ 1/e. (4)

However, defined as the product of agents’ utilities, the NSW of the PA mechanism deteriorates181
exponentially with N and is numerically shown in Zeng et al. (2024b) to be negligibly low (less than182
1/1000 of that of the PF mechanism) in 10-agent systems.183

(iii) ExS-Net: Balancing between the two ends of the spectrum, Zeng et al. (2024b) introduces a184
neural-network-parameterized mechanism ExS-Net. Trained with samples from a distribution of185
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truthful parameters, the mechanism ensures that no agent can benefit from untruthful reporting by186
more than a user-specified parameter ϵ > 0. With a suitable choice of ϵ, ExS-Net substantially187
reduces the exploitability relative to the PF mechanism, while still achieving near-optimal NSW. We188
denote the mechanism as fExS in the rest of paper.189

Example 1 We discuss a simple mechanism which incurs zero online exploitability but a non-zero190
full exploitability. Suppose that T = 2 and we run the mechanism f = {f [1], f [2]} defined as follows191

a
[1]
i,m = f

[1]
i,m(v, x[1], I [1]) = fPA

i,m (v, x[1],
1

2
B, 0),

f
[2]
i,m(v, x[2], I [2]) =

{
fPA
i,m (v, x[2], 1

2B, 0), if a[1]i,m ≤ 1
4x

[1]
i,m,

0, otherwise.

(5)

Eq. (5) says that we allocate according to the PA mechanism in the first interval, with half of the total192
available budget. In the second interval, we do not allocate anything unless the allocation made193
in the first interval is much smaller than what the agent requests – in that case, we allocate to the194
specific agent on the specific resource according to the PA mechanism. This is a valid sequential195
mechanism, as the budget constraint is never violated. It can also be seen that the online exploitability196
of the mechanism is zero, as fPA satisfies IC. However, the full exploitability is non-zero, as an197
agent supposed to receive zero allocation in the second interval with a truthful report can suitably198
under-report its demand in the first interval to increase its second-round allocation.199

Why is sequential setting with IC & NSW non-trivial? First, consider the one-shot setting. NSW200
as an objective can be optimized by considering the allocation that solves (3). IC on the other hand,201
can only be evaluated and optimized given a mechanism. This is what makes it challenging to address202
both these simultaneously, and the literature on hand-designed mechanisms with exact guarantees203
solve either NSW (ex. PF) or IC (ex. PA). The sequential version only exacerbates this challenge.204
Ensuring full IC over multiple rounds increases the difficulty, as it is unclear how to prevent agents205
from manipulating future allocations by adjusting their current reports. We take the first step in206
tackling this problem by instead designing mechanisms that approximately preserve the properties of207
the well-understood one-shot mechanisms. In doing so, however, we reveal potentially unimprovable208
dependence on the problem horizon, unless additional structure is assumed regarding the interaction209
between demand and time, which we defer to future work.210

3 Meta-Algorithm for Sequential Allocation211

In this section, we introduce the Sequential Allocation Meta-Algorithm (SAMA), a framework for212
applying one-shot mechanisms to the sequential setting. The key challenge of sequential resource213
allocation lies in the future request uncertainty. SAMA is designed to account for the worst case in214
the face of uncertainty by following the simple idea of pre-allocating to future requests pretending215
that they will arrive exactly as their lower confidence bounds. A similar idea has been considered in216
Hassanzadeh et al. (2023) in the design of their SAFFE algorithm. Interestingly, SAMA with the PF217
mechanism plugged in can be regarded as a generalization of SAFFE to the multi-resource setting.218

We denote the one-shot/ single-period allocation mechanism as f one-shot, which takes arguments v219
(valuation), x (demand), B (budget), and ã (past allocation) and produces an allocation outcome a.220
In the rest of the paper, we use the notation SAMA(f one-shot) to represent the sequential mechanism221
built from f one-shot according to Algorithm 1. Formally presented in Algorithm 1 and illustrated in222
Figure 1, SAMA initializes the budget b[1] = B ∈ RM and total past allocation ã[1] = 0 ∈ RMN , and223
operates in every interval t as follows. First, SAMA determines an “allocation factor” β

[t]
i as the ratio224

between the expected demand in the current interval and the total expected demand from t till the end225
of the horizon. This factor is used to scale the current demand to produce y

[t]
i,m as an estimate of the226

total demands for the remaining intervals. For simplicity of presentation, we assume that the expected227
demand E[x[t]

i,m] is always positive, which makes the allocation factor well-defined, but we note that228
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the generalization can be easily made by fixing β
[t]
i,m to 1 when the denominator of (6) is zero. Second,229

we apply the one-shot mechanism to calculate an tentative allocation c[t] ∈ RMN based on y[t] using230
the full remaining budget. However, we cannot allocate c[t] as it contains a portion associated with231
future requests. We determine the actual allocation by scaling c[t] back with the allocation factor β[t],232
update the remaining budget and past allocation information, and proceed to the next iteration. As233
the allocation in every iteration only uses the remaining budget and the allocation factor β[t]

i always234
lies between 0 and 1, SAMA always returns a feasible allocation for every t.235

Remark 1 When the exact future request distribution is unknown, SAMA can be applied using236
expectations and standard deviations estimated from data. If no such data is available, we can use237
SAMA with β

[t]
i = 1, ensuring that at least past allocations are considered when making current238

decisions. Although constantly setting β
[t]
i = 1 results in a loss of the mathematical guarantees239

on NSW, the approach remains preferable to independently applying one-shot mechanism in each240
iteration, as it still accounts for past allocations.241

Algorithm 1 Sequential Allocation Meta-Algorithm (SAMA)

1: Initialize: budget b[1] = B ∈ RM , past allocations ã[1] = 0 ∈ RMN

2: for interval t = 1, · · · , T do
3: Receive reported valuation vi for all i (only the first time that agent i reports) and demand x[t]

4: Calculate β[t], y[t] ∈ RN such that

β
[t]
i,m =

E[x[t]
i,m]

E[x[t]
i,m] +

∑
τ>t max

{
E[x[τ ]

i,m]− λ[τ ] std(x
[τ ]
i,m), 0

} ,
β
[t]
i = 1

M

∑M
m=1 β

[t]
i,m, y

[t]
i,m = x

[t]
i,m/β

[t]
i . (6)

5: Apply one-shot allocation mechanism with bias and allocate a
[t]
i to agent i

c[t] = f one-shot(v, y[t], b[t], ã[t]),

a
[t]
i,m = min{β[t]

i c
[t]
i,m, x

[t]
i,m}.

(7)

6: Update remaining budget b[t+1]
m = b

[t]
m −

∑N
i=1 a

[t]
i,m for all m ∈ [M ]

7: Update past allocation
ã
[t+1]
i,m = ã

[t]
i,m + a

[t]
i,m, ∀i,m

8: end for

Example 2 Consider the following simple case of 2 agents requesting a single resource over T = 2242
time periods. Let the total budget B = 6 units and the demands be as follows: a

[1]
1 = 2, a

[1]
2 = 0243

and a
[2]
1 = 2, a

[2]
2 = 4 units over the two time periods; as illustrated in the first sub-figure in244

Fig. 1. Suppose we are interested in maximizing the NSW over the two time periods. We know that245
PF allocation achieves the largest welfare in a single time-period (Cole et al., 2013; Zeng et al.,246
2024b). We known that for a single source allocation problem, PF can be seen as a water-filling247
solution (Hassanzadeh et al., 2023). If we myopically solve for PF allocations in each period, we248
obtain the allocation in the second sub-figure in Fig. 1. Intuitively, first period allocation of 2 units249
goes to Agent-2. In the second period, with a remaining budget of 4 units, following a water-filling250
strategy each of the agents get 2 units. On the other hand, if we use, SAMA, which accounts for251
the past and future allocations we obtain the third sub-figure in Fig. 1. The first period allocation252
proceeds as it is. In the second period, SAMA employs a bias-adjusted water-filling strategy where253
Agent-2 having already received 2 units can receive at most 1 unit, while the remaining 3 units goes254
to Agent-1. Comparing the two allocations, we see that independent PF has 4 units for Agent-2 and 2255
units for Agent-1, while SAMA has 3 units for each overall achieving a higher welfare.256
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4 Theoretical Guarantees257

The important feature of SAMA is that it achieves approximate IC and NSW maximization, provided258
that the one-shot mechanism from which it is built upon enjoys such properties. In this section,259
we establish a few bounds for SAMA on 1) the online incentive compatibility, 2) the full incentive260
compatibility under a “correction” condition, and 3) the optimality gap (regret) in NSW compared261
against the NSW maximization allocation in hindsight.262

Theorem 1 (Online Incentive Compatibility) Suppose that the one-shot mechanism is ϵ-incentive263
compatible, i.e. it satisfies for all agent i264

explone-shot
i (f one-shot, v, x,B, ã) ≤ ϵ, ∀v, x,B, ã. (8)

Then, we have for any valuation and demand and budget profile v,x, B and agent i265

explonline
i (SAMA(f one-shot), v,x, B) ≤ ϵ.

The first theorem states that if the one-shot mechanism is ϵ-incentive compatible, SAMA is guaranteed266
to build a sequential mechanism that is ϵ-online incentive compatible in the sense of Definition 3. We267
defer the all proofs to the supplementary material, but point that Theorem 1 follows from a simple268
argument – SAMA straightforwardly inherits the online IC property from the one-shot mechanism as269
it applies a scaled version of the one-shot mechanism in each interval.270

Theorem 2 (Full Incentive Compatibility) Suppose that the one-shot is ϵ-incentive compatible in271
the sense of (8) and satisfies the correction condition. Then, we have for any valuation and demand272
profile v,x, budget B, and agent i273

explfull
i (f , v,x, B) ≤ Tϵ.

This result importantly says that if our aim is to design a sequential mechanism with ∆ full ex-274
ploitability and the horizon is T , we simply need to enforce that the f one-shot is ∆

T -IC. We make use275
of the following “correction" property of f one-shot to rule out the possibility of the worst case and276
show that the full exploitability of SAMA is only linear in T . Given ã, ã′ ∈ RM , suppose the one-shot277
mechanism satisfies for all i, v, x,B278

|ui(f
one-shot(v, x,B −

∑
i

ãi, ã) + ã, v, x+ ã)− ui(f
one-shot(v, x,B −

∑
i

ã′i, ã
′) + ã′, v, x+ ã′)|

≤ |ui(ã, v, ã)− ui(ã
′, v, ã′)|. (9)

We argue that the correction property is a mild condition, which conceptually says the following.279
Consider the same agent in two scenarios. In scenario 1, the agent is over-allocated in the past and280
has a high utility resulting from the past allocation. In scenario 2, the agent is less allocated and has a281
lower utility. After a new round of allocation is made by the one-shot mechanism (accounting for the282
past allocation), the difference in the utilities between the two scenario should be “corrected” and not283
become larger. Note that establishing this bound requires more than simply applying the online IC284
bound across time. As we have seen in Example 1, it can happen that an exactly online-IC sequential285
mechanism has a non-zero full exploitability. Even with SAMA, there is the possibility in the worst286
case that the full exploitability scales exponentially with respect to T , as an earlier misreport can287
have a long-lasting and recurring effect on later allocations (since the allocation mechanism needs to288
account for the past allocation).289

Theorem 3 (Nash Social Welfare) Suppose that the one-shot mechanism f one-shot satisfies the cor-290
rection property in (9) and is δ-NSW optimal in the sense that the difference between the allocation291
under f one-shot and that under the PF mechanism fPF is at most δ, i.e. for any i292

∥f one-shot
i (v, x,B, a)− fPF

i (v, x,B, a)∥ ≤ δ. (10)

8
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Let stdmax = maxi,m,t std(x
[t]
i,m). Given a target failure probability ξ > 0, let λ[τ ] =

√
(T − τ)/ξ293

in (6). With the number of resources M = 1, it holds with probability at least 1− ξ294

regretNSW(SAMA(f one-shot) ≤ 2T 3/2Nv̄√
ξ

stdmax +Tvδ,

where regretNSW(f) = Ev,x,B [NSWone-shot(fPF , v,
∑T

t=1 x
[t], B, 0) − NSW(f , v,x, B)].295

With NSWone-shot defined in (12) in the supplementary material, the first term of the regret ex-296
presses the maximum possible NSW that can be achieved in hindsight.297

This theorem establishes a bound on the optimality gap (regret) in NSW, in the special case of a298
single resource. We define regret by comparing against the maximum achievable NSW with the299
complete and truthful observation of v,x, attainable by the PF mechanism with hindsight knowledge300
– we simply need to apply the PF mechanism on the demands aggregated over time. Similar to full301
exploitability, we note that in the worst case the sequential NSW may scale exponentially with T ,302
which we rule out by leveraging the correction property. The bound states that a NSW maximizing303
one-shot mechanism can be used to built an approximate NSW optimal sequential one, up to a gap304
scaling with the standard deviation of the demand distribution.305

Mechanism NSW Efficiency (%) Full Exploitability

SAMA(PF) 2.28±1.19 95.41±6.27 5.47e-2±2.78e-2
SAMA(PA) 1.00±0.77 54.39±13.64 0.0±0.0

SAMA(ExS-Net) 2.14±1.14 95.33±6.28 2.55e-2±1.78e-2
Independent(PF) 1.96±1.03 90.96±8.72 6.12e-2±4.84e-2
Independent(PA) 8.20e-1±6.63e-1 49.83±14.02 0.0±0.0

Independent(ExS-Net) 1.89±9.95e-1 90.66±8.71 3.25e-2±1.96e-2

Table 1: Mechanism performance in 2x2 system.

Mechanism NSW Efficiency (%) Full Exploitability

SAMA(PF) 1.74e+4±1.67e+4 100.0±0.0 1.62e-1±4.00e-2
SAMA(PA) 8.63±9.08 39.52±4.58 0.0±0.0

SAMA(ExS-Net) 2.71e+3±2.03e+3 99.89±0.16 2.83e-3±1.16e-3
Independent(PF) 9.15e+3±9.05e+3 99.72±0.67 1.61e-1±3.02e-2
Independent(PA) 3.73±3.89 36.84±5.20 0.0±0.0

Independent(ExS-Net) 2.29e+3±1.71e+3 98.48±1.07 3.79e-3±1.27e-3

Table 2: Mechanism performance in 10x3 system.

5 Numerical Simulations306

The purpose of this section is to provide insight into the performance of SAMA through a range of307
simulations. Specifically, we examine 1) how SAMA performs relative to the baseline sequential308
mechanism built by applying one-shot mechanisms independently in each interval until the budget309
runs out, 2) the behavior of SAMA as the budget level and horizon length vary. Given f one-shot, this310
baseline sequential mechanism, which we denote as Independent(f one-shot), operates as follows. In311
each interval t, the supplier observes v, x[t], allocates a[t] = f one-shot(v, x[t], b[t], 0), and updates the312

budget b[t+1] = b[t] −
∑N

i=1 a
[t]
i with b[1] = B.313

Data Generation. In all experiments, we consider valuations and demands that element-wise follow314
the uniform and Bernoulli-uniform distributions within the range [0.1, 1]. Specifically, for all i,m, t315

vi,m ∼ Unif(0.1, 1), x̆[t]
i,m ∼ Unif(0.1, 1), x̂

[t]
i,m ∼ Bern(0.5), x

[t]
i,m = x̆

[t]
i,mx̂

[t]
i,m.

9
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Figure 2: Algorithm Performance in 2x2 System under Varying Budget.

Figure 3: Algorithm Performance in 2x2 System with Varying Horizon.

Unless otherwise noted, we set the budget for each resource to NT
4 , which means that on average316

every agent expects to receive an allocation slightly lower than a half of its demand. This budget level317
creates reasonable competition for the resources.318

Metrics. Our evaluation metrics include NSW and full exploitability introduced in Section 2, as well319
as efficiency. Given v ∈ RTNM

+ , x ∈ RTNM
+ , and B ∈ RM

+ , the efficiency of a sequential mechanism320
f on resource m is321

efficiencym(f , v,x, B) ≜ 1
Bm

∑T
t=1

∑N
i=1 f

[t]
i,m(v, x[t], I [t]),

where I [t] is generated under f . Mechanisms with high efficiency reduces the waste of resources and322
are hence preferable. In our simulations, we report the averaged efficiency over resources.323

We first present in Tables 1 (2-agent 2-resource system) and 2 (10-agent 3-resource system) the324
performance of SAMA against Independent with PF mechanism, PA mechanism, and properly trained325
ExS-Net as the one-shot mechanism backbone. Note that the to exactly calculate the full exploitability326
an optimization program needs to be solved to find the optimal misreported parameters for each agent.327
We approximate the optimal misreports by a local grid search around the true parameters.328

Across meta-algorithms, we see that SAMA outperforms Independent across all metrics. Within329
SAMA, it is observed that the properties of the one-shot mechanism are preserved. In the one-shot330
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setting, the PF mechanism achieves the largest NSW, the PA mechanism has zero exploitability, and331
ExS-Net strikes a balance between them. This relationship remains consistent in the sequential setting.332

Varying Budget Level. We also visualize the mechanism performance as a budget scaling α333
parameter, which leads to the budget Bm = αNT

2 for every resource m, varies from 0.2 (scarce) to334
1.6 (abundant). The budget for The expected behavior in terms of NSW, efficiency, and exploitability335
is 1) that NSW should constantly move up as more resources are available, 2) that the efficiency336
drops as the chance of the budget exceeding the total demand increases, thus creating a waste, 3) that337
the exploitability exhibit an increase-then-decrease movement, as misreporting helps little under a338
small budget and is unnecessary when the resources are excessive. The simulation results for the339
2-agent 2-resource problem, plotted in Figure 2, match the expectation and show that SAMA again340
consistently achieves better metrics than Independent. We note that experimental results on the341
10-agent 3-resource problem can be found in Section 9 of the supplementary material.342

Varying Horizon. We also investigate the effect of varying horizon on the mechanism performance.343
Shown in Figure 3 for the 2-agent 2-resource problem, NSW increases as T goes up as the overall344
budget increases with T , while the full exploitability also increases, matching the behavior predicted345
by the bound in Theorem 2. The trend is consistently observed in the 10-agent 3-resource problem as346
well, and we defer the plot to Section 9 of the supplementary material.347

6 Conclusion & Future Work348

There is a gap in the literature on sequential mechanisms that can (approximately) optimize both349
IC and NSW without monetary payments. We proposed a simple method that builds sequential350
mechanisms from one-shot mechanisms approximately preserving their properties.351

A interesting future direction is to learn sequential IC mechanism. In the one-shot setting, Dütting352
et al. (2024); Ivanov et al. (2022); Zeng et al. (2024b;a) have explored parametrizing the mechanism353
using neural networks and learning them end-to-end from data. While one sacrifices strong theoretical354
guarantees associated with the so-obtained mechanisms, this approach achieves favorable empirical355
trade-offs between the competing objectives. It would be of interest to extend this approach to the356
sequential problem, which can be formulated as a Markov decision process, leveraging reinforcement357
learning.358
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7 Notation450

Variable Physical Meaning Aggregate Notation

a
[t]
i,m

allocation of resource m
made to agent i in time t

a
[t]
i = [a

[t]
i,1, a

[t]
i,2, · · · , a

[t]
i,M ] ∈ RM

+

a[t] = [(a
[t]
1 )⊤, (a

[t]
2 )⊤, · · · , (a[t]

N )⊤]⊤ ∈ RNM
+

a = [(a[1])⊤, (a[2])⊤, · · · , (a[T ])⊤]⊤ ∈ RTNM
+

x
[t]
i,m

demand of resource m
from agent i in time t

x
[t]
i = [x

[t]
i,1, x

[t]
i,2, · · · , x

[t]
i,M ] ∈ RM

+

x[t] = [(x
[t]
1 )⊤, (x

[t]
2 )⊤, · · · , (x[t]

N )⊤]⊤ ∈ RNM
+

xi = [(x
[1]
i )⊤, (x

[2]
i )⊤, · · · , (x[T ]

i )⊤]⊤ ∈ RTM
+

x = [(x[1])⊤, (x[2])⊤, · · · , (x[T ])⊤]⊤ ∈ RTNM
+

Bm total budget of resource m B = [B1, B2, · · · , BM ] ∈ RM
+

b
[t]
m

remaining budget of resource m
in the beginning of time t

b[t] = [b
[t]
1 , b

[t]
2 , · · · , b[t]M ] ∈ RM

+

v
[t]
i,m

agent i’s valuation for
one unit of resource m

vi = [vi,1, vi,2, · · · , vi,M ] ∈ RM
+

v = [v⊤1 , v⊤2 , · · · , v⊤N ]⊤ ∈ RNM
+

Table 3: Frequently Used Notations.

8 Preliminaries – One-Shot Allocation of Divisible Resources451

Consider the problem in which a supplier allocates a finite number M of divisible resources to452
N agents. Each resource m ∈ [M ] has a limited quantity, which we refer to as budget Bm ≥ 0.453
The allocation is represented as a vector a ∈ RNM , with ai,m denoting the quantity of resource454
m ∈ [M ] allocated to agent i ∈ [N ]. For simplicity, our work assumes that every agent i evaluates455
the allocation with a (thresholded) linear additive utility function, a common assumption made in the456
literature Sinclair et al. (2020); Liao et al. (2022); Hassanzadeh et al. (2023); Konda et al. (2024),457
parameterized by demands xi ∈ RM and valuation vi ∈ RM458

ui(a, v, x) ≜
M∑

m=1

vi,m min{ai,m, xi,m}. (11)

The supplier knows the functional form of the utility but relies on each agent i to report the parameters459
vi, xi. A mechanism determines the allocation based on {Bm}m∈[M ] and the reported parameters,460
which may differ from the true parameters vi, xi. The problem setting is called “one-shot” to461
differentiate with the sequential problem – all agents come to the supplier and submit their requests at462
once, and the supplier makes a decision with complete knowledge of the requests under no uncertainty.463

8.1 Mechanism Design Objectives464

Social welfare and incentive compatibility and common objectives in one-shot resource allocation.465
Social welfare quantifies the overall agents’ satisfaction with their allocation on an aggregate social466
level. There are many social welfare notions, among which we consider Nash social welfare, which467
strikes a balance between pure egalitarian welfare (focusing on the worst-off agents), and utilitarian468
welfare (focusing on agents with utility functions of the largest magnitude).469
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Definition 5 (Nash Social Welfare of One-Shot Mechanism) Given v ∈ RNM
+ , x ∈ RNM

+ , B ∈470
RM
+ , ã ∈ RNM , and an agent importance weight vector w ∈ RN

+ , the (bias-adjusted) Nash social471
welfare of a one-shot mechanism f is defined as472

NSWone-shot(f, v, x,B, ã) ≜
∏N

i=1

(
ui(f(v, x,B, ã) + ã, v, x+ ã)

)wi
. (12)

The supplier does not know the true demands and valuations relies on the agents to report them.473
A self-interested agent may report untruthfully on purpose if doing so increases its allocation.474
Since untruthful reporting may lead to unpredictable allocation outcome, it is highly desirable for a475
mechanism to be incentive compatible (IC), meaning that it enforces that the agents cannot obtain a476
more preferable allocation by misreporting in any way. IC is a binary property – a mechanism is said477
to be IC if misreporting does not benefit any agent at all, and not IC otherwise. We use the notion of478
exploitability to characterize the degree of IC.479

Definition 6 (Exploitability of One-Shot Mechanism) Under v ∈ RNM
+ , x ∈ RNM

+ , and B ∈ RM
+ ,480

the exploitability of mechanism f with respect to agent i is481

explone-shot
i (f, v, x,B, ã) ≜ max

v′
i∈RM

+ ,x′
i∈RM

+

ui

(
f((v′i, v−i), (x

′
i, x−i), B, ã), v, x

)
−ui(f(v, x,B, ã), v, x).

9 Additional Simulation Results482

We include the plots on 10-agent 3-resource systems under 1) varying budget levels, and 2) varying483
horizon length, in the setup discussed in Section 5. See Figures 4 and 5.484

10 Proof of Theorems485

In this section, we present the proofs of Theorems 1-3.486

10.1 Proof of Theorem 1487

Let c[t]truth, a
[t]
truth ∈ RM denote the solution to (7) and the allocation in time t when agent i reports its488

true values vi and demands x[t]
i , and c

[t]
lie , a

[t]
lie ∈ RM those when agent i reports some untruthful vi,lie489

and x
[t]
i,lie490

c
[t]
truth = f one-shot

(
v,

x[t]

β[t]
, b[t], ã[t]

)
, a

[t]
truth = β[t]c

[t]
truth (13)

c
[t]
lie = f one-shot

(
(vi,lie, v−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b[t], ã[t]

)
, a

[t]
lie = β[t]c

[t]
lie . (14)

By the definition of c[t]truth and c
[t]
lie and the fact that f one-shot is ϵ-IC, we have491

ui(c
[t]
lie , v,

x[t]

β[t]
)− ui(c

[t]
truth, v,

x[t]

β[t]
) ≤ ϵ. (15)

The linearity of the utility function allows us to write492

ui(a
[t]
lie , v, x

[t])− ui(a
[t]
truth, v, x

[t]) = ui(β
[t]c

[t]
lie , v, x

[t])− ui(β
[t]c

[t]
truth, v, x

[t])

= β
[t]
i

(
ui(c

[t]
lie , v,

x[t]

β[t]
)− ui(c

[t]
truth, v,

x[t]

β[t]
)
)

≤ β
[t]
i ϵ.

where the inequality follows from (15). Recognizing that 0 ≤ β
[t]
i ≤ 1 completes the proof.493

■494
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Figure 4: Algorithm Performance in 2x2 and 10x3 Systems under Varying Budget.

10.2 Proof of Theorem 2495

Suppose an agent i may misreport vi,lie and {x[t]
i,lie}t∈[T ]. We denote496

a
[t]
truth = β[t]f one-shot(v,

x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), (16)

a
[t]
lie = β[t]f one-shot((vi,lie, v−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b

[t]
lie , ã

[t]
lie), (17)

b
[t]
truth = B − ã

[t]
truth, b

[t]
lie = B − ã

[t]
lie , (18)

u
[t]
truth = u(a

[t]
truth, v, x

[t]), u
[t]
lie = u(a

[t]
lie , v, x

[t]), (19)

ũ
[t]
truth =

t−1∑
t′=1

u
[t′]
truth, ũ

[t]
lie =

t−1∑
t′=1

u
[t′]
lie . (20)

By definition,497

u
[t]
i,lie − u

[t]
i,truth
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Figure 5: Algorithm Performance in 2x2 and 10x3 Systems with Varying Horizon.

= ui(β
[t]f one-shot((vi,lie, v−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b

[t]
lie , ã

[t]
lie), v, x

[t])

− ui(β
[t]f one-shot(v,

x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v, x

[t])

= β
[t]
i

(
ui(f

one-shot((v
[t]
i,lie, v

[t]
−i),

(x
[t]
i,lie, x

[t]
−i)

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)

− ui(f
one-shot(v,

x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)
)

+ β
[t]
i

(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)− ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v,

x[t]

β[t]
)
)

≤ ϵ+
(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)− ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v,

x[t]

β[t]
)
)
,

where the inequality follows from the ϵ-IC of f one-shot and β
[t]
i ≤ 1.498

Considering the utility from the total allocations up to time t,499

ũ
[t+1]
i,lie − ũ

[t+1]
i,truth
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=
(
ũ
[t]
i,lie − ũ

[t]
i,truth

)
+
(
u
[t]
i,lie − u

[t]
i,truth

)
≤
(
ũ
[t]
i,lie − ũ

[t]
i,truth

)
+ ϵ

+
(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie), v,

x[t]

β[t]
)− ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
truth, ã

[t]
truth), v,

x[t]

β[t]
)
)

≤ ϵ+
(
ui(f

one-shot(v,
x[t]

β[t]
, b

[t]
lie , ã

[t]
lie) + ã

[t]
lie , v,

x[t]

β[t]
+ ã

[t]
lie)

− ui(f
one-shot(v,

x[t]

β[t]
, b

[t]
truth, ã

[t]
truth) + ã

[t]
truth, v,

x[t]

β[t]
+ ã

[t]
truth)

)
.

Note that b[t]truth +
∑

i ã
[t]
truth = b

[t]
lie +

∑
i ã

[t]
lie = B. This allows us to apply the correction property of500

f one-shot in (9), which leads to501

|ũ[t+1]
i,lie − ũ

[t+1]
i,truth| ≤ ϵ+ |ũ[t]

i,lie − ũ
[t]
i,truth|.

Applying the inequality recursively502

T∑
t=1

(
u(a

[t]
i,lie, v

[t]
i,truth, x

[t]
i,truth)− u(a

[t]
i,truth, v

[t]
i,truth, x

[t]
i,truth)

)
≤
∣∣∣ũ[T+1]

i,lie − ũ
[T+1]
i,truth

∣∣∣ ≤ Tϵ.

■503

10.3 Proof of Theorem 3504

Given the valuation and demand profile v ∈ RNM ,x ∈ RTNM and budget B ∈ RM , let505
Aone-shot(v,x, b) ∈ RTNM denote the allocation returned by SAMA(f one-shot).506

To bound the distance between NSWone-shot(fPF , v, x̃[T ], B, 0) (the maximum NSW that507
can be possibly achieved with hindsight knowledge on demands and valuations) and508
NSW(SAMA(f one-shot), v,x, B), we introduce a middle point SAMA(fPF ), which is the sequen-509
tial mechanism built by SAMA from a one-shot PF mechanism. We use APF (v,x, B) ∈ RTMN510
to denote the allocation made by SAMA(fPF ) given agent valuations and demands v,x and bud-511
get B, under λ[τ ] specified in the theorem statement. Note that with a single resource to allocate,512
SAMA(fPF ) reduces to the SAFFE-D mechanism proposed in Hassanzadeh et al. (2023). Under the513
choice of λ[t] specified in the theorem statement, we have from Hassanzadeh et al. (2023)[Theorem514
1] that the following inequality holds with probability at least 1− ξ515

Ev,x,B [max
i,m

|fPF
i,m (v, x̃[T ], B, 0)−

T∑
t=1

A
[t],PF
i,m (v,x, B)|] ≤ 2T 3/2

√
ξ

stdmax,

which obviously implies516

Ev,x,B [∥fPF (v, x̃[T ], B, 0)−
T∑

t=1

A[t],PF(v,x, B)∥] ≤ 2T 3/2NM√
ξ

stdmax,

and further by the Lipschitz continuity of the utility function517

Ev,x,B [|ui(f
PF , v, x̃[T ], 0)−

T∑
t=1

ui(A
[t],PF(v,x, B), v, x[t])|]

≤ v̄Ev,x,B [∥fPF (v, x̃[T ], B, 0)−
T∑

t=1

A[t],PF(v,x, B)∥1]
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≤ 2T 3/2NM3/2v̄√
ξ

stdmax . (21)

Next, we bound the distance between the utilities resulting from allocations returned by518
SAMA(f one-shot) and SAMA(fPF ).519 ∣∣∣∣∣

T∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
=
∣∣∣ui(A

[T ],one-shot, v, x[T ])− ui(A
[T ],PF , v, x[T ]) +

(
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

)∣∣∣
=
∣∣∣β[T ]

i

(
ui(f

one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])− ui(f
PF (v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])

)
+ β

[T ]
i

(
ui(f

one-shot(v, y[T ], b[T ],one-shot, Ã[T ],one-shot), v, x[T ])− ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])

)
+

(
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

)∣∣∣
≤ β

[T ]
i

∣∣∣ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])− ui(f

PF (v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])
∣∣∣

+
∣∣∣β[T ]

i

(
ui(f

one-shot(v, y[T ], b[T ],one-shot, Ã[T ],one-shot), v, x[T ])− ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])

)
+ β

[T ]
i

( T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

)∣∣∣
+ (1− β

[T ]
i )
∣∣∣ T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣
≤ β

[T ]
i

∣∣∣ui(f
one-shot(v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])− ui(f

PF (v, y[T ], b[T ],PF , Ã[T ],PF ), v, x[T ])
∣∣∣

+ β
[T ]
i

∣∣∣∣∣
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
+ (1− β

[T ]
i )

∣∣∣∣∣
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
≤ vδ +

∣∣∣∣∣
T−1∑
t=1

ui(A
[t],one-shot, v, x[t])−

T∑
t=1

ui(A
[t],PF , v, x[t])

∣∣∣∣∣
≤ Tvδ, (22)

where the second inequality follows from the correction property of the one-shot mechanism (9),520
the third inequality is a result of (10) and the relation β

[T ]
i ≤ 1, the final inequality is obtained by521

applying the one above recursively.522

Combining (21)-(22) and noting M = 1,523

Ev,x,B [NSWone-shot(fPF , v, x̃[T ], B, 0)−NSW(SAMA(f one-shot), v,x, B)]

= Ev,x,B [ui(f
PF , v, x̃[T ], 0)− ui(A

one-shot(v,x, B), v,x)]

= Ev,x,B [ui(f
PF , v, x̃[T ], 0)−

T∑
t=1

ui(A
[t],one-shot, v, x[t])]

≤ Ev,x,B [|ui(f
PF , v, x̃[T ], 0)−

T∑
t=1

ui(A
[t],PF(v,x, B), v, x[t])|]
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+ Ev,x,B [|ui(A
[t],PF (v,x, B), v, x[t])−

T∑
t=1

ui(A
[t],one-shot(v,x, B), v, x[t])|]

≤ 2T 3/2Nv̄√
ξ

stdmax +Tvδ.

■524
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