
A Training Regime
A.1 Implementation of the GPs

We use the GPyTorch4 package for the computations of GPs and their kernels. The NN linear kernel
is implemented in all experiments as a 1-layer MLP with ReLU activations and hidden dimension 16.
For the Spectral Mixture Kernel, we use 4 mixtures.

A.2 Sines Dataset
For the first experiments on sines functions, we use the dataset from [9]. For each task, the input
points x are sampled from the range [�5, 5], and the target values y are obtained by applying
y = A sin (x� ') + ✏, where the amplitude A and phase ' are drawn uniformly at random from
ranges [0.1, 5] and [0,⇡], respectively. The noise values ✏ are modeled by a normal distribution with
zero mean and standard deviation equal to 0.1.

During the training, we use 5 support and 5 query points. The inference is performed over 500 tasks,
each consisting of 200 query points and 5 support points. The models are trained for 50000 iterations
with batch size 1 (one task per each parameters update) and learning rate 0.001 using the Adam
optimizer with �1 = 0.9 and �2 = 0.999.

The feature extractor for this experiment is implemented by a 2-layer MLP with ReLU activations
and hidden dimension 40, which follows the setting of [9]. The last hidden layer is used as the
representation for the DKT5 and NGGP methods in the Gaussian Process framework.

The CNF component for our model was inspired by FFJORD. Our implementation is based on the
original code provided by the authors6. We use two stacked blocks of CNFs, each composed of two
hidden concatsquash layers, 64 units each, with tanh activation. We adjusted concatsquash layers for
the conditional variant of CNF by feeding them with an additional conditioning factor - the 40 dim
output from the feature extractor.

We use the same settings for the in-range heterogeneous noise experiment, but we train the NGGP
method for 10000 iterations instead of 50000 since we have noticed that this is enough for the model
to converge.

A.3 Head-pose trajectory
For the head-pose trajectory task, we use the same setting as proposed in [29] with the same feature
extractor - convolution neural network with 3 layers, each with 36 output channels, stride 2, and
dilation 2. The NN Linear kernel in this experiment is implemented by a 1-layer MLP with ReLU
activations and hidden dimension 16.

During the training phase, we use a meta-batch size equal to 5, the learning rate 0.001, and the
Adam optimizer with the same configuration as in the sines experiment. Models were trained for
100 iterations. We use 5 support and 5 query points during the train. During the inference, we use
5 points as the support and the remaining samples of the trajectory as the query. We perform the
inference over 10 different tasks.

For NGGP, we use the same CNF component architecture as in for the sines dataset. However,
we also add Gaussian noise from the Normal distribution N (0, 0.1) to the head-pose orientations.
Adding noise allows for better performance when learning with the CNF component.

A.4 Object pose prediction
In order to verify the extend of memorization in NGGP, we consider so-called non-mutually exclusive
tasks. In this setting, the tasks are constructed in such a way that a single model can solve all tasks
zero-shot. In particular, we follow the procedure of the pose prediction task introduced in [54]. The
few-shot regression dataset is based on the Pascal 3D7 data [51] and was recreated based on the code

4https://gpytorch.ai/, available on the MIT Licence
5For the DKT implementation we use the code provided at https://github.com/BayesWatch/

deep-kernel-transfer
6https://github.com/rtqichen/ffjord
7ftp://cs.stanford.edu/cs/cvgl/PASCAL3D+_release1.1.zip

15

https://github.com/BayesWatch/deep-kernel-transfer
https://github.com/BayesWatch/deep-kernel-transfer
https://github.com/rtqichen/ffjord
ftp://cs.stanford.edu/cs/cvgl/PASCAL3D+_release1.1.zip


from the original research paper 8. Firstly, the objects were randomly split into the meta-training set
(50) and meta-testing (15), then the MuJoCo [44] library was used to render the instances of objects
on a table, setting them random orientations. The observation is a tuple consisting of a 128⇥ 128
gray-scale image and its label - orientation relative to a fixed canonical pose. Every task consists of
30 positions sampled from the 100 renderings and divided randomly into support and query.

During the training, we use a meta-batch of 10 tasks. The NGGP and DKT models were trained
over 1000 iterations, with learning rates equal to 0.01 for the kernel parameters, 0.01 for the feature
extractor parameters, and 0.001 for the ODE-mapping component. We used the Adam optimizer
with the same � configuration as in the sines experiment. We also use the same CNF component
architecture as in the sines dataset. Similarly, as in the head-pose trajectory experiment, we add
Gaussian noise from N (0, 0.1) to the orientations for better performance . The inference is performed
over 100 tasks, which also consist of 15 support and 15 query points. As the feature extractor, we use
one of the architectures tested in the original research paper [54] - the convolutional encoder with
five layers stacked as follows: 2 convolutional layers with stride 2 and output dimensions 32 and 48;
max pooling layer with kernel 2⇥ 2; convolutional layer with output dimension 64; flatten layer and
linear layer with output dimension equal to 64.

For this dataset, we tested NGGP and DKT models with RBF and Spectral kernels only. This choice
was due to the similarity between head-pose trajectory and object pose prediction settings, and the
results show that these two kernels performed the best on such tasks.

A.5 Power Dataset

The Power Dataset9 is an UCI benchmark that describes individual household electric power con-
sumption. The original data is composed of 7 time-dependent attributes, but we focus only on the
sub_metering_3 attribute in our experiments. We split the dataset into tasks, where each of the
tasks corresponds to daily electricity consumption and is represented by 1440 measurements (in
minutes). We train the model using the first 50 days and validate it using the next 50 days. We used
the same architecture as for the sines dataset in our experiments, except the feature extractor returns
1D embedding.

A.6 NASDAQ100 and EEG Datasets

The NASDAQ10010 dataset consists of 81 major stocks under the NASDAQ 100 index. We decided to
use the NASDAQ100 dataset with padding that includes 390 points per day over a 105 days interval.

We use 70% of the initial data points of the NDX100 index for the creation of meta-train tasks. The
in-range meta-tasks were obtained from the last 30% of the data, while the out-of-range inference
was obtained from the whole time-series of a different stock index. For this purpose, we utilize the
time-series given by the YHOO index, which was not used during the training.

The EEG11 dataset contains raw time series of brainwave signals sampled at 128Hz for 14 electrodes
placed at different areas of the patient scalp. Particular patients had been stimulated for various
periods, so the time series had different lengths.

The meta-training tasks were obtained form patient A001SB1_1 and electrode AF4 from the first
70% of that time-series data points. Same as in NASDAQ100, meta-test tasks were for the in-range
scenario were obtained from the last 30% of the same data. The out-of-range inference tasks were
computed on different patient time-series of EEG data points - we used the A003SB1_1 patient.

For both models, we used the same backbone architecture with Adam optimizer parameters set to
the same values as in the experiment on the sines dataset with a learning rate set to 0.001. During
the training and testing, we used 5 support and 5 query points. The support and query points where

8https://github.com/google-research/google-research/tree/master/meta_learning_
without_memorization, on Apache-2.0 License

9https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+
consumption, made available under the “Creative Commons Attribution 4.0 International (CC BY 4.0)”
license.

10https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html
11https://archive.ics.uci.edu/ml/datasets/EEG+Steady-State+Visual+Evoked+

Potential+Signals, UCI repository dataset

16

https://github.com/google-research/google-research/tree/master/meta_learning_without_memorization
https://github.com/google-research/google-research/tree/master/meta_learning_without_memorization
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html
https://archive.ics.uci.edu/ml/datasets/EEG+Steady-State+Visual+Evoked+Potential+Signals
https://archive.ics.uci.edu/ml/datasets/EEG+Steady-State+Visual+Evoked+Potential+Signals


sampled as an random interval of 10 consecutive points. Models were trained with a batch size 1 for
1000 iterations.

B Additional Results: Sines Regression
In addition to the GP-based methods reported in the main text, we also summarize the performance of
other baseline algorithms on the sines dataset with standard Gaussian noise. The results are presented
in Table 5. It may be observed that the DKT and NGGP significantly outperform other approaches.
Therefore we only provide a comparison between those two methods in section 5 in the main paper.

Table 5: The MSE and NLL results for the inference tasks on sines datasets in the in-range and
out-range settings. The lowest results in bold. Asterisks (*) and (**) denote values reported in [45]
and [29], respectively. The lower the result, the better.

Method in-range out-of-range
MSE NLL MSE NLL

ADKL* 0.14 - - -
R2-D2* 0.46 - - -
ALPaCA** 0.14±0.09 - 5.92±0.11 -
Feature Transfer/1** 2.94±0.16 - 6.13±0.76 -
Feature Transfer/100** 2.67±0.15 - 6.94±0.97 -
MAML (1 step)** 2.76±0.06 - 8.45±0.25 -
DKT + RBF 1.36±1.64 -0.76±0.06 2.94±2.70 -0.69±0.06
DKT + Spectral 0.02±0.01 -0.83±0.03 0.04±0.03 -0.70±0.14
DKT + NN Linear 0.02±0.02 -0.73±0.11 6.61±31.63 38.38±40.16
NGGP + RBF 1.02±1.40 -0.74±0.07 3.02±2.53 -0.65±0.08
NGGP + Spectral 0.02±0.01 -0.83±0.05 0.03±0.02 -0.80±0.07
NGGP + NN Linear 0.04±0.03 -0.73±0.10 7.34±12.85 29.86±27.97

C Additional Results: Classical Regression Tasks
Our main goal was to show improvement of NGGP over standard GPs in the case of a few-shot
regression task. Albeit, we test our method also in classical regression task setting. Intuition is that
NGGP may be superior to standard GPs in a simple regression setting for datasets with non-gaussian
characteristics, but do not expect any improvement otherwise.

C.1 Classical Regression Tasks
Following the experiments from [23, 40], we decided to run NGGP on regular regression tasks. In
this setting, we trained models over 10000 iterations on samples containing 100 points from a given
dataset. Averaged results on 500 test samples containing 40 points that were not seen during the
training - are presented in 6.

Table 6: Results on classical regression tasks on proposed datasets are inconclusive. One may see
that results of methods performance vary between datasets.

Dataset abalone Ailerons creeprupt
MSE NLL MSE NLL MSE NLL

GP + RBF 1.26 ± 0.68 -1.47 ± 0.20 1.28 ± 0.66 -1.47 ± 0.19 1.26 ± 0.68 -1.47 ± 0.19
DKT + RBF 1.18 ± 0.28 -1.41 ± 0.09 1.41 ± 0.39 -1.49 ± 0.12 1.24 ± 0.39 -1.44 ± 0.12
NGGP + RBF 1.23 ± 0.29 -1.44 ± 0.09 1.25 ± 0.31 -1.44 ± 0.10 1.10 ± 0.25 -1.41 ± 0.08

C.2 Sines

Table 7: One may observe that addition of CNF significantly improves results of the classical GP
with RBF kernel in such setting.

GP + RBF DKT + RBF NGGP + RBF
MSE 1.06 ± 0.24 0.72 ± 0.32 0.34 ± 0.22
NLL -0.98 ± 0.10 -1.20 ± 0.15 -1.33 ± 0.13

17



We ran additional experiments on a synthetic dataset of 2d sine waves (as in the setting from Figure 1).
The data was generated by randomly sampling either sin(x) or � sin(x) for a given point x, together
with adding uniform noise from (0.1, 0.5). Models were trained for 10000 iterations over samples
from the range (�5.0, 5.0) with 100 points in one sample. The prediction was done for samples
from the interval (5.0, 10.0) - MSE and NLL were averaged on 500 test samples. We present the
quantitative results in Table 7.

18


	Introduction
	Related Work
	Background
	Non-Gaussian Gaussian Processes
	Training objective
	Inference with the model
	Adaptation for few-shot regression

	Experiments
	Conclusions
	Training Regime
	Implementation of the GPs
	Sines Dataset
	Head-pose trajectory
	Object pose prediction
	Power Dataset
	NASDAQ100 and EEG Datasets

	Additional Results: Sines Regression
	Additional Results: Classical Regression Tasks
	Classical Regression Tasks
	Sines


