
Under review as a conference paper at ICLR 2024

MULTI-SCALE GENERATIVE MODELING IN WAVELET
DOMAIN

Anonymous authors
Paper under double-blind review

ABSTRACT

While working within the spatial domain can pose problems associated with ill-
conditioned scores, recent advancements in diffusion-based generative models
have shown that transitioning to the wavelet domain offers a promising alterna-
tive. However, within the wavelet domain, we encounter unique complexities,
especially the sparse representation of high-frequency coefficients, which devi-
ates significantly from the Gaussian assumptions in the diffusion process. To this
end, we propose developing a multi-scale generative model directly within the
wavelet domain using Generative Adversarial Networks. This Multi-Scale Gener-
ative Model in the Wavelet Domain (i.e., Wavelet Multi-Scale Generative Model
(WMGM)) leverages the benefits of wavelet coefficients, with a specific emphasis
on using low-frequency coefficients as conditioning variables. Based on theoreti-
cal analysis and experimental results, our model provides a pioneering framework
for implementing generative models in the wavelet domain, showcasing remark-
able performance improvements and significant reduction in trainable parameters,
sampling steps and time. This innovative approach represents a promising step
forward in the field of diffusion modeling techniques.

1 INTRODUCTION

Generative model (GM) aims to extract knowledge and data from noise. Simply speaking, the GM
takes as input a large amount of data and uses a loss function that encodes the notion of likeness (i.e.,
measuring the differences between the empirically observed and the generated distributions) in or-
der to construct/generate a high-dimensional probability distribution that approximates the true data
distribution. With this goal in mind, over the last decades, several GMs have been proposed, such
as reinforcement learning (RL), variational autoencoders (VAE), recurrent neural networks (RNNs),
generative adversarial networks (GANs), or hybrid (i.e., combine the previously mentioned strate-
gies) approaches, providing strategies for generating high-quality audio waveforms or speech (Oord
et al. (2016)), constructing natural-looking images (Goodfellow et al. (2014); Brock et al. (2018)),
generating coherent text (Bowman et al. (2015)), designing molecules (Gómez-Bombarelli et al.
(2018)). Within the GM domain, score-based generative models (SGMs) (Song et al. (2020); Ho
et al. (2020); Song & Ermon (2019)), also known as denoising diffusion models, construct and en-
code the probability distributions through a scoring approach (e.g., a vector field that points in the
direction of increasing likelihood of data) and recover the actual data distribution through a learnable
reverse process to the forward Gaussian diffusion process. Several works have successfully shown
that these score functions can be learned from data without requiring adversarial optimization and
producing realistic samples.

Although these SGMs have been highly successful, many physical, chemical, biological, and engi-
neering systems display complex multiscale and non-Gaussian properties, leading to ill-conditioned
scores. To deal with non-Gaussian high-dimensional probability distribution functions (HDPDFs),
Guth et al. (2022b) proposed to factorize these HDPDFs into products of conditional probabilities
of normalized wavelet coefficients across scales and introduced the wavelet score-based genera-
tive model (WSGM). This WSGM constructs the conditional probabilities of normalized wavelet
coefficients exploiting the same discretization schedule across all scales. WSGM offers insightful
inspiration regarding the feasibility of conducting generative operations within the wavelet domain
through wavelet coefficients.

To make the discussion more concrete, let us consider the noise-adding process in the frequency
domain (i.e., wavelet domain), where noise contains a uniform power spectrum in each frequency
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band. However, in the wavelet domain, the high-frequency coefficients of the images are sparse and
contain minimal energy, while the low-frequency coefficients encapsulate most of the energy. Given
the disparity between image and noise power spectra, low-frequency components, which hold the
majority of the energy, receive the same magnitude of noise during the noise addition process, and
high-frequency coefficients, despite being sparse, obtain a relatively larger amount of noise. This
dynamic offers inspiration for analyzing diffusion in the frequency domain, incorporating corre-
sponding generative strategies tailored for each frequency sub-domain (namely, the high and low-
frequency domains). Endeavors have also been undertaken to do the diffusion in the frequency
domain. Some studies highlight the challenges associated with the ill-conditioning properties of the
score during diffusion in the spatial domain. They astutely establish a connection between the mini-
mum discretization steps and the power spectrum of the image, thereby rationalizing the application
of noise addition in the wavelet domain.

While the advantages of conducting diffusion within the wavelet domain are evident from both ex-
perimental results and intuitive understanding, there is a lack of theoretical substantiation for the
correctness of general diffusion in the wavelet domain and comprehensive analysis of the properties
of each wavelet subband. Specifically, considering the sparsity and the non-Gaussian HDPDF of
high-frequency coefficients, discussion about adapting SGM to high-frequency subbands is insuf-
ficient. This void in theoretical grounding and sparsity consideration impedes many works from
efficiently conducting diffusion in the wavelet domain Huang et al. (2023); Jiang et al. (2023). To
bridge this gap, our research first highlights that deep-scale low-frequency coefficient scores are
well-conditioned, alleviating the ill-conditioning issue by general diffusion models in the spatial do-
main. Subsequently, we illustrate that there is a duality between SGM in the wavelet domain and the
spatial domain. Furthermore, considering high-frequency coefficients’ sparsity and non-Gaussian
nature, we introduce Generative Adversarial Neural Operators for multi-scale generative operator
learning. The framework facilitates high-quality generation, data efficiency, and fast sampling.

Our contributions: (i) We are the first to explicitly demonstrate the duality between the spatial
and the wavelet domain in terms of diffusion and reverse processes; (ii) we theoretically establish
the SGM framework in the wavelet domain and analyze the distribution of multi-scale wavelet co-
efficients; (iii) we introduce the multi-scale generative adversarial neural operator (GANO) in the
wavelet domain to tackle the highly non-Gaussian distribution of high-frequency wavelet coeffi-
cients efficiently; (iv) we demonstrate that the proposed WMGM framework, as depicted in Fig. 1
has a faster sampling speed and better generation quality than competitive methods.
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Figure 1: The framework of the proposed WMGM. WT, IWT: wavelet transform and inverse wavelet
transform.
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2 RELATED WORK

Diffusion models have emerged as state-of-the-art generative models, which are stable and capable
to generate high fidelity images. They leverage the Markov chains to gradually introduce noises
into the data and learn to capture the reverse process for sampling. To optimize the reverse process,
Denoising diffusion probabilistic models (DDPMs) Ho et al. (2020); Dhariwal & Nichol (2021)
predict the added noises from the diffused output at arbitrary time steps. Another common approach
is score-based generative models (SGMs) Song & Ermon (2019); Song et al. (2020), which aims
to predict the score function ∇ log(pxt

). Also, a recent study named ’Cold Diffusion’ explores
the possibility of using deterministic transformations instead of random Gaussian noise in diffusion
models Bansal et al. (2022). Another major disadvantage of diffusion models remains that they take
long-time to sampling. To this end, some recent studies have applied to accelerate the sampling
process Xiao et al. (2021); Wang et al. (2022).

Emerging works attempt to incorporate the wavelet domain into diffusion models, either to facilitate
the training or to speed up the sampling process. WSGM Guth et al. (2022b) proposes multi-scale
score-based diffusion model and theoretically analyzes the advantages of wavelet-domain represen-
tation. WaveDiff Phung et al. (2023) applies GAN to accelerate the prediction of wavelet coefficients
during the reverse process in wavelet domain. Huang et al. (2023) leverages low-frequency infor-
mation from the first 3 bands for the diffusion process, and proposes an efficient sampling strategy
conditioned on degraded images and predicted high spectrum for image restoration. The effective-
ness of adaptation of diffusion to wavelet domain has also been successfully demonstrated for a wide
variety of tasks, including low-light image enhancement Jiang et al. (2023), image super-resolution
Moser et al. (2023) and 3D shape generation Hui et al. (2022).

3 GENERATIVE MODELING IN THE WAVELET DOMAIN

In the introduction, we discuss the intuitive limitations of diffusion in the spatial domain, as also
depicted in Fig. 2, where noise is added in the spatial domain gradually and the resulting noise
figures are transformed into the wavelet domain. In this section, we mathematically elucidate the
problems of conducting diffusion in the spatial domain from the perspective of the ill-conditioning
score. Furthermore, we propose conducting diffusion processes in the wavelet domain as a solution
to address these issues.

Figure 2: Diffusion trajectories of the wavelet coefficients. Notice that the high-frequency compo-
nents (LH,HL,HH) are overwhelmed by noise at an earlier stage marked by the green line. At the
same time, the low-frequency component (LL) degrades more slowly.

3.1 ILL-CONDITIONIONG SCORE IN THE SPATIAL DOMAIN

For the Score-based Generative Model (SGM) Song et al. (2020); Ho et al. (2020); Song & Ermon
(2019), the forward/noising process can be mathematically formulated as the Ornstein-Uhlenbeck
(OU) process. The general time-rescaled OU process can be written as follows:

dXt = −g(t)2Xtdt+
√
2g(t)dBt. (1)
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Here, (Xt)t∈[0,T ] is the noising process with the initial condition X0 sampled from the data distri-
bution. (Bt)t∈[0,T ] is a standard d-dimensional Brownian motion. We use X←t to denote the reverse
process, such that (X←t )t∈[0,T ] = (XT−t)t∈[0,T ]. With the common assumption that g(t) = 1 in
standard diffusion models, the reverse processes as follows:

dX←t = (X←t + 2∇ log pT−t(X
←
t )) dt+

√
2dBt, (2)

where pt denotes the marginal density of Xt, and ∇ log pt is called the score. To generate X0 from
XT via the time-reversed SDE, it is essential to accurately estimate the score ∇ log pt at each time
t and to discretize the SDE with minimal error introduction.

An approximation of the reverse process, as given in Eq. 2, can be computed by discretizing time
and approximating ∇ log pt by st. This results in a Markov chain approximation of the time-
reversed Stochastic Differential Equation (SDE). Accordingly, the Markov chain is initialized by
x̃T ∼ N (0, Id) and evolves over uniform time steps ∆t that decrease from tN = T to t0 = 0. The
discretized process is as follows:

x̃t−1 = x̃t +∆t (x̃t + 2st(x̃t)) +
√
2∆tzt, (3)

where zt are realization of Brownian motion Bt. Here, the minimum number of time steps N = T
∆t

is limited by the Lipschitz regularity of the score ∇ log pt, as detailed in Theorem 1 De Bortoli
et al. (2021) and Theorem 3 Guth et al. (2022a). Specifically, let us assume that the data distribution
is Gaussian, p = N (0,Σ), with a covariance matrix Σ in a d-dimensional space. Consider p̃t
as the distribution corresponding to x̃t, the approximation error between the data distribution p
and p̃0 stems from (i) ΨT : the misalignment between the distributions of x̃T and xt; (ii) Ψ∆t:
time discretization error. For a detailed expression, see Equations 59. The sum of two errors ε is
connected to Σ, specifically in the case of uniform time sampling with intervals ∆t. We standardize
the signal energy by enforcing Tr(Σ) = d and define κ as the condition number of Σ, which is the
ratio of its largest to smallest eigenvalues. Subsequently, the relationship can be expressed as:

N =
T

∆t
= o(ϵ−2κ3) (4)

Equation 4 defines the upper bound on the number of time steps N . It indicates that as the condition
number of the covariance increases, the number of time steps also increases correspondingly. Within
the research conducted in Guth et al. (2022a), Theorem 1 is expanded upon to accommodate non-
Gaussian processes. This expansion establishes a link between the number of discretization steps N
and the regularity of the score ∇ log pt, as detailed in Theorem 3, suggesting that the non-Gaussian
processes characterized by an ill-conditioned covariance matrix necessitate a significant number of
discretization steps to achieve a small error.

Natural images are generally modeled by spatially stationary distributions, implying the applica-
bility of Wiener-Khinchin theorem to its covariance matrix Champeney (1987). To be specfic, its
covariance matrix Σ can be diagonalized by

Σ = E(XXT ) = UTSU. (5)

Here U is the matrix represents Fourier transform and S = diag(S(ω)) is the diagonal of the
power spectrum of X . Therefore, the condition number of such distribution equals to maxω(S(ω))

minω(S(ω)) .
However, according to the well-known power-decay law of the power spectrum of natural images
Simoncelli & Olshausen (2001); Ruderman & Bialek (1994), we have

S(ω) ∼ (λη + |ω|η)−1 . (6)

Natural images generally conform to this power-law decay with η = 1 and 2π
λ approximating the im-

age width (L). Consequently, the reverse process in the spatial domain for natural images is highly
ill-conditioned and requires excessive discretization steps to achieve a small error. In order to miti-
gate the inherent ill-conditioning properties of the score observed in the spatial domain, employing
a wavelet transform constitutes a pragmatic solution to this dilemma.
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3.2 DIFFUSION IN THE WAVELET DOMAIN

In this section, we demonstrate the duality between the spatial and wavelet domains in terms of
diffusion and reverse processes to ensure theoretical correctness when performing diffusion within
the wavelet domain. Subsequently, we delve into the well-conditioning properties inherent to the
low-frequency coefficients and the sparsity of the high-frequency coefficients, serving as a pivotal
inspiration for our proposed model. Technical details on wavelet transform and multiresolution
analysis (MRA) have been provided in A.7.

3.2.1 DUALITY BETWEEN THE SPATIAL DOMAIN AND THE WAVELET DOMAIN

The discrete wavelet transform (DWT), such as Haar DWT (Please refer to A.7.3 for detailed infor-
mation), facilitates orthogonal transformations within the real domain, and we can smoothly write
the DWT as:

X̂ = AX, X ∈ Rd. (7)

In this expression, X̂ represents the wavelet coefficients of the signal X in Rd, and A denotes the
discrete wavelet matrix. Importantly, A is an orthogonal matrix, satisfying the condition AA⊤ = I ,
where I is the identity matrix. Following this transformation, we introduce the processes for score-
based generative modeling in the wavelet domain.

Forward process. We first consider the forward/noising process for the score-based generative
modeling process. According to the OU process in the spatial domain formulated in 1, we perform
DWT to Xt and figure out X̂t also observes the similar OU process:

dX̂t = −g(t)2X̂tdt+
√
2g(t)dB̂t, X̂0 = AX0. (8)

Here B̂t = ABt, it is evident that B̂t is also a standard Brownian motion.

Reverse process. We use X̂←t to denote the reverse process in the wavelet domain. According
to the reverse process in the spatial domain formulated as Eq. 2, the corresponding process in the
wavelet domain is outlined below:

dX̂←t =
(
X̂←t + 2∇ log qT−t(X̂

←
t )

)
dt+

√
2dB̂t. (9)

Here qt is the density distribution of X̂t, and we have qt(x) = pt(A
Tx). The derivation of the

reverse process in the wavelet domain is provided in Appendix A.3. In the training processes, the
optimal score-based model rθ̂ approximates the score ∇ log qt in the wavelet domain:

θ̂∗ = argmin
θ̂

= Et

{
λ̂(t)EX̂0

EX̂t|X̂0

[∥∥∥rθ̂(X̂t, t)−∇X̂t
log q0t(X̂t|X̂0)

∥∥∥2]} . (10)

So far we show a duality between the wavelet and spatial domains in score-based generative mod-
eling. We provide a more detailed derivation in Appendix A.3. In the following sections, we will
discuss the characteristics of high-frequency and low-frequency coefficients within the wavelet do-
main separately. For clarity in exposition, we will use xL and xH to represent the low-frequency
and high-frequency coefficients in the wavelet domain, respectively, instead of using X̂ .

3.2.2 WELL-CONDITIONING PROPERTY OF LOW-FREQUENCY COEFFICIENTS

A signal x = x[n] with index n can be decomposed as low-frequency and high-frequency coeffi-
cients. Low-frequency coefficients, often referred to as the ”base” or ”smooth” components, capture
the primary structures and general trends within the data:

xk
L[l] = (Hkx)[l] =

N−1∑
n=0

f [n] · φk,l[n], (11)

where φk,l[n] is the discrete scaling function. The scale index k and the shift parameter l define the
analysis and reconstruction of signals at different scales and positions. H is the low-pass operator.

Within the low-frequency subbands, wavelet decomposition applies the whitening effect to coeffi-
cients and concentrates the majority of energy. Therefore, the distribution of low-frequency coef-
ficients results in a more stable and well-conditioned distribution close to a Gaussian distribution.
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We provide a detailed explanation in A.4, with accompanying experiments illustrated in Fig. 5. Due
to the convolution with a smooth, averaging function φ and the concentration of energy, the covari-
ance matrix behaves closer to a diagonal matrix and has relatively uniform eigenvalues after scaling,
which indicates a lower condition number.

In Fig. 5, we illustrate the Kullback-Leibler (KL) divergence between the sample distribution and the
standard Gaussian distribution (refer to A.4, A.10 for more details), demonstrating approximate log-
linear decreasing with respect to the wavelet decomposition scale. This trend effectively confirms
the whitening effect of wavelet decomposition to low-frequency coefficients. The whitened low-
frequency wavelet coefficient distribution and lower condition number make it more suitable for
SGM based on Gaussian-diffusion assumptions.

3.2.3 SPARSITY OF HIGH-FREQUENCY COEFFICIENTS

The high-frequency coefficients often represent rapid changes or transitions, which are sparse in
natural images and signals. The sparsity in the high-frequency band primarily stems from the in-
herent characteristics of the data: most of the vital information and content (such as main features
or structures) are concentrated in the low-frequency band, while the high-frequency band captures
fine textures and contrastive edges. For a given shift parameter l, the high-frequency signal can be
represented in discrete form as:

xk
H [l] = (Gkx)[l] =

N−1∑
n=0

x[n] · ψk,l[n], (12)

where ψk,l[n] represents the discrete wavelet function and G is the high-pass operator.

It is well known that natural images intrinsically present distinct distribution patterns than Gaussian
distributions: in fact, the wavelet coefficient distribution of natural images is practically modeled as
Generalized Laplacian, Gaussian scale mixture or Generalized Gaussian scale mixture Simoncelli
(1999); Wainwright & Simoncelli (1999); Gupta et al. (2018); Buccigrossi & Simoncelli (1999).
While the whitening effect is applied to the low-frequency coefficients, the high-frequency sub-
bands in each scale retain the original distribution’s long-tail and peak features. Consequently, high-
frequency coefficients are usually sparse and highly correlated with their neighbors Gupta et al.
(2018). Please refer to A.5 for more details.

As shown in Fig. 6, we summarize the sparsity of high-frequency subbands of CelebA-HQ images
at different scales. Noticeably, high-frequency subbands at all scales exhibit strong sparsity, and the
subbands at deeper scales have fewer non-zero components. Besides, some of their non-zero com-
ponents are low-magnitude noise that can be easily filtered out with a small threshold, corresponding
to the efficiency of traditional wavelet denoising. These observations effectively validate the highly
non-Gaussian distribution of high-frequency wavelet coefficients.

4 WAVELET MULTI-SCALE GENERATIVE MODEL

In this section, we first introduce the multi-scale factorization of the generative model in wavelet
domain. Then, we separately build a SGM model at the coarsest scale and the multi-scale GANO
for successive wavelet scales. The integration of the two generative models effectively increases
sampling efficiency while maintaining good sample diversity.

4.1 MULTI-SCALE FACTORIZATION IN WAVELET DOMAIN

The multi-scale image generation in the wavelet domain factorizes the probability of target image
p(x0) as below:

p(x0) = ΠS
k=1p(x

k
H |xk

L)p(x
S
L). (13)

Notice the LL subband at a finer scale k is jointly determined by the low-frequency and high-
frequency subbands at scale k + 1, i.e.,

xk
L = AT (xk+1

H ,xk+1
L )T . (14)

Here, p(xS
L) can be effectively approximated through the reverse diffusion process due to the whiten-

ing effect of multi-scale wavelet decomposition. On the other hand, the conditional probability of
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high-frequency subbands on the LL subband p(xk
H |xk

L) is often a long-tail and peaked multimodal
distribution and differs from simple Gaussian models considerably (refer to A.5). It is worth not-
ing that a more precise and detailed depiction of this conditional distribution can be derived using
the Gaussian scale mixture modeling the joint distribution of wavelet coefficients and the Gaussian-
like distribution of the LL subband, though in this work, we don’t rely on the complicated explicit
expression of the conditional distribution but approximate it implicitly through adversarial learning.

4.2 SCORE-BASED GENERATIVE MODEL IN THE COARSEST WAVELET LAYER

As introduced in Ho et al. (2020); Song et al. (2020); Song & Ermon (2019), a deep neural network
sθ approximates the score function in the reverse process. Following Eq. 10, the loss function for
the training of sθ is

Et

{
λ(t)ExS

L
ExS

L,t|xS
L

[∥∥∥sθ(xS
L,t, t)−∇xS

L,t
log q0t(x

S
L,t|xS

L)
∥∥∥2]} . (15)

This SGM learns the reverse diffusion process at the coarsest level, which resolves the ill-
positionedness of the general diffusion process in the spatial domain. Therefore, the training can
be more efficient and faster than directly training on full-resolution images. After training, similar
to Eq. 3, the reverse process is described as:

xS
L,t−1 = xS

L,t +∆t
(
xS
L,t + 2sθ(x

S
L,t, t)

)
+
√
2∆tzt. (16)

4.3 MULTI-SCALE GENERATIVE ADVERSARIAL NEURAL OPERATOR

Considering the marginal distribution of high-frequency wavelet subbands and its spatial correlation
with the LL subband, we employ Generative Adversarial Network (GAN)Goodfellow et al. (2020)
to model the conditional distribution of x̄k on xk. GAN has long been used to generate photo-
realistic images rapidly, and recent work demonstrates the integration of GAN and diffusion models
for improved sampling speed and mode coverage due to the capability of GAN to learn complicated
multimodal distributions Creswell et al. (2018); Gui et al. (2021); Özbey et al. (2023); Wang et al.
(2022); Xiao et al. (2021); Zheng et al. (2022).

As illustrated in Fig. 7, we introduce a multi-scale generative adversarial neural operator (GANO)
that learns the transformation from LL subband to high-frequency subbands at various wavelet
scales. The generator G consists of a 5-level U-Net enhanced with attention gates Ronneberger
et al. (2015); Oktay et al. (2018). The training loss for multi-resolution super-resolution GAN is

LG =

S∑
k=1

[
λ(G(xk

L, z
k)− xk

H)2 + ν(1− SSIM(G(xk
L, z

k),xk
H))− αD(G(xk

L, z
k))

]
, (17)

LD =
S∑

k=1

(
D(G(xk

L, z
k))−D(xk

H)
)
. (18)

Here zk refers to random white noise at scale k, SSIM(·, ·) is the structural similarity index measure
Wang et al. (2004), and D is the discriminator. We penalize the generator and discriminator on the
Wasserstein distances between fake and real images Arjovsky et al. (2017). The discriminator has 5
convolutional residual blocks, each halving the spatial dimension of features, and 2 fully connected
layers that produce the scalar score of the input image. The architectures of the generator and dis-
criminator are detailed in Fig. 7. Through the multi-scale operator learning in the wavelet domain
and sharing the parameters across various scales; the multi-scale GANO allows a significant reduc-
tion in the number of trainable parameters while maintaining comparable performance to existing
methods Guth et al. (2022b).

Multi-scale operator Learning. Recent work has witnessed the innovative integration of wavelet
analysis and deep learning to achieve advanced operator learning Tripura & Chakraborty (2022);
Gupta et al. (2021); Xiao et al. (2022). This approach primarily involves mapping coefficients
within the wavelet domain, facilitating function-to-function mapping. The operator learning work
as presented in Li et al. (2020); Gupta et al. (2021) demonstrates super-resolution properties through
constructing mappings in the frequency domain.
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One-shot GANO To avoid unstable training and mode collapse of GAN Kodali et al. (2017); Gui
et al. (2021), related works break the SGM sampling process into multiple denoising steps and
accelerate the time-consuming reverse process with GAN Wang et al. (2022); Xiao et al. (2021). In
contrast to these studies where GAN learns the complicated sample distribution p(x0) from standard
Gaussian directly, the multi-scale GANO in our framework generates samples in one shot instead
of iterative, progressive sampling. This is benefited from learning a simpler conditional distribution
p(xk

H |xk
L) where the low-frequency condition of xk

L provides an excellent reference to the target,
simplifies the task and stabilizes the training. In addition, the SGM in LL subband in our method
improves mode coverage and diversity of generated images than traditional GANs.

5 EXPERIMENTS

5.1 IMPLEMENTATION AND TRAINING DETAILS

For training, the input images are based on 128x128 resolution. We use Adam optimizer Kingma &
Ba (2014) with the learning rate 10−4 for the diffusion model, and AdamW optimizers Loshchilov
& Hutter (2017) for the generator and discriminator using learning rates of 10−4 and 10−5, re-
spectively. The diffusion model is trained with the batch size of 64 for 50000 iterations, while the
generator and discriminator are trained with the batch size of 128 for 150 epochs.

For evaluation metrics, we use the Frechet inception distance (FID) Heusel et al. (2017) to measure
the image quality. The sampling time is averaged over 10 trials when generating a batch of 64
images. Training code and model weights are available for the sake of reproducibility. All tasks are
conducted on a NVIDIA V100 GPU.

SGM WSGM WMGM

Figure 3: Generation of SGM, WSGM and our method on CelebA-HQ datasets. 16 discretization
steps per scale was utilized for WSGM, and our model and SGM keep the same total sampling steps.

5.2 RESULTS AND COMPARISON

In this section, we provide detailed information about our experiments conducted on the CelebA-
HQ dataset by Karras et al. (2017), as well as the AFHQ dataset introduced by Choi et al. (2020).
The outcomes of the proposed WMGM are presented in Table 1. To ensure a fair comparison with
previous methodologies Guth et al. (2022b), we separately train our model and their approach on
these datasets and evaluate the performance on the same test sets. We maintain consistent settings
for both CelebA-HQ and the AFHQ dataset, and employ the FID as the evaluation metric.

In Table 1, we use discretization steps of 16. AFHQ-Cat refers to the ’cat’ category in AFHQ.
Besides assessing generation quality with FID, we evaluate efficiency using model parameters and
inference time. Our performance surpasses SGM Song et al. (2020) and WSGM Guth et al. (2022b),
achieving FID scores of 30.58 on 30k CelebA data, 25.38 on 5k CelebA and 16.29 on AFHQ-Cat.

Figure 4 illustrates the FID comparison on the AFHQ-Cat and CelebA-HQ test set utilizing various
total sampling steps ranging from 6 to 192. In all of these settings, we attain state-of-the-art genera-
tion quality in comparison to both SGM and WSGM. On the AFHQ-Cat dataset, our method rapidly
reaches a convergence with FID around 16 in a total of 48 discretization steps, while WSGM needs
significantly more discretization steps of 192 for the same FID level. This result further emphasizes
the fast sampling advantage of our method over related studies.
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Methods
FID↓

Parameters↓ Sampling Time(ms)↓
CelebA-HQ (5K) AFHQ-Cat (5K) CelebA-HQ (30K)

SGM 90.83 80.93 78.50 160M 15093
WSGM 49.97 17.12 26.74 351M 11097

WMGM(Ours) 30.58 16.29 25.38 89M 4175

Table 1: Comparison of SGM, WSGM and our method. 16 discretization steps per scale was utilized
for WSGM, our model and SGM keep the same total sampling steps. Sampling time including all
steps of each method. Bold data represents the optimal results overall.

With such notable performance gains, it is noteworthy that our approach exhibits exceptional effi-
ciency in terms of model size, inference time, and data requirements. As evident in Table 1, our
model encompasses merely 89M parameters, making it 44.38% smaller than SGM and 74.64%
smaller than WSGM. Moreover, we observe accelerated sampling during inference as compared
to those methodologies. The sampling time of the proposed WMGM is 72.33% lower than SGM
and 62.38% lower than WSGM. Additionally, beyond these direct comparisons in size and time,
we ascertain that our approach achieves high-quality image generation with mere 16 total sampling
steps for an image of 128× 128. Notably, our model converges even with a modest training dataset
comprising only 5000 images, whereas both SGM and WSGM fail under such circumstances.

101 102

Total sampling steps

1.5 × 101

102

2 × 102

FI
D

AFHQ-Cat
SGM
WSGM
WMGM(Ours)

101 102

Total sampling steps

102

3 × 101

4 × 101

6 × 101

2 × 102
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D
CelebA-HQ

SGM
WSGM
WMGM(Ours)

Figure 4: FID of SGM, WSGM and our method on AFHQ-Cat and CelebA-HQ datasets w.r.t.
various total sampling steps.

6 CONCLUSION

In conclusion, our work addresses the score-based generative models’ ill-conditioness in the spatial
domain and challenges associated with the wavelet domain and presents the Wavelet Multi-Scale
Generative Model (WMGM). We theoretically demonstrate the duality of diffusion process be-
tween the spatial and wavelet domains and comprehensively investigate the distribution of wavelet
coefficients. We design an effective score-based generative model at the coarsest scale utilizing
the whitening effect of low-frequency coefficients and the multi-scale GANO to handle the non-
Gaussian distribution of high-frequency wavelet coefficients. Our extensive experimental results
demonstrate that WMGM not only outperforms competing methods in terms of sampling speed and
generation quality but also reduces trainable parameters and sampling steps. Overall, our research
represents a significant step forward in diffusion modeling techniques, opening up new avenues for
generative modeling in the wavelet domain.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.
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Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. A review on generative adver-
sarial networks: Algorithms, theory, and applications. IEEE transactions on knowledge and data
engineering, 35(4):3313–3332, 2021.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information processing systems, 34:24048–24062, 2021.

Praful Gupta, Anush Krishna Moorthy, Rajiv Soundararajan, and Alan Conrad Bovik. Generalized
gaussian scale mixtures: A model for wavelet coefficients of natural images. Signal Processing:
Image Communication, 66:87–94, 2018.

Florentin Guth, Simon Coste, Valentin De Bortoli, and Stephane Mallat. Wavelet score-based gen-
erative modeling. Advances in Neural Information Processing Systems, 35:478–491, 2022a.

10



Under review as a conference paper at ICLR 2024

Florentin Guth, Simon Coste, Valentin De Bortoli, and Stephane Mallat. Wavelet score-based gen-
erative modeling. Advances in Neural Information Processing Systems, 35:478–491, 2022b.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yi Huang, Jiancheng Huang, Jianzhuang Liu, Yu Dong, Jiaxi Lv, and Shifeng Chen. Wavedm:
Wavelet-based diffusion models for image restoration. arXiv preprint arXiv:2305.13819, 2023.

Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural wavelet-domain diffusion for 3d shape
generation. In SIGGRAPH Asia 2022 Conference Papers, pp. 1–9, 2022.

Arne Jensen and Anders la Cour-Harbo. Ripples in mathematics: the discrete wavelet transform.
Springer Science & Business Media, 2001.

Hai Jiang, Ao Luo, Songchen Han, Haoqiang Fan, and Shuaicheng Liu. Low-light image enhance-
ment with wavelet-based diffusion models. arXiv preprint arXiv:2306.00306, 2023.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of gans.
arXiv preprint arXiv:1705.07215, 2017.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Brian B Moser, Stanislav Frolov, Federico Raue, Sebastian Palacio, and Andreas Dengel. Wav-
ing goodbye to low-res: A diffusion-wavelet approach for image super-resolution. CoRR,
abs/2304.01994, 2023.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.
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A APPENDIX

A.1 CODE AVAILABILITY

The code is available at https://anonymous.4open.science/r/WMGM-3C47/.

A.2 DIFFUSION IN THE WAVELET DOMAIN

We first investigate the effect of noise evolution in the spatial domain. In our extensive image
perturbation analysis, we observed the ramifications of incrementally introduced Gaussian noise in
the spatial domain. Initially, the superimposed Gaussian noise manifests predominantly as high-
frequency perturbations. With an increase in the strength and duration of noise injection, these
perturbations start to mask the primary structures of the original image, causing the entire image
to be progressively characterized by Gaussian noise attributes. This renders the image increasingly
homogeneous, dominated by high-frequency disturbances.

The influence of noise evolution extends beyond the spatial domain, and its progressive perturbation
to different frequency bands of the image can be better understood from a wavelet domain perspec-
tive. When the perturbed images are subjected to a wavelet transform, we noted a systematic series
of effects:

1. Concentration of High-Frequency Effects: Recall the power spectra of natural images
following the 1

f2 decaying rule Field (1987); Van der Schaaf & van Hateren (1996) and
the constant power spectra of Guassian noise. Therefore, as noise is introduced, it pre-
dominantly manifests in the high-frequency subbands (LH, HL, HH). This is due to the
wavelet transform’s ability to separate out high-frequency details from the low-frequency
approximations of an image.

2. Cumulative Effect: As more noise is added, it not only augments the existing high-
frequency perturbations but also starts to influence the low-frequency content, especially as
the strength and/or duration of the noise becomes significant. Gradually, the noise begins to
leave its footprint in the low-frequency subband (LL) as the original low-frequency content
gets progressively masked or drowned by the noise.

3. Multi-Scale Structure of Wavelets: The wavelet transform possesses a multi-resolution
analysis characteristic. In the initial wavelet decomposition, the LL subband still contains
most of the energy and primary information of the image, while the LH, HL, and HH sub-
bands capture finer details. As the amount of introduced noise reaches a certain threshold,
these fine details and the main structure of the original image get masked by the noise, lead-
ing to a more uniform distribution of energy across both low and high-frequency subbands.
Over time, the coefficient distribution in the LL subband begins to resemble a Gaussian
distribution more closely.

In summary, the gradual introduction of noise first impacts the high-frequency subbands and, as
noise accumulates, the low-frequency subbands are also affected. When the noise level is sufficiently
high, the entire image becomes dominated by the Gaussian noise, whether in the spatial or wavelet
domain.

A.3 DUALITY OF THE DIFFUSION PROCESS IN THE SPTIAL SPACE AND THE WAVELET
DOMAIN

A.3.1 FORWARD PROCESS

To simplify the notations, let x be an image vector, and we can write the discrete wavelet transform
(DWT) as:

X̂ = AX, X ∈ Rd.

Here, A is the discrete wavelet matrix. This matrix is an orthogonal matrix, i.e., AA⊤ = I . Several
choices of A are widely applied, such as Haar wavelets.

For the score-based generative modeling process, we consider the forward/noising process. This
process can be mathematically formulated as the Ornstein–Uhlenbeck (OU) process. The general
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time–rescaled OU process can be written as

dXt = −g(t)2Xtdt+
√
2g(t)dBt. (19)

Here, Bt is a standard d–dimensional Brownian motion. We perform DWT to Xt and figure out X̂t

also observes the same OU process.

dX̂t = −g(t)2X̂tdt+
√
2g(t)AdBt, X̂0 = AX0. (20)

Let B̂t = ABt, B̂t is also a standard Brownian motion. We let X0 be sampled from distribution p.
Then X̂0 is from the distribution

q = TA#p. (21)

Here, TA is the A linear transform operation. # is the pushforward operation, which gives

q(x) = p(A⊤x). (22)

Let pt be the density distribution of Xt, qt be the density distribution of X̂t. We have

qt = TA#pt, qt(x) = pt(A
⊤x). (23)

Let
st = ∇ log pt, rt = ∇ log qt. (24)

be the score functions of two processes. We have

rt(x) =
∇qt(x)
qt(x)

=
A∇pt(A⊤x)
pt(A⊤x)

= Ast(A
⊤x). (25)

A.3.2 DENOISING/REVERSE PROCESS

We use X←t and X̂←t to denote the reverse process. With the common assumption that g(t) = 1 in
standard diffusion models, the reverse processes follow:

dX←t = (X←t + 2sT−t(X
←
t )) dt+

√
2dBt,

dX̂←t =
(
X̂←t + 2rT−t(X̂

←
t )

)
dt+

√
2dB̂t.

(26)

Here, B̂t = ABt. We look into the second SDE.

dX̂←t =
(
X̂←t + 2rT−t(X̂

←
t )

)
dt+

√
2dB̂t

=
(
X̂←t + 2AsT−t(A

⊤X̂←t )
)
dt+

√
2dB̂t

A⊤dX̂←t =
(
A⊤X̂←t + 2sT−t(A

⊤X̂←t )
)
dt+

√
2A⊤dB̂t. (27)

Replacing A⊤X̂←t by X←t . We can get back to the first equation. The training processes for
sθ, rθ̂with X

(i)
t , X̂

(i)
t also following the same standard denoising score matching loss function as

follows:

Et

{
λ(t)EX0

EXt|X0

[
∥sθ(Xt, t)−∇Xt

log p0t(Xt|X0)∥2
]}

Et

{
λ̂(t)EX̂0

EX̂t|X̂0

[∥∥∥rθ̂(X̂t, t)−∇X̂t
log q0t(X̂t|X̂0)

∥∥∥2]} . (28)

The forward and reverse probability distribution function p0t and q0t are defined following the stan-
dard SGM model, in other words,

p0t(Xt|X0) = N (Xt;
√
ᾱtX0, (1− ᾱt)I),

q0t(X̂t|X̂0) = N (X̂t;
√
ᾱtX̂0, (1− ᾱt)I). (29)
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Figure 5: KL divergence of sample distribution (scale = 0) and LL coefficient distributions (scale
= 1,2) to standard Gaussian distribution. Images were downsampled to size L × L before wavelet
decomposition.

A.4 GAUSSIAN TENDENCY OF LOW-FREQUENCY COEFFICIENTS IN HIGHER SCALES

In this section, we first experimentally showcase the KL divergence between sample distribution
of low-frequency coefficients and standard Gaussian distribution on CelebA-HQ and AFHQ-Cat
datasets. 2-scale wavelet decomposition was implemented to each image, and the sample mean and
covariance were calculated accordingly to the raw image (scale 0) and LL subbands at scale 1 and
2. The KL divergence of sample distribution to standard Gaussian is detailed in A.10.

Next, we provide theoretical explanation to this whitening effect. Consider X as a random variable
representing the intensity of an image pixel, with a distribution characterized by mean µ and standard
deviation σ. Given n observations of X , these are not strictly independent but exhibit a dependence
due to the spatial proximity in the image.

The dependence of the pixels varies in different situations. For a smooth clarification, let’s denote
the dependence between two pixels separated by a distance d as C(d). Apparently, the dependence
will decrease with the increase of d. We smoothly assume the dependence of two pixels can be
represented as a power-law decay:

C(d) =
1

(1 + αd)β
(30)

Here, α and β are parameters controlling the rate of decay in correlation or dependence with dis-
tance, and these parameters would need to be estimated empirically from the image data. The dis-
tance d between pixels can be calculated using a suitable distance metric, such as Euclidean distance,
depending on the data’s specific characteristics.

When the image undergoes the decomposition processes such as low-pass filtering and down-
sampling, this dependence C(d) diminishes, particularly for larger d. Mathematically, this dimin-
ishing dependence can be represented with a function that decreases as d increases. Given the ubiq-
uitous noise in natural images, resonably we can assume the dependence C(d) is truncated beyond
dmax.

Consider X as a random variable representing the intensity of an image pixel, with a general dis-
tribution, mean µ, and standard deviation σ. Given n observations of X , these are not necessarily
independent but possess a dependence structure (for instance, due to the spatial proximity of pixels
in an image), we define:

X̄ =
1

n
(X1 +X2 + . . .+Xn), (31)
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When the image undergoes low-pass filtering and down-sampling, the dependence between adjacent
pixels is further weakened according to Eq. 31. In the multiscale analysis context, the low-frequency
components at scale k can be approximated as the average intensity within the corresponding lo-
cal region. As scale k increases, each local region incorporates more pixels, and the average is
taken over nk pixel values. According to the General Central Limit Theorem Billingsley (2013);
Rosenblatt (1956), given the weak dependence structure and the law of large numbers for weakly
dependent sequences, as nk approaches infinity, the distribution of X̄k will converge to a normal
distribution with mean µ and standard deviation σ√

nk
:

X̄k
d−→ N (µ,

σ2

nk
), as nk → ∞ (32)

Besides, as
√
nk ≫ dmax, the correlation between adjacent pixels at scale k will diminish and can

be regarded independent, identically distributed variables.

Therefore, at larger scales where nk is sufficiently large, the low-frequency coefficients’ distribution
increasingly resembles a Gaussian distribution. This explains why, in multiscale analysis, signal
components at larger scales (i.e., lower frequencies) tend to be normally distributed.

However, in practical applications, achieving infinity for nk is infeasible due to constraints imposed
by the real-world data and computational resources. Moreover, the border effect, which is a common
issue encountered during the wavelet transform process Jensen & la Cour-Harbo (2001), imposes
additional limitations. This necessitates a thoughtful tradeoff in selecting an appropriate coarsest
layer for analysis. In the context of our paper, we choose a layer size of 32 to effectively navigate
through this tradeoff. Notwithstanding these practical constraints, the inherent Gaussian tendency of
low-frequency coefficients at higher scales still plays a pivotal role. It ensures a better-conditioned
Stein score during the diffusion process in the low-frequency wavelet domain.

A.5 SPARSE TENDENCY OF OF HIGH-FREQUENCY WAVELET COEFFICIENTS

By examining the statistical sparsity of images in the CelebA-HQ dataset, we show that the dis-
tribution of high-frequency wavelet coefficients is highly non-Gaussian. For a given image x and
threshold t, the sparsity of its high-frequency coefficients at k-scale is defined as:

s(xk
H) =

∥1{xk
H ≤ t}∥
L2

, k = 1, 2, · · · (33)

Here ∥·∥ is the norm counting the number of 1s in the vector. In this way, we could estimate the
expected sparsity of the true marginal distribution p(xk

H). Considering that the LL coefficients with
approximate Gaussian distribution given the whitening effect of wavelet decomposition, we have
the following proposition.

Proposition 1. For a sufficiently large k, if the expected sparsity of xk
H has a lower bound α

E(s(xk
H)) ≥ α, (34)

where α ∈ [0, 1]. Then the conditional expected sparsity of xk
H on xk

L is bounded by

E(s(xk
H)|xk

L) ≥ α− ε, (35)

where ε > 0 is a small positive number determined by k.

Proof. According to A.4, for a sufficiently large k we could assume that∫
|p(xk

L)− fk(x
k
L)|dxk

L ≤ ε, (36)

where fk(xk
L) is the PDF of standard Gaussian distribution. Notice that

E(s(xk
H)) =

∫∫
s(xk

H)p(s(xk
H)|xk

L)p(x
k
L)dx

k
Lds (37)

=

∫
E(s(xk

H)|xk
L)p(x

k
L)dx

k
L ≥ α (38)
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Figure 6: High frequency coefficient sparsity of CelebA-HQ images. Low-magnitude coefficients
smaller than Thres is recognized as white noise and filtered to zero.

Since s is a bounded function in [0, 1], E(s(xk
H)|xk

L) has an uniform lower bound with respect to
all xk

L, denoted as α′. In other words, there exists α′ ∈ [0, 1] such that

E(s(xk
H)|xk

L) ≥ α′, ∀xk
L (39)

We can get ∫
E(s(xk

H)|xk
L)p(x

k
L)dx

k
L (40)

=

∫
E(s(xk

H)|xk
L)fk(x

k
L)dx

k
L +

∫
E(s(xk

H)|xk
L)(p(x

k
L)− fk(x

k
L))dx

k
L (41)

≥ α′ (42)

Similarly, it is easy to see that 1 is a trivial uniform upper bound for E(s(xk
H)|xk

L). Thus,

E(s(xk
H)|xk

L) ≥ α′ =

∫
E(s(xk

H)|xk
L)p(x

k
L)dx

k
L − ε ≥ α− ε. (43)

Consequently, we can see the conditional distribution of xk
H on xk

L exhibits highly non-Gaussian
properties and yields sparse samples.
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A.6 ATTENTION-GAN ARCHTECTURE DESCRIPTION

As shown in Figure 7, the core of the generator is based on the UNet structure, and it also incor-
porates attention modules during the upsampling process. After data enters the generator, it first
goes through five layers of downsampling followed by five layers of upsampling. With each upsam-
pling, the data subsequently passes through an attention module. After completing these operations,
the data finally passes through two convolutional operations and activation functions to output the
required values.

Score

Max-pooling

Bilinear upsampling

Skip connection

Residual block

Attention gate

Convolutional layer

Fully connected layer

Multi-scale GANO

Discriminator

Figure 7: Network architecture of the proposed multi-scale GANO.
The total number of parameters in the Attention-GAN model is approximately 36 million, with a
model depth of 106 layers. The model’s width starts from the size of the input channel, goes through
a downsampling process to a maximum of 1024, and then becomes the size of the output channel
after the upsampling and attention process. The width of the intermediate layers can be controlled
by adjusting the parameters. The skip connections in this model are primarily characterized by the
use of corresponding downsampling information during the upsampling process. The difference lies
in that the data, after being processed by the upsampling layers, serve as input information for the
attention gates and are entered into the attention block together with the corresponding information
from the downsampling process. The implementation of attention gate is as follows.

• It first applies the transformations ‘self.W g‘ and ‘self.W x‘ to the gating signal ‘g‘ and the
local signal ‘x‘ respectively, producing two intermediate feature maps.

• These feature maps are then added together and passed through a ReLU activation function
and a 2D Convolutional layer to generate the attention map.

• The attention map is element-wise multiplied by the original local signal ‘x‘ to produce the
output of the attention block, which selectively emphasizes certain features of ‘x‘ based on
the gating signal ‘g‘.

For more information, please refer to the open-sourced codes of our method.
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A.7 WAVELET TRANSFORM

The wavelets represent sets of functions that result from dilation and translation from a single func-
tion, often termed as ‘mother function’, or ‘mother wavelet’. For a given mother wavelet ψ(x), the
resulting wavelets are written as

ψa,b(x) =
1

|a|1/2
ψ

(
x− b

a

)
, a, b ∈ R, a ̸= 0, x ∈ D, (44)

where a, b are the dilation, translation factor, respectively, andD is the domain of the wavelets under
consideration. In this work, we are interested in the compactly supported wavelets, or D is a finite
interval [m,n], and we also take ψ ∈ L2. For the rest of this work, without loss of generality, we
restrict ourself to the finite domain D = [0, 1], and extension to any [m,n] can be simply done by
making suitable shift and scale.

A.7.1 1D DISCRETE WAVELET TRANSFORM (1D DWT)

Multiresolution Analysis (MRA) The Wavelet Transform employs Multiresolution Analysis
(MRA) as a fundamental mechanism. The basic idea of MRA is to establish a preliminary basis
in a subspace V0 of L2(R), and then use simple scaling and translation transformations to expand
the basis of the subspace V0 into L2(R) for analysis on multiscales.

For k ∈ Z and k ∈ N, the space of scale functions is defined as: Vk = {f |the restriction of f to the
interval (2−kl, 2−k(l + 1)), for all l = 0, 1, . . . , 2k − 1, and f vanishes elsewhere}. Therefore, the
space Vk has dimension 2k, and each subspace Vi is contained in Vi+1 shown as

V0 ⊂ V1 ⊂ V2 ⊂ . . .Vn ⊂ . . . . (45)

Given a basis φ(x) of V0, the space Vk is spanned by 2n functions obtained from φ(x) by shifts
and scales as

φk
l (x) = 2k/2φ(2kx− l), l = 0, 1, . . . , 2k − 1. (46)

The functions φl(x) are also called scaling functions which can project a function to the approxima-
tion space V0. The wavelet subspace Wk is defined as the orthogonal complement of Vk in Vk+1,
such that:

Vk

⊕
Wk = Vk+1, Vk ⊥ Wk; (47)

and Wk has dimension 2k. Therefore, the decomposition can be obtained as

Vk = V0

⊕
W0

⊕
W1 . . .

⊕
Wk−1. (48)

To form the orthogonal basis for Wk, the basis is constructed for L2(R). The bases can be obtained
by translating and dilating from the wavelet function which is orthogonal to the scaling function.
The wavelets function ψ(x) shown as follows:

ψk
l (x) = 2k/2ψ(2kx− l), l = 0, 1, . . . , 2k − 1. (49)

where the wavelet function ψ(x) are orthogonal to low-order functions (vanishing moments), here
is an example for first-order polynomial:∫ ∞

−∞
xψj(x)dx = 0. (50)

Wavelets’ properties of orthogonality and vanishing moments are pivotal for effective data rep-
resentation. Orthogonality ensures each wavelet coefficient distinctly captures specific data fea-
tures without overlap. In contrast, the vanishing moments allow wavelets to efficiently encapsulate
smooth polynomial trends in the data, facilitating both clear approximations and feature extraction.
Together, these attributes make wavelets adept at concise and unambiguous data analysis.

Wavelet Decomposition The Discrete Wavelet Transform (DWT) offers a multi-resolution anal-
ysis of signals, gaining popularity in signal processing, image compression, and numerous other
domains.
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For a discrete signal f [n], we can obtain its approximation coefficients cA and detail coefficients
cD using the scaling function ϕ(x) and the wavelet function ψ(x), respectively. This is done by
convolving f [n] with the respective filters followed by downsampling:

cA[k] =
∑
n

h[n− 2k]f [n] cD[k] =
∑
n

g[n− 2k]f [n] (51)

Where h[n] and g[n] denote the low-pass and high-pass filters respectively. The decomposition
process can be recursively applied to the approximation coefficients cA for deeper multi-level de-
compositions. Each subsequent level reveals coarser approximations and finer details of the signal.

Wavelet Reconstruction Upon having decomposed a signal using the DWT, reconstruction aims
to rebuild the original signal from its wavelet coefficients. This process uses the inverse wavelet and
scaling transformations, necessitating another pair of filters known as reconstruction or synthesis
filters.

For a given set of approximation coefficients cA and detail coefficients cD, the reconstructed signal
f ′[n] can be obtained using:

f ′[n] =
∑
k

cA[k] · h0[n− 2k] + cD[k] · g0[n− 2k] (52)

Here, h0[n] and g0[n] are the synthesis filters related to the decomposition filters h[n] and g[n].
Typically, these synthesis filters are closely tied to the decomposition filters, often being their time-
reversed counterparts.

For multi-level decompositions, the reconstruction process is conducted in a stepwise manner. Start-
ing from the coarsest approximation, it’s combined with the detail coefficients from the highest level.
This resultant signal then acts as the approximation for the next level, and the procedure is iteratively
repeated until the finest level is reached, thus completing the reconstruction.

A.7.2 2D DISCRETE WAVELET TRANSFORM (2D DWT)

The 2D DWT is a pivotal technique for image analysis. Unlike the traditional Fourier Transform
which primarily provides a frequency view of data, the 2D DWT offers a combined time-frequency
perspective, making it especially apt for analyzing non-stationary content in images.

For a given image I(x, y), its wavelet transform is achieved using a pair of filters: low-pass and
high-pass, followed by a down-sampling operation. The outcome is four sets of coefficients: ap-
proximation coefficients, horizontal detail coefficients, vertical detail coefficients, and diagonal de-
tail coefficients.

This transformation can be mathematically represented as:

Approximation Coefficients: LL = DWT(I(x, y) ∗ h(x) ∗ h(y))
Horizontal Detail Coefficients: LH = DWT(I(x, y) ∗ h(x) ∗ g(y))

Vertical Detail Coefficients: HL = DWT(I(x, y) ∗ g(x) ∗ h(y))
Diagonal Detail Coefficients: HH = DWT(I(x, y) ∗ g(x) ∗ g(y))

(53)

where h(x, y) and g(x, y) are the low-pass and high-pass filters, respectively.

It is crucial to note that these transformations are typically followed by a down-sampling opera-
tion. The convolution with wavelet filters provides a multi-resolution representation, and the down-
sampling reduces the spatial resolution, leading to the hierarchical structure characteristic of wavelet
decompositions. The 2D DWT offers a comprehensive approach to understand the intricate details
of images by bridging the time (spatial) and frequency domains. This representation not only simpli-
fies image analysis but also offers unique insights unattainable through conventional frequency-only
transformations.

A.7.3 HAAR WAVELET TRANSFORM

As one of the most basic wavelets, Haar wavelet has simplicity and orthogonality, ensuring its ef-
fective implementation in digital signal processing paradigms. The straightforward and efficient
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characteristics of Haar wavelets make them highly practical and popular for various applications,
and their successful implementation in other works prompted us to utilize them in our project as
well. When we perform wavelet decomposition on an image using the discrete wavelet transform
(DWT), we can obtain an approximate representation that captures the main features or overall
structure of the image, as well as finer details that capture the high-frequency information in the
image. Through further multi-resolution analysis (MRA), we can view the image at different scales
or levels, resulting in a view containing more detail.

The Haar wavelet and its associated scaling function can be formally delineated as:

ψ(t) =


1 for 0 ≤ t < 0.5

−1 for 0.5 ≤ t < 1

0 elsewhere
, ϕ(t) =

{
1 for 0 ≤ t < 1

0 elsewhere
(54)

Among them, ψ(t) is the Haar wavelet function, and ϕ(t) is the Haar scaling function.

Haar wavelet transform has wide applications in two-dimensional space, especially in image anal-
ysis. This 2D extension retains its inherent decomposition method for 1D signals but applies it
sequentially to the rows and columns of the image. With these definitions in hand, the filter co-
efficients are computed by evaluating the inner products. Specifically, for the Haar wavelet, we
have:

• Low-pass filter coefficients (h):

h0 =

∫ 1

0

ϕ(t)ϕ(2t)dt, h1 =

∫ 1

0

ϕ(t)ϕ(2t− 1)dt. (55)

• High-pass filter coefficients (g):

g0 =

∫ 1

0

ψ(t)ψ(2t)dt, g1 = −
∫ 1

0

ψ(t)ψ(2t− 1)dt. (56)

For filter coefficients, usually we want them to be unitized (i.e. their L2 norm is 1). After calculation,
h0 = 1√

2
, and similarly for the other coefficients. Consequently, the Haar filter coefficients are:

h =

[
1√
2
,
1√
2

]
, g =

[
1√
2
,− 1√

2

]
. (57)

When extending the one-dimensional DWT to two dimensions for image processing, the filter coef-
ficients are used in a matrix form to operate on the image. When applying the filters horizontally on
rows, we consider the outer product of the filter vector with a column unit vector. Similarly, for the
vertical operation down the columns, the outer product of the filter vector with a row unit vector is
considered. The two-dimensional filter matrices become:

H = hT × h =

[
1√
2

1√
2

1√
2

1√
2

]
, G = gT × g =

[
1√
2

− 1√
2

− 1√
2

1√
2

]
. (58)

The matrixH corresponds to low-pass filtering in the horizontal and vertical directions, representing
the approximate information in the image, whileG corresponds to the high-pass filtering in the hori-
zontal and vertical directions, capturing the details in the image. When performing the wavelet trans-
formation of an image using Haar wavelets, these matrices are used to derive the approximation(LL),
horizontal detail(LH), vertical detail(HL), and diagonal detail(HH) coefficients.

A.8 SCORE REGULARITY FOR DISCRETIZATION

Theorem 1. Suppose the Gaussian distribution p = N (0,Σ) and distribution p̃0 from time reversed
SDE, the Kullback-Leibler divergence between p and p0̃ relates to the covariance matrix Σ as:
KL(p ∥ p̃0) ≤ ΨT +Ψ∆t +ΨT,∆t, with:

ΨT = f
(
e−4T |Tr ((Σ− Id)Σ)|

)
, (59)

Ψ∆t = f
(
∆t

∣∣Tr (Σ−1 − Σ(Σ− Id)−1 log(Σ)/2 + (Id− Σ−1)/3
)∣∣) , (60)

ΨT,∆t = o(∆t+ e−4T ), ∆t→ 0, T → +∞ (61)
where f(t) = t− log(1 + t) and d is the dimension of Σ, Tr (Σ) = d.
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Proposition 2. For any ϵ > 0, there exists T,∆t ≥ 0 such that:
(1/d)(ΨT +Ψ∆t) ≤ ϵ, (62)

T/∆t ≤ Cϵ−2κ3, (63)
where C ≥ 0 is a universal constant, and κ is the condition number of Σ.

Guth et al. (2022b) provides the proof outline for Theorem 1, based on the following Theorem 2,

Theorem 2. Let N ∈ N, ∆t > 0, and T = N∆t. Then, we have that x̄Nt ∼ N (µ̂N ,Σ
N̂ ) with

ΣN̂ = Σ+ exp(−4T )ΣT̂ +∆tΨT̂ + (∆t)2RT̂ ,∆t, (64)

µ̂N = µ+ exp(−2T )µ̂T +∆teT̂ +
(∆t)2

2
rT,∆t, (65)

where ΣT̂ ,ΨT̂ , RT,∆t ∈ Rd×d, µ̂T , e
T̂ , rT,∆t ∈ Rd, and ∥RT,∆t∥ + ∥rT,∆t∥ ≤ R, not dependent

on T ≥ 0 and ∆t > 0. We have that

ΣT̂ = −(Σ− Id)(ΣΣ−1)2, (66)

ΨT̂ = Id− 1

2
Σ2(Σ− Id)−1 log(Σ) + exp(−2T )ΨT̃ . (67)

In addition, we have
µ̂T = −Σ−1TΣµ, (68)

eT̂ =

{
−2Σ−1 − 1

4
Σ(Σ− Id)−1 log(Σ)

}
µ+ exp(−2T )µ̃T , (69)

with ΨT̃ , µ̃T bounded and not dependent on T .

Theorem 3. Suppose that ∇ log pt(x) is φ2 in both t and x such that:

sup
x,t

∥∥∇2 log pt(x)
∥∥ ≤ K, ∥∂t∇ log pt(x)∥ ≤Me−αt∥x∥ (70)

for some K, M , α > 0. Then, ∥p− p̃0∥TV ≤ ΨT +Ψ∆t +ΨT,∆t, where:

ΨT =
√
2e−T KL (p ∥ N (0, Id))

1/2 (71)

Ψ∆t = 6
√
∆t

[
1 + Ep

(
∥x∥4

)1/4] [
1 +K +M (1 + 1/2α)

1/2
]

(72)

ΨT,∆t = o
(√

∆t+ e−T
)

∆t→ 0, T → +∞ (73)

Theorem 3 generalizes Theorem 1 to non-Gaussian processes. Please refer to Guth et al. (2022a) for
the complete proof.

A.9 DATASETS

CelebA-HQ Karras et al. (2017) dataset is an extension of the original CelebA Liu et al. (2015)
dataset. It contains high-quality images of celebrity faces at a higher resolution compared to the
original CelebA dataset. This dataset was created to cater to the needs of tasks that require high-
resolution facial images. The images in the CelebA-HQ dataset are typically at a resolution of
1024x1024 pixels, providing a significant improvement in image quality compared to the original
CelebA dataset, which had lower-resolution images. Similar to the original CelebA dataset, CelebA-
HQ comes with a set of facial attribute annotations. These annotations include information about
attributes such as gender, age, and presence of accessories like glasses. CelebA-HQ also contains a
substantial number of images. While the exact number may vary depending on the specific release,
it generally consists of thousands of high-resolution images of celebrity faces. The dataset includes
images of a diverse set of celebrities, covering a wide range of genders, ethnicities, and ages.

Animal Faces-HQ (AFHQ) dataset, initially introduced in Choi et al. (2020), comprises 15,000
high-resolution images with 512× 512 pixels. This dataset has three distinct domains: cat, dog, and
wildlife, each containing 5,000 images. With three domains and a diverse array of breeds (≥ eight)
per domain, AFHQ presents a more intricate image-to-image translation challenge. All images are
meticulously aligned both vertically and horizontally to position the eyes at the center. The dataset
underwent a careful curation process, with low-quality images being manually excluded. In this
work, we exclusively utilize the cat and dog categories in all experiments.
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A.10 EVALUATION METRICS

Kullback-Leibler Divergence We utilized KL divergence to quantify the similarity between the
distribution of LL coefficients and the standard Gaussian distribution N0 = N (0, I). Suppose the
image dataset of interest has N images Xi ∈ RL2

, i = 1, 2, · · · , N . We could calculate the sample
mean and covariance matrix as below:

µ̂ =

∑N
i=1 Xi

N
(74)

Σ̂ =

∑N
i=1 XiX

T
i

N
− µ̂µ̂T (75)

Due to the non-negative data range of image data, we perform pixel-wise normalization to the sample
mean and covariance. Denote Λ = (diag(Σ̂))

1
2 , the normalized sample mean and covariance are

µ̃ = µ̂− 1T µ̂ (76)

Σ̃ = Λ−1Σ̂Λ−1 (77)

By CLT, we know the normalized sample distribution can be approximate by a L2-dimension Gaus-
sian distribution N1 = N (µ̃, Σ̃). Therefore, the KL divergence between the normalized sample
distribution and standard Gaussian is:

DKL(N0 ∥ N1) =
1

2

(
tr(Σ̃−1)− L2 + µ̃T Σ̃−1µ̃+ ln(detΣ̃)

)
(78)

A.11 ADDITIONAL RESULT

Here we present the sampling results on the CelebA-HQ (5k) and AFHQ-Cat datasets.

Figure 8: SGM with 4 discretization steps
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Figure 9: WSGM with 4 discretization steps

Figure 10: WMGM with 4 discretization steps

Figure 11: SGM with 16 discretization steps
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Figure 12: WSGM with 16 discretization steps

Figure 13: WMGM with 16 discretization steps

Figure 14: SGM with 64 discretization steps
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Figure 15: WSGM with 64 discretization steps

Figure 16: WMGM with 64 discretization steps

Figure 17: Cat samples with WMGM using 4 discretization steps
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Figure 18: Cat samples with WMGM using 16 discretization steps

Figure 19: Cat samples with WMGM using 64 discretization steps
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