
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

6 APPENDIX

6.1 METHODS

Setting DSA hyperparameters
Unlike Procrustes and CKA, DSA has hyperparameters. We use the computationally cheaper attrac-
tor analysis to sample a wide space of parameters and decide on the best parameter set. We then use
the same parameters for the analyses of RNNs and SSMs. For the attractor analysis the ”number of
delays” parameter is sampled uniformly from 1 to 100. The ”delay intervals” parameter is sampled
uniformly from 1 to the number of time steps (fixed to 200) divided by the selected number of de-
lays. We manually conduct an iterative search to find the best parameters. For each parameter, we
take 10 samples within each interval. We refine the interval for each parameter two times, taking
the two best candidates for each parameter as bounds for the new interval. We then select the best
parameter combination based on best dissimilarity gap and linear behavior in analysis shown in Fig.
2e (number of delays = 33, delay interval = 6). Generally, the dissimilarity gap and linear behavior
were correlated, so that a parameter combination doing well one measure, also did well on the other.
As a result we did not have to trade-off between these two criteria. Note that the attractor analysis
we run purposefully uses the same number of time steps as the analysis window in later RNN anal-
ysis. Generally speaking, we found that changing the DSA parameters does quantitatively but not
qualitatively change results of analyses.

RNN / SSM training and analysis
The training process is detailed below:

Parameter Description
Architecture Leaky RNN, Leaky GRU
Activation Function ReLU, Softplus, Tanh
Hidden Size 128, 256
Learning Rate 1⇥ 10�2, 1⇥ 10�3

Batch Size 64, 128, 256
Optimizer Adam
Loss Function Cross Entropy
Training Data One epoch consisted of 10,000 trials for each task.
Training Procedure Networks were trained in a supervised fashion until they reached 99%

accuracy on each task or for 50 epochs, whichever came first. When
a network was pretrained on multiple tasks, the tasks were trained se-
quentially within each epoch.

Analysis We only analyzed the networks that managed to fully learn the master
task to 99% accuracy, which corresponded to 91% of all models.

Training Time The total training time for all conditions was 48 hours.

Table 1: RNN Training Parameters

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Parameter Description
Architecture Mamba SSMs (Gu & Dao, 2023)
Number of Layers 1, 2
Hidden Dimensions 8, 16
Learning Rate 1⇥ 10�2, 5⇥ 10�3, 1⇥ 10�3, 5⇥ 10�4

Batch Size 16, 32, 64, 128
Optimizer Adam
Loss Function Cross Entropy
Training Data One epoch consisted of 10,000 trials for each task.
Training Procedure Networks were trained in a supervised fashion until they reached 99%

accuracy on each task or for 50 epochs, whichever came first. When
a network was pretrained on multiple tasks, the tasks were trained se-
quentially within each epoch.

Analysis We only analyzed the networks that managed to fully learn the master
task, which corresponded to 99% of all models.

Training Time The total training time for all conditions was 20 hours.

Table 2: Training Parameters for Mamba SSMs

RNN tasks
Each task in Table 3 consisted of a stimulus presentation period (200 time steps) and a choice period
(25 time steps), with an optional delay period as described above. The duration of the delay was
variable during training (25, 50, or 75 time steps) but fixed during testing (100 time steps). We
analyzed the hidden states during the stimulus presentation period, keeping the first twenty principal
components after centering and normalization. Networks were optimized for correct fixation during
stimulus presentation and delay periods, as well as correct choices after the fixation. Accuracy was
reported based on the choice made by the network during the response period at the end of the trial,
weighted towards the last time step.

Task Description
Task A (Pro Task) The model received two continuous numbers as separate

inputs with time-varying Gaussian noise. It had to de-
cide which input was higher on average. During stimulus
presentation, the inputs were encoded using a noisy sinu-
soidal representation to ensure non-trivial feature extrac-
tion.

Task B (Anti Task) Similar to Task A, but the model had to decide which in-
put was lower. The inversion required the model to learn
an orthogonal decision process compared to Task A, em-
phasizing different representational strategies.

Task C (Delay Task) Similar to Task A, but with an additional delay period
before the decision phase. The delay period introduced
a memory component that required the model to retain
stimulus information for a variable amount of time before
responding.

Master Task (M, DelayAnti Task) A compound task in which networks had to determine
which stimulus was lower after a delay period. This
task combined elements of memory retention, delayed
decision making, and anti-response logic, testing the net-
work’s ability to generalize and adapt across combined
task features.

Table 3: Tasks description

Evaluation Metrics
The performance of the models was evaluated using weighted accuracy, which took into account the
mask applied to the predictions. The weighted accuracy was calculated by first applying a mask.
The mask was used to weigh the correct predictions. The mask values progressively increase from 1

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

to 5 during the response period and were 1 otherwise. Finally, the weighted accuracy was calculated
as the sum of weighted correct predictions divided by the total weight. This ensured that only the
relevant predictions contributed to the accuracy metric.

Hardware and Software Environment
The training and analysis were conducted in a cluster computing environment using 8 NVIDIA Tesla
V100 GPUs. The software environment is described in Table 4.

Software Version
Python 3.8
PyTorch 1.9.0
NumPy 1.21.2
SciPy 1.7.1
Matplotlib 3.4.3
Jupyter 1.0.0
TensorBoard 2.6.0

Table 4: Software Dependencies

This environment ensured reproducibility and consistency across different runs and experiments.

6.2 ATTRACTORS

In an additional analysis we tested how well different metrics could differentiate the different kind
of Lorenz attractors (i.e. one stable fix point, two stable fix points, two unstable fix points). We sam-
ple 9 examples of attractor dynamics each with 200 time-steps and 200 trials and pairwise compare
each sampled attractor with every other attractor using all three metrics, generating 81 dissimilarity
values per metric (Figure 7). We then summarize these by summing all values belonging to com-
parisons within a group of attractors (i.e. comparison with ”one stable fix point” to another ”one
stable fix point”) and summing all values belonging to comparisons across groups of attractors (i.e.
comparison with ”two unstable fix points” to another ”one stable fix point”). The results of this
are depicted in Figure 7b. We see that all measures can recognize whether two attractors belong to
the same group or not, but DSA seems to perform slightly better in discriminating cases (average
dissimilarity gap between within and across groups of 0.26 for DSA compared to 0.11 for CKA and
0.13 for Procrustes as well as non-overlapping box plots for within and across for DSA).

Figure 7: All metrics can identify basic attractor motifs. (a): Outline of attractor specifications
to test the identification of motifs belonging to similar (Within) or different (Across). (b) Results of
the identification.

This analysis allows us to choose the different Lorenz attractors we use for the analysis of Fig. 2a
to test the ’ratio-response’ of metrics to noisy combined attractors. To combine the Attractor A and
B, we need them to be sufficiently dissimilar so that a different way of learning is simulated with
Model 3. We thus choose 1 attractor in the ’1 stable’ group of Fig 7a. and 3 from each of the two
other groups, as the ’1 stable’ group representatives are too similar to each other (all look like a
line). The noise for attractors was centered Gaussian noise, with the standard deviation decreasing
from 0.01 to 0.0025 over time, as the dynamics were contained within the unit sphere.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Sample attractor with gaussian noise (a): Sample attractor from the ’2 unstable’ group
from Fig 7. (b) Same attractor with 1% of standard normal noise (corresponding to Noise1 =
N (0, 0.012) from Fig 2 for instance.

6.3 RNN SIMILARITY ANALYSIS WITH WITH MULTIPLE REFERENCE GROUPS

Figure 9: CKA and Procrustes analyses do not distinguish between pretrained and untrained
networks. Median dissimilarity of all training groups against each other for all metrics. A darker
red refers to a lower dissimilarity.

While Fig 3g showed the dissimilarity of all groups against the ’Master’ group, we extended the
analysis to all groups against each other in Fig 9. Here again, we see that DSA is the only metric
which correctly identifies the expected compositional representation in RNNs. Besides the com-
parison to the ’Master’ group, Fig 9 shows for instance that the pattern stays the same if we take
the ’Full pretraining’ group as a reference group. The dissimilarity is still low against ’Master’
(0.271). However, it increases when computed against groups with an incomplete pretraining (’Par-
tial Pretraining’, 0.341) and further increases when compared against groups with no training at
all (’Untrained’, 0.600). However, CKA and Procrustes failed to correctly discriminate between
different training schedules.

Table 5: Comparing the distributions of dissimilarity of each training group against the distributions
of dissimilarity of the ’Full Pretraining’ group (based on Fig. 3g). p-values from T-test corrected for
multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 2.5 ⇥ 10�10 3.2 ⇥ 10�4 1.6 ⇥ 10�2 1.5 ⇥ 10�1

CKA 9.2 ⇥ 10�1 9.2 ⇥ 10�1 9.2 ⇥ 10�1 9.6 ⇥ 10�1

Procrustes 7.1 ⇥ 10�1 9.3 ⇥ 10�1 8.7 ⇥ 10�1 9.3 ⇥ 10�1

6.4 REGRESSION TO IDENTIFY TASK RELATED COMPUTATIONS ALONGSIDE TASK RELATED
DYNAMICS

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Parameters for regression predicting dissimilarity based on difference in accuracy (Fig. 4a).
METRIC Slope Intercept p-value of slope R2

DSA 0.22 0.40 3.3 ⇥ 10�47 0.13
CKA �0.08 0.49 1.2 ⇥ 10�5 1.3 ⇥ 10�2

Procrustes �0.05 0.44 1.8 ⇥ 10�5 1.2 ⇥ 10�2

6.5 METRICS’ RESPONSES TO INCREASING OVERLAP IN TRAINING SCHEDULE, ACROSS
DURATION OF LEARNING

Table 7: Parameters of regression predicting dissimilarity based on % shared tasks (linked to Fig.
5c and Fig. 9a & b.

METRIC Slope Intercept p-value of slope R2

DSA �4.8 ⇥ 10�3 5.9 ⇥ 10�1 1.1 ⇥ 10�23 0.52
CKA �3.5 ⇥ 10�3 4.8 ⇥ 10�1 2.1 ⇥ 10�12 0.30
Procrustes �3.5 ⇥ 10�3 4.9 ⇥ 10�1 6.2 ⇥ 10�17 0.40

Figure 10: CKA and Procrustes partially responds to gradual increase in task overlap during
training. (a) CKA results of analysis in Fig. 5a. (b) Procrustes results of analysis in Fig. 5a. (c)
CKA results of analysis in Fig 5b. (d) Procrustes results of analysis in Fig 5b.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

6.6 SIGNIFICANCE OF ORDER OF TRAINING SETUPS FOR STATE SPACE MODELS

Table 8: LeakyGRU: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the ’Full Pretraining’ group (based on Fig. 6c). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 2.2 ⇥ 10�7 3.4 ⇥ 10�3 4.6 ⇥ 10�2 1.9 ⇥ 10�1

CKA 9.6 ⇥ 10�1 9.6 ⇥ 10�1 9.6 ⇥ 10�1 9.6 ⇥ 10�1

Procrustes 8.9 ⇥ 10�1 8.9 ⇥ 10�1 8.9 ⇥ 10�1 8.9 ⇥ 10�1

Table 9: LeakyRNN: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the ’Full Pretraining’ group (based on Fig. 6b). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 3.7 ⇥ 10�4 2.0 ⇥ 10�4 2.2 ⇥ 10�1 6.3 ⇥ 10�1

CKA 2.4 ⇥ 10�1 1.5 ⇥ 10�1 9.9 ⇥ 10�1 8.2 ⇥ 10�1

Procrustes 1.6 ⇥ 10�1 5.5 ⇥ 10�1 9.7 ⇥ 10�1 6.7 ⇥ 10�1

Table 10: Mamba: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the ’Full Pretraining’ group (based on Fig. 6a). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 7.5 ⇥ 10�1 2.7 ⇥ 10�16 6.2 ⇥ 10�4 4.0 ⇥ 10�1

CKA 1.3 ⇥ 10�26 4.8 ⇥ 10�31 6.4 ⇥ 10�7 2.2 ⇥ 10�1

Procrustes 2.1 ⇥ 10�26 4.7 ⇥ 10�34 6.7 ⇥ 10�6 4.5 ⇥ 10�1

Table 11: Mamba: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the ’Untrained’ group (based on Fig. 6a). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC MASTER & FROZEN PARTIAL PRETRAIN. FULL PRETRAIN. FULL PRETRAIN. & UNFROZEN

DSA 1.2 ⇥ 10�17 2.1 ⇥ 10�3 7.5 ⇥ 10�1 5.3 ⇥ 10�1

CKA 4.6 ⇥ 10�2 3.6 ⇥ 10�15 1.3 ⇥ 10�26 6.2 ⇥ 10�29

Procrustes 1.5 ⇥ 10�4 1.9 ⇥ 10�16 2.1 ⇥ 10�26 7.0 ⇥ 10�27

Figure 11: CKA and Procrustes do not identify the reservoir-like learning in Mamba. (a)
Results from running the analysis from Fig. 3g with the Mamba architecture and CKA. (b) Results
from running the analysis from Fig. 3g with the Mamba architecture and Procrustes.

19


	Introduction
	Related work
	Methods
	Experiments
	Metrics' ability to identify compositionally-combined noisy attractors dynamics
	Metrics' ability to identify compositional dynamics during over training in RNNs
	Testing metrics to identify task related computations alongside task related dynamics
	Metrics’ responses to increasing overlap of the training schedule, across the duration of learning
	Using DSA and the established test case to analyze the learning process of state space models

	Discussion
	Limitations
	Conclusions

	Appendix
	Methods
	Attractors
	RNN similarity analysis with with multiple reference groups
	Regression to identify task related computations alongside task related dynamics
	Metrics’ responses to increasing overlap in training schedule, across duration of learning
	Significance of order of training setups for State Space Models


