Under review as a conference paper at ICLR 2025

6 APPENDIX

6.1 METHODS

Setting DSA hyperparameters

Unlike Procrustes and CKA, DSA has hyperparameters. We use the computationally cheaper attrac-
tor analysis to sample a wide space of parameters and decide on the best parameter set. We then use
the same parameters for the analyses of RNNs and SSMs. For the attractor analysis the “number of
delays” parameter is sampled uniformly from 1 to 100. The “delay intervals” parameter is sampled
uniformly from 1 to the number of time steps (fixed to 200) divided by the selected number of de-
lays. We manually conduct an iterative search to find the best parameters. For each parameter, we
take 10 samples within each interval. We refine the interval for each parameter two times, taking
the two best candidates for each parameter as bounds for the new interval. We then select the best
parameter combination based on best dissimilarity gap and linear behavior in analysis shown in Fig.
(number of delays = 33, delay interval = 6). Generally, the dissimilarity gap and linear behavior
were correlated, so that a parameter combination doing well one measure, also did well on the other.
As a result we did not have to trade-off between these two criteria. Note that the attractor analysis
we run purposefully uses the same number of time steps as the analysis window in later RNN anal-
ysis. Generally speaking, we found that changing the DSA parameters does quantitatively but not
qualitatively change results of analyses.

RNN /SSM training and analysis

The training process is detailed below:

Parameter Description

Architecture Leaky RNN, Leaky GRU

Activation Function | ReLU, Softplus, Tanh

Hidden Size 128, 256

Learning Rate 1x1072,1x 1073

Batch Size 64, 128, 256

Optimizer Adam

Loss Function Cross Entropy

Training Data One epoch consisted of 10,000 trials for each task.

Training Procedure | Networks were trained in a supervised fashion until they reached 99%
accuracy on each task or for 50 epochs, whichever came first. When
a network was pretrained on multiple tasks, the tasks were trained se-
quentially within each epoch.

Analysis We only analyzed the networks that managed to fully learn the master
task to 99% accuracy, which corresponded to 91% of all models.
Training Time The total training time for all conditions was 48 hours.

Table 1: RNN Training Parameters

14

Under review as a conference paper at ICLR 2025

Parameter Description

Architecture Mamba SSMs (Gu & Dao, 2023)
Number of Layers 1,2 -

Hidden Dimensions | 8, 16

Learning Rate 1x1072,5x107°,1x1073,5 x 107 ¢
Batch Size 16, 32, 64, 128

Optimizer Adam

Loss Function Cross Entropy

Training Data

One epoch consisted of 10,000 trials for each task.

Training Procedure

Networks were trained in a supervised fashion until they reached 99%
accuracy on each task or for 50 epochs, whichever came first. When
a network was pretrained on multiple tasks, the tasks were trained se-
quentially within each epoch.

Analysis

We only analyzed the networks that managed to fully learn the master
task, which corresponded to 99% of all models.

Training Time

The total training time for all conditions was 20 hours.

RNN tasks

Table 2: Training Parameters for Mamba SSMs

Each task in Table[3|consisted of a stimulus presentation period (200 time steps) and a choice period

(25 time steps), with an optional delay period as described above. The duration of the delay was
variable during training (25, 50, or 75 time steps) but fixed during testing (100 time steps). We
analyzed the hidden states during the stimulus presentation period, keeping the first twenty principal
components after centering and normalization. Networks were optimized for correct fixation during
stimulus presentation and delay periods, as well as correct choices after the fixation. Accuracy was
reported based on the choice made by the network during the response period at the end of the trial,

weighted towards the last time step.

Task

Description

Task A (Pro Task)

The model received two continuous numbers as separate
inputs with time-varying Gaussian noise. It had to de-
cide which input was higher on average. During stimulus
presentation, the inputs were encoded using a noisy sinu-
soidal representation to ensure non-trivial feature extrac-
tion.

Task B (Anti Task)

Similar to Task A, but the model had to decide which in-
put was lower. The inversion required the model to learn
an orthogonal decision process compared to Task A, em-
phasizing different representational strategies.

Task C (Delay Task)

Similar to Task A, but with an additional delay period
before the decision phase. The delay period introduced
a memory component that required the model to retain
stimulus information for a variable amount of time before
responding.

Master Task (M, DelayAnti Task)

A compound task in which networks had to determine
which stimulus was lower after a delay period. This
task combined elements of memory retention, delayed
decision making, and anti-response logic, testing the net-
work’s ability to generalize and adapt across combined
task features.

Evaluation Metrics

The performance of the models was evaluated using weighted accuracy, which took into account the

Table 3: Tasks description

mask applied to the predictions. The weighted accuracy was calculated by first applying a mask.
The mask was used to weigh the correct predictions. The mask values progressively increase from 1

15

Under review as a conference paper at ICLR 2025

to 5 during the response period and were 1 otherwise. Finally, the weighted accuracy was calculated
as the sum of weighted correct predictions divided by the total weight. This ensured that only the
relevant predictions contributed to the accuracy metric.

Hardware and Software Environment

The training and analysis were conducted in a cluster computing environment using 8 NVIDIA Tesla
V100 GPUs. The software environment is described in Table

Software Version
Python 3.8
PyTorch 1.9.0
NumPy 1.21.2
SciPy 1.7.1
Matplotlib 343
Jupyter 1.0.0
TensorBoard | 2.6.0

Table 4: Software Dependencies
This environment ensured reproducibility and consistency across different runs and experiments.

6.2 ATTRACTORS

In an additional analysis we tested how well different metrics could differentiate the different kind
of Lorenz attractors (i.e. one stable fix point, two stable fix points, two unstable fix points). We sam-
ple 9 examples of attractor dynamics each with 200 time-steps and 200 trials and pairwise compare
each sampled attractor with every other attractor using all three metrics, generating 81 dissimilarity
values per metric (Figure[7). We then summarize these by summing all values belonging to com-
parisons within a group of attractors (i.e. comparison with “one stable fix point” to another “one
stable fix point”) and summing all values belonging to comparisons across groups of attractors (i.e.
comparison with ’two unstable fix points” to another “one stable fix point”). The results of this
are depicted in Figure [7b. We see that all measures can recognize whether two attractors belong to
the same group or not, but DSA seems to perform slightly better in discriminating cases (average
dissimilarity gap between within and across groups of 0.26 for DSA compared to 0.11 for CKA and
0.13 for Procrustes as well as non-overlapping box plots for within and across for DSA).

a b

Lorenz DSA Procrustes
attractors 10

—E-

o
o

Dissimilarity
o

o
~

&b

0.0
Across Across Within Across Within Across Within Across

Figure 7: All metrics can identify basic attractor motifs. (a): Outline of attractor specifications
to test the identification of motifs belonging to similar (Within) or different (Across). (b) Results of
the identification.

This analysis allows us to choose the different Lorenz attractors we use for the analysis of Fig. [2p
to test the ’ratio-response’ of metrics to noisy combined attractors. To combine the Attractor A and
B, we need them to be sufficiently dissimilar so that a different way of learning is simulated with
Model 3. We thus choose 1 attractor in the ’1 stable’ group of Fig[7h. and 3 from each of the two
other groups, as the ’1 stable’ group representatives are too similar to each other (all look like a
line). The noise for attractors was centered Gaussian noise, with the standard deviation decreasing
from 0.01 to 0.0025 over time, as the dynamics were contained within the unit sphere.

16

Under review as a conference paper at ICLR 2025

Attractor Attractor + Noise

Figure 8: Sample attractor with gaussian noise (a): Sample attractor from the *2 unstable’ group
from Fig |;l (b) Same attractor with 1% of standard normal noise (corresponding to Noise; =
N (0,0.017) from Fig[2]for instance.

6.3 RNN SIMILARITY ANALYSIS WITH WITH MULTIPLE REFERENCE GROUPS

CKA DSA Procrustes

Untrained 0312 0426 0415 0439 0467 Untrained KRN 0.606 0.607 0577 0.600 0593 Untrained 0343 0444 0423 0431 0456

Master & Frozen 0419 0398 0419 0421 Master & Frozen [N 0427 0511 Master & Frozen 0412 0399 0412 0419
03 04 03
Master 0.395 0403 0405 Master 88 | 0.324 . Master 0404 0415 0417
Partial Pretraining 0294 0364 0411 0.2 Partial Pretraining 0311 0.3 Partial Pretraining 0311 0386 0421 02
Full Pretraining 0.398 01 Full Pretraining 0.2 Full Pretraining 0.408 0.4
Full Pretraining Full Pretraining Full Pretraining
& Unfrozen & Unfrozen 0.1 & Unfrozen
& 3 O O D> S ey S S O
& & & & S S & € & F & & S
S & & &S S o & & &S
g & & RS ¥ & &
5% >) » 5 @ > »)
S @ SRR &S & & 9 PPN
B & W P o8

Figure 9: CKA and Procrustes analyses do not distinguish between pretrained and untrained
networks. Median dissimilarity of all training groups against each other for all metrics. A darker
red refers to a lower dissimilarity.

While Fig [Bg showed the dissimilarity of all groups against the "Master’ group, we extended the
analysis to all groups against each other in Fig[9} Here again, we see that DSA is the only metric
which correctly identifies the expected compositional representation in RNNs. Besides the com-
parison to the "Master’ group, Fig [0] shows for instance that the pattern stays the same if we take
the "Full pretraining’ group as a reference group. The dissimilarity is still low against "Master’
(0.271). However, it increases when computed against groups with an incomplete pretraining (’Par-
tial Pretraining’, 0.341) and further increases when compared against groups with no training at
all (Untrained’, 0.600). However, CKA and Procrustes failed to correctly discriminate between
different training schedules.

Table 5: Comparing the distributions of dissimilarity of each training group against the distributions
of dissimilarity of the Full Pretraining’ group (based on Fig. [Blg). p-values from T-test corrected for
multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 2.5 x 1071 3.2 x 1074 1.6 x 1072 1.5 x 107¢
CKA 9.2 x 107! 9.2 x 1071 9.2 x 1071 9.6 x 1071
Procrustes 7.1 x 107! 9.3 x 1071 8.7 x 1071 9.3 x 1071

6.4 REGRESSION TO IDENTIFY TASK RELATED COMPUTATIONS ALONGSIDE TASK RELATED
DYNAMICS

17

Under review as a conference paper at ICLR 2025

Table 6: Parameters for regression predicting dissimilarity based on difference in accuracy (Fig. Gh).

METRIC Slope Intercept p-value of slope R?
DSA 0.22 0.40 3.3 x 10747 0.13
CKA —0.08 0.49 1.2 x 107° 1.3 x 1072
Procrustes ~ —0.05 0.44 1.8 x 107° 1.2 x 1072

6.5 METRICS’ RESPONSES TO INCREASING OVERLAP IN TRAINING SCHEDULE, ACROSS
DURATION OF LEARNING

Table 7: Parameters of regression predicting dissimilarity based on % shared tasks (linked to Fig.
[k and Fig. Ph & b.

METRIC Slope Intercept p-value of slope R?
DSA —4.8x107% 59x10°! 1.1 x 10722 0.52
CKA —-35x107% 48 x 107! 2.1 x 10712 0.30
Procrustes —3.5 x 1072 4.9 x 107! 6.2 x 10717 0.40
a b

10 CKA 10 Procrustes

0.8 0.8

o4
o

Dissimilarity
o o Q
N b
Dissimilarity
o o Q
N S

4
o

00 0 25 50 75 100 00 0 25 50 75 100
Shared Tasks % d Shared Tasks %
C
10 CKA 1.0, Procrustes
0% rank 0% rank
33% rank 33% rank
08 66% rank 08 66% rank
= 100% rank = 100% rank
é 0.6 E 0.61
£ = E |
804 204/
a a
0.2 0.2
0.0, 0.0,

=

25 40 55 70 85 100 25 40 55 70 85 100
Training % Training %

=

Figure 10: CKA and Procrustes partially responds to gradual increase in task overlap during
training. (a) CKA results of analysis in Fig. [Sh. (b) Procrustes results of analysis in Fig. [Sh. (c)
CKA results of analysis in Fig[5p. (d) Procrustes results of analysis in Fig[5b.

18

Under review as a conference paper at ICLR 2025

6.6 SIGNIFICANCE OF ORDER OF TRAINING SETUPS FOR STATE SPACE MODELS

Table 8: LeakyGRU: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the "Full Pretraining’ group (based on Fig. [6f). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 2.2x 1077 3.4x 1073 4.6 x 1072 1.9 x 1071
CKA 9.6 x 1071 9.6 x 1071 9.6 x 1071 9.6 x 1071
Procrustes 8.9 x 107! 8.9 x 1071 8.9 x 1071 8.9 x 1071

Table 9: LeakyRNN: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the *Full Pretraining” group (based on Fig. [6b). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 3.7x 1074 2.0 x 1074 2.2 x 1071 6.3 x 1071
CKA 2.4 x 1071 1.5 x 1071 9.9 x 1071 8.2x 1071
Procrustes 1.6 x 107! 5.5x 1071 9.7 x 1071 6.7 x 1071

Table 10: Mamba: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the *Full Pretraining’ group (based on Fig. [6h). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC UNTRAINED MASTER & FROZEN PARTIAL PRETRAINING FULL PRETRAINING & UNFROZEN

DSA 7.5 x 1071 2.7 x 10716 6.2 x 1074 4.0 x 1071
CKA 1.3 x 10726 4.8 x 1073t 6.4 x 1077 2.2x 1071
Procrustes 2.1 x 10726 4.7 x 10734 6.7 x 1076 4.5 x 1071

Table 11: Mamba: Comparing the distributions of dissimilarity of each training group against the
distributions of dissimilarity of the *Untrained” group (based on Fig. [6h). p-values from T-test
corrected for multiple comparison with fdr-bh.

METRIC MASTER & FROZEN PARTIAL PRETRAIN. FULL PRETRAIN. FULL PRETRAIN. & UNFROZEN

DSA 1.2 x 10717 2.1x 1073 7.5 x 1071 5.3 x 1071
CKA 4.6 x 1072 3.6 x 10715 1.3 x 10726 6.2 x 10729
Procrustes 1.5 x 107% 1.9 x 10716 2.1 x 10726 7.0 x 10727
a 5 10; Mamba (CKA) b _ Mamba (Procrustes)

5 : . g

=08 g 0.8 “r

208 I [= II H ‘30,6 T s

Sos [5 [L

E O — 1 =04

o2 L T I - E T = ﬁ

a 2o T

Untrained Master & Partial Full Full avY-

Unfrozen

Figure 11: CKA and Procrustes do not identify the reservoir-like learning in Mamba. (a)
Results from running the analysis from Fig. Bg with the Mamba architecture and CKA. (b) Results
from running the analysis from Fig. 3jg with the Mamba architecture and Procrustes.

19

	Introduction
	Related work
	Methods
	Experiments
	Metrics' ability to identify compositionally-combined noisy attractors dynamics
	Metrics' ability to identify compositional dynamics during over training in RNNs
	Testing metrics to identify task related computations alongside task related dynamics
	Metrics’ responses to increasing overlap of the training schedule, across the duration of learning
	Using DSA and the established test case to analyze the learning process of state space models

	Discussion
	Limitations
	Conclusions

	Appendix
	Methods
	Attractors
	RNN similarity analysis with with multiple reference groups
	Regression to identify task related computations alongside task related dynamics
	Metrics’ responses to increasing overlap in training schedule, across duration of learning
	Significance of order of training setups for State Space Models

