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MSTA3D: Multi-scale Twin-attention for 3D Instance
Segmentation
Anonymous Authors

ABSTRACT
Recently, transformer-based techniques incorporating superpoints
have become prevalent in 3D instance segmentation. However, they
often encounter an over-segmentation problem, especially notice-
able with large objects. Additionally, unreliable mask predictions
stemming from superpoint mask prediction further compound this
issue. To address these challenges, we propose a novel framework
called MSTA3D. It leverages multi-scale feature representation and
introduces a twin-attention mechanism to effectively capture them.
Furthermore, MSTA3D integrates a box query with a box regular-
izer, offering a complementary spatial constraint alongside seman-
tic queries. Experimental evaluations on ScanNetV2, ScanNet200
and S3DIS datasets demonstrate that our approach surpasses state-
of-the-art 3D instance segmentation methods. The code will be
released upon paper publication.

CCS CONCEPTS
• Computing methodologies→ Scene understanding;

KEYWORDS
Instance segmentation, 3D point cloud instance segmentation, vi-
sion transformer, multi-scale feature representation

1 INTRODUCTION
Given 3D point clouds, 3D instance segmentation refers to a task
that involves identifying and separating individual objects within
a 3D scene, including detecting object boundaries and assigning a
unique label to each identified object. Its significant role in computer
vision has surged corresponding to the demand for 3D perception
in various applications, such as augmented/virtual reality [16, 24],
autonomous driving [37], robotics [35], and indoor scanning [17].

In the literature, 3D instance segmentation methods are com-
monly categorized into four main approaches: proposal-based [5,
10, 12, 19, 26, 36], grouping-based [3, 11, 18, 32, 33, 39], kernel-
based [8, 9, 11, 23, 34], and transformer-based methods [14, 21, 29,
30]. Proposal-based methods begin by generating a 3D bounding
box and then using it to segment into an instance mask. Grouping-
based methods aggregate points into clusters using per-point fea-
tures, such as semantic or geometric cues, and then segment in-
stances based on these clusters. Kernel-based methods are similar
to grouping-based techniques but treat each potential instance as a
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Figure 1: The proposed MSAT3D, a 3D instance segmentation
framework, tackles existing challenges by leveraging multi-
scale feature representation and spatial query/regularizer.

kernel for dynamic convolution. However, these methods require
a high-quality proposal or clustering algorithm that heavily re-
lies on per-point prediction, resulting in a significant demand for
computational resources.

To address these issues, transformer-based methods have been
proposed, treating each potential instance as an instance query and
refining it through a series of transformer decoder blocks. How-
ever, predicting instances from point clouds inherently presents
substantial challenges due to their typically lacking clear structure,
unlike the regular grid arrangement found in images. Moreover,
managing large-scale input point clouds further requires costly
computations and extensive memory resources. Thus, recent trans-
former approaches leverage superpoints, which roughly offer con-
textual relationships between object parts with reduced memory
usage. Nevertheless, existing transformer-based approaches em-
ploying superpoints often suffer from performance degradation
due to over-segmentation problems and the unreliability of mask
predictions. These challenges are described as follows: (1) Existing
methods are prone to over-segmentation, especially when deal-
ing with large objects such as doors, curtains, bookshelves, and
backgrounds. Additionally, converting labels from superpoints to
points can introduce unreliability into the categorical grouping. (2)
The learning process for point-wise classification and aggregation
encounters challenges due to the sparse and irregular distribution
of observed scene points.

Hence, we propose a novel framework that leverages multi-scale
superpoint features and simultaneously incorporates global/local
spatial constraints. This framework is aimed at mitigating previ-
ously mentioned over-segmentation challenges and overcoming the
limitations in point-wise classification. Specifically, to capture fea-
tures at various scales, we generate superpoints at different scales,
enabling effective feature representation of large objects and back-
grounds as well as small objects. Correspondingly, we introduce a
novel attention scheme, named twin-attention, to effectively fuse
features at different scales. Moreover, we introduce the concept of
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box query, in addition to semantic query, which is trained using the
proposed twin-attention decoder and refined by the spatial regular-
izer to enhance the confidence of mask predictions. Furthermore,
we utilize this bounding box prediction to enhance the reliability
of mask predictions during the inference phase.

In summary, the contributions of this study are as follows:

• We propose a twin-attention-based decoder for effectively
representingmulti-scale features to tackle over-segmentation
challenges observed in large objects and backgrounds.

• We introduce the notion of box query with box regularizer
to provide complementary supervision without additional
annotation requirements. This enforces spatial constraints
for each instance during the query learning process, resulting
in enhanced object localization and reduced background
noise.

• Extensive experiments are conducted on widely-used bench-
mark datasets, including ScanNetV2 [4], ScanNet200 [28],
and S3DIS [1], demonstrating the effectiveness of the pro-
posed approach and achieving state-of-the-art results.

2 RELATEDWORK
Current approaches of instance segmentation on 3D point clouds
can be classified into four categories: proposal-based, grouping-
based, kernel-based, and transformer-based methods.
Proposal-based methods. In the early stages of this approach,
3D-BoNet [36] was introduced, employing global characteristics
derived from PointNet++ [26] to generate bounding boxes. These
bounding boxes were then integrated with point features to pro-
duce instance masks. GICN [19] utilized a Gaussian distribution to
estimate the center and size of each object instance for proposal
prediction. Meanwhile, 3D-MPA [5] predicted instance centers and
employed a graph convolutional network to group points around
these centers, refining the features of proposals.
Grouping-based methods. SSTNet [18] represented the scene
comprehensively by constructing a superpoint tree and traversing
it to merge nodes, thus creating instance masks. PointGroup [11]
predicted the 3D displacement of each point from its instance’s cen-
ter and identified clusters from both the original and center-shifted
points. HAIS [3] introduced a hierarchical clustering technique,
allowing smaller clusters to be either eliminated or merged into
larger ones. SoftGroup [32] permitted each point to be associated
with multiple clusters representing diverse semantic classes to miti-
gate prediction inaccuracies. Softgroup++ [33] extended SoftGroup
to reduce computation time and search space for the clustering
process.
Kernel-based methods. DyCo3D [8] employed a clustering algo-
rithm from PointGroup [11] and lightweight 3D-UNet to generate
kernels, while PointInst3D [9] opted for farthest-point sampling
to produce kernels. DKNet [34] introduced candidate localization
to yield more distinctive instance kernels. ISBNet [23] proposed a
sampling-based instance-wise encoder to obtain a faster and more
robust kernel for dynamic convolution.
Transformer-based methods. SPFormer [30] and Mask3D [29]
utilized the mask-attention to produce query instances based on
voxel or superpoint features while MAFT [14] improved efficiency
by using position query instead ofmask-attention. QueryFormer [21]

optimized query instances with the query initialization module and
proposes an affiliated transformer decoder to eliminate noise back-
ground.

3 BOX GUIDED TWIN-ATTENTION DECODER
FOR MULTI-SCALE SUPERPOINT

In this section, we provide an in-depth discussion of the design
choices underlying the proposed model. The problem addressed in
this paper and the overall structure devised to tackle this problem
are elucidated in Section 3.1. Section 3.2 explains the backbone
network and the reasoning behind incorporating multi-scale super-
point features. Section 3.3 elaborates on the novel twin attention
mechanism, and Section 3.4 outlines the approach for constraining
spatial regions for each instance. Finally, Section 3.5 provides a
comprehensive explanation of each component of the loss function
and the matching method employed.

3.1 Architecture Overview
The goal of 3D instance segmentation in this paper is to predict
precise point-wise boundaries of 𝑁𝐼 individual object instances
given 𝑁ℎ superpoints generated from point clouds, denoted as
p ∈ R𝑁×6. Each point cloud contains positional coordinates (𝑥,𝑦, 𝑧)
and color information (𝑟, 𝑔, 𝑏), where 𝑁 is the total number of point
clouds. A binary mask represents each of these 𝑁𝐼 instances, and
a set of binary masks is collectively referred to M ∈ {0, 1}𝑁𝐼 ×𝑁ℎ ,
where a value of 1 indicates the presence of objects, and 0 indicates
their absence. Moreover, it is necessary to predict the semantic
category associated with each instance, denoted as C ∈ Z𝑁𝐼 ×𝑁𝐶 ,
where 𝑁𝐶 is the total number of semantic categories.

To tackle the problem, we propose a model consisting of three
key components, as illustrated in Figure 2: (1) backbone network,
(2) twin-attention decoder, and (3) box regularizer. First, the back-
bone network extracts multi-scale features Sℓ and Sℎ from the
given inputs. These extracted features are then fed into the novel
twin-attention decoder to generate instance proposals, represented
as X, guided by newly introduced box queries. Additionally, em-
ploying the box regularizer, the prediction of bounding boxes B̃
along with their corresponding scores B̃𝑠 are utilized to confine
instance regions. Finally, through the twin-attention-based decoder
and box regularizer, the final outputs include instance masks M̃ and
corresponding labels C̃.

3.2 Backbone Network
As previously mentioned in Section 3.1, the backbone network, a
3D U-Net [6, 27], takes voxelized point clouds as input and extracts
point-wise features. The voxelization method utilized in this paper
is based on the approach outlined in [14, 21, 30].

We choose to utilize superpoint-wise labels instead of point-wise
labels to reduce training time and memory consumption (See Fig-
ure 5). Superpoints, as proposed by [15], comprise multiple points
sharing similar geometric properties and serve as a method to sub-
sample point clouds. However, one potential drawback of using
superpoints is the possibility of over-clustering scene [18, 21, 23, 30],
which depends on the chosen grouping size. Therefore, we extract
features from superpoints at multiple scales to ensure that the
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Figure 2: The MSTA3D framework for instance segmentation on point clouds.

decoder accurately identifies objects of various sizes during the
learning process.

For this purpose, we pre-compute superpoint at two different
scales by adjusting the number of neighbors for each point, as
described in [15]. Following this, a pooling layer is applied to aggre-
gate information from the point-wise features into the multi-scale
features. We then denote the outputs passing through this pooling
layer as Sℓ ∈ R𝑁ℓ×𝐷𝑏 for the lower-scale features and Sℎ ∈ R𝑁ℎ×𝐷𝑏

for the higher-scale features. Here, 𝑁ℓ and 𝑁ℎ represent the num-
ber of low and high-scale superpoints, respectively, and 𝐷𝑏 is the
embedding dimension from the backbone.

3.3 Twin-attention Decoder
To leverage the advantages of multi-scale features 𝑆ℓ and 𝑆ℎ defined
in Section 3.2, we introduce a novel decoder structure consisting of
a series of twin attentions. The proposed twin-attention-based de-
coder is meticulously designed to integrate the multi-scale features.
This decision is driven by the need to ensure that the proposed
model effectively harnesses the diverse information present across
different scales of the input features. The twin decoder incorpo-
rates a spatial regularizer for guiding instance delineations. Further
details regarding this spatial regularization are provided in the
following section.
Region Constraint Instance Query. We propose the concept
of a box query, along with a semantic query [14, 21, 30], to guide
the regions of instance masks for more accurate predictions. This
guidance enables the model to concentrate more effectively on
regions of interest, potentially reducing instance region ambiguity
and improving segmentation accuracy. Concretely, we construct a
set of learnable instance queries X0 ∈ R𝑁𝑜×𝐷𝑜 by concatenating
the box queries with 6 elements, denoted as X𝑏 ∈ R𝑁𝑜×6 and the
semantic queries with 𝐷𝑠 elements, denoted as X𝑠 ∈ R𝑁𝑜×𝐷𝑠 . The
concatenation is expressed as X0 = [X𝑠 ;X𝑏 ], where 𝑁𝑜 denotes the
number of queries (proposals), initially set randomly with 𝑁𝑜 > 𝑁𝐼 ,
and𝐷𝑜 is the total dimensionality of a query vector (i.e.,𝐷𝑜 = 𝐷𝑠+6).
Note that the number of instance proposals 𝑁𝑜 is configured to
be larger than the ground truth 𝑁𝐼 . Consequently, the proposals
selected as the final ones are those with the highest confidence.

Twin-Attention-Based Feature Extraction. The proposed twin-
attention-based decoder is structured to concurrently process low
and high-scale features through weight-shared attention layers, as
illustrated in Figure 3. It consists of a stack of six twin-attention
blocks, indexed by 𝐿 (𝐿 = 1, · · · , 6), to process the outputs. Each
block includes three sub-modules: cross and self-attention, feature
fusion, and an instance prediction module.

Let 𝜋𝑐 (·) be the linear projection in the attention modules, where
𝑐 = {𝑞, 𝑣, 𝑘} represents query, value, and key, respectively. In the
cross-attention modules, the query matrix Q𝐿 ∈ R𝑁𝑜×𝐷𝑜 of the
𝐿-th block is obtained after linearly projecting instance queries,
computed as 𝜋𝐿𝑞

(
X𝐿−1

)
. Similarly, for low-scale feature Sℓ , the key

matrix K𝐿
ℓ
∈ R𝑁ℓ×𝐷𝑜 and value matrix V𝐿

ℓ
∈ R𝑁ℓ×𝐷𝑜 are given by

linearly projecting 𝜋𝐿
𝑘
(Sℓ ) and 𝜋𝐿𝑣 (Sℓ ), respectively. Correspond-

ingly, the key and value matrices of the high-scale features Sℎ are
derived as K𝐿

ℎ
= 𝜋𝐿

𝑘
(Sℎ) ∈ R𝑁ℎ×𝐷𝑜 and V𝐿

ℎ
= 𝜋𝐿𝑣 (Sℎ) ∈ R𝑁ℎ×𝐷𝑜 ,

respectively, using the same procedure. The proposed twin atten-
tion (TATT) is then computed on the shared set of instance queries
and multi-scale features to attend to relevant information, as fol-
lows:

𝑇𝐴𝑇𝑇 (Q𝐿,K𝐿
ℎ
,V𝐿

ℎ
) =𝜎

©­­«
𝑄𝐿

(
𝐾𝐿
ℎ

)𝑇
√
𝑑

+𝐴𝐿−1
ℎ

ª®®¬ ·𝑉 𝐿
ℎ
, (1a)

𝑇𝐴𝑇𝑇 (Q𝐿,K𝐿
ℓ ,V

𝐿
ℓ ) =𝜎

©­­«
𝑄𝐿

(
𝐾𝐿
ℓ

)𝑇
√
𝑑

ª®®¬ ·𝑉 𝐿
ℓ , (1b)

where 𝜎 (·) denotes the softmax function, and 𝑑 is computed as
the division of the dimension of the query (𝐷𝑜 ) by the number of
attention heads (8 in the experiments of this study). For high-scale
attention in (1a), we employ the superpoint mask attention 𝐴𝐿−1

ℎ
∈

R𝑁𝑜×𝑁ℎ with a threshold 𝜏 = 0.5, similar to the works in [21, 29,
30]. However, we further enhance the mask attention prediction
by incorporating the proposed box query and box regularizer, as
elaborated in Section 3.4.

Next, denoting the outputs of the cross-attention modules pass-
ing through a residual connection [7] and layer norm [2, 31] as
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Figure 3: The architecture of twin-attention-based decoder.
The twin-attention-based decoder fuses multi-scale features
Sℎ and Sℓ and predicts X𝐿 by refining box queries.

Y𝐿
ℓ
∈ R𝑁𝑜×𝐷𝑜 and Y𝐿

ℎ
∈ R𝑁𝑜×𝐷𝑜 , the subsequent self-attention

layer computes twin attention on a set of linearly projected queries,
keys, and values, in a similar manner to (1a) and (1b), without ap-
plying mask attention. The computed outputs of the self-attention
layer, denoted as Z𝐿

ℓ
∈ R𝑁𝑜×𝐷𝑜 and Z𝐿

ℎ
∈ R𝑁𝑜×𝐷𝑜 , are then fed into

the multi-scale feature fusion module to abstract both low-scale and
high-scale contextual information. To accomplish this, we utilize
element-wise multiplication to merge the features extracted from
inputs of different scales, followed by further aggregation using a
feedforward layer (FFN), as follows:

X𝐿 = 𝐹𝐹𝑁

(
Z𝐿ℓ ⊗ Z𝐿

ℎ

)
, (2)

where ⊗ denotes element-wise multiplication. The output X𝐿 ∈
R𝑁𝑜×𝐷𝑜 of this feature fusion module for 𝐿-th block is then utilized
for the inputs of the next twin-attention blocks and box regularizer.
In the training, the proposed twin-attention blocks are sequentially
trained using an iterative prediction strategy [30]. The output of
the last decoder block (X6) serves as the final instance proposals
during inference.

We have found that this introduced twin-attention-based de-
coder indeed enhances the performance of instance segmentation
by leveraging multi-scale features. It enables the representation
of objects of various sizes and captures the background details
of the entire scene, effectively mitigating the possibility of over-
segmentation (See Table 6 and Figure 6).
Instance and Box Prediction: Given the fused feature output
X𝐿 of the 𝐿-th block, the instance prediction module computes
the mask score M̃𝑠 ∈ R𝑁𝑜 for each instance and its corresponding
class C̃ ∈ R𝑁𝑜×𝑁𝐶 through multilayer perceptron (MLP) layers.
These MLP layers employ linear activation for the mask score and
softmax activation for classification. Moreover, to fully exploit the
information from latent instance queries, we introduce two addi-
tional regressors with linear activation: B̃ ∈ R𝑁𝑜×6 of instance box
predictions and the corresponding box scores B̃𝑠 ∈ R𝑁𝑜 .

Figure 4: The architecture of box regularizer. The box reg-
ularizer predicts positional differences between bounding
boxes derived from scene-wise features and those derived
from instance-wise features.

These spatial feature-associated regressors are introduced with-
out requiring additional annotation efforts. The proposed frame-
work autonomously derives box information from the instance
labels. Specifically, we choose axis-aligned bounding boxes due
to the simplicity of constructing ground truths B ∈ R𝑁𝐼 ×6 from
existing instance annotations. Each bounding box is defined by
six coordinates, representing the minimum and maximum 3D co-
ordinates (i.e., [𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥 ]𝑇 ) that enclose
the instance. We observe that adopting this approach improves
the overall performance of the proposed method because it utilizes
bounding boxes as local spatial references for the box regularizer.
These references provide contextual information about the local
space occupied by each object relative to the entire scene during
training, helping the model generate high-quality superpoint masks.

3.4 Spatial Constraint Regularizer
In addition to incorporating box queries, we introduce the box
regularizer to identify coarse object regions and constrain local
spatiality. This regularization aims to enhance the representation
of spatial latent features, utilizing box queries passed through the
proposed twin-attention, as demonstrated in Table 6.

The proposed box regularizer takes the box predictions B̃ for
each instance from the twin-attention-based decoder as input, along
with features comprising scene-wise semantic score F𝑚 ∈ R𝑁ℎ×𝐷𝑠

for each superpoint and scene-wise box information F𝑏 ∈ R𝑁ℎ×6.
These scene-wise features are obtained by passing 𝑆ℎ through mul-
tilayer perceptron layers with linear activation. By utilizing these
features, the goal is to provide the box regularizer with comprehen-
sive scene-associated features, ensuring effective representation
of local instance regions. This approach guarantees the enhanced
confidence of superpoint mask predictions by analyzing instance
features in the context of the entire scene. Concretely, the box reg-
ularizer integrates instance-specific positional features b̃𝑖 ∈ R6,
which denotes 𝑖-th row of B̃, and scene-wise positional features
F𝑏 for all instances. By employing the broadcasting subtraction
operator, we compute the relative positional difference R𝑖 ∈ R𝑁ℎ×6

for each instance box in relation to the entire scene, as follows:

R𝑖 = {b̃𝑖 }𝑁ℎ ⊖ F𝑏 , (3)

where ⊖ denotes a broadcasting subtraction operator, and {b̃𝑖 }𝑁ℎ

represents the stretched version of b̃𝑖 by 𝑁ℎ .
To predict the binary mask in each twin-attention block, we

concatenate these relative positional features R𝑖 with the scene-
wise semantic features F𝑚 ∈ R𝑁ℎ×𝐷𝑠 to generate new 𝑁𝑜 features

2024-04-12 07:17. Page 4 of 1–9.
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that simultaneously capture spatial and semantic information. The
predicted binary masks are computed through batch matrix multi-
plication, as follows:

M̃ = 𝐿𝑖𝑛𝑒𝑎𝑟

( [
{R𝑖 }𝑁𝑜

𝑖=1; {F𝑚}𝑁𝑜

] )
⊙ X𝐿 . (4)

In (4), {R𝑖 }𝑁𝑜

𝑖=1 constructs to a tensor in R𝑁𝑜×(𝑁ℎ×6) , and {F𝑚}𝑁𝑜

represents the stretched version of {F𝑚} by 𝑁𝑜 using broadcasting
operators, resulting in the concatenated features in R𝑁𝑜×(𝑁ℎ×𝐷𝑜 )

(where 𝐷𝑜 = 𝐷𝑠 + 6); ⊙ denotes batch matrix multiplication, and
𝐿𝑖𝑛𝑒𝑎𝑟 (·) denotes a linear activation function.

Intuitively, the relative positional variation R𝑖 captures the pre-
diction differences between the bounding box predicted from scene-
wise global dependency and the estimated box derived from instance-
wise local dependency. This suggests that mask prediction can be
enhanced by abstracting both scene-wise features and individual
instance-wise features. Moreover, this prediction of relative posi-
tional disparities can offer valuable feedback to the model, enabling
it to refine its predictions based on discrepancies observed at differ-
ent scales.

3.5 Training and Inference
Training: To train the proposed framework, we formulate the loss
function L, as follows:

L = 𝛽𝑐𝑙𝑠 ·L𝑐𝑙𝑠+𝛽𝑚𝑎𝑠𝑘 ·(L𝑏𝑐𝑒+L𝑑𝑖𝑐𝑒 )+𝛽𝑠 ·L𝑠+𝛽𝑏 ·L𝑏+𝛽𝑏𝑠 ·L𝑏𝑠 (5)

where the coefficients 𝛽𝑐𝑙𝑠 , 𝛽𝑠 , 𝛽𝑚𝑎𝑠𝑘 , 𝛽𝑏𝑠 , and 𝛽𝑏 determine the
contribution of each loss function to the total loss function. The
classification loss L𝑐𝑙𝑠 is defined by the multi-class cross-entropy
loss for object class categorization, and mask prediction utilizes
a combination of binary cross-entropy L𝑏𝑐𝑒 and dice loss L𝑑𝑖𝑐𝑒 .
Additionally, we use L2 loss L𝑠 for predicting mask scores used for
matching during training, L1 loss L𝑏 for box coordinate prediction,
and L2 loss L𝑏𝑠 for box score prediction, as follows:

L𝑠 =
1

∥𝟙𝑖𝑜𝑢𝑚𝑠
∥1

·




𝟙𝑖𝑜𝑢𝑚𝑠

⊗
(
M̃𝑠 − 𝑖𝑜𝑢𝑚𝑠

) 



2
2
, (6a)

L𝑏 =
1
𝑁𝐼



B̃ − B



1,1, (6b)

L𝑏𝑠 =
1

∥𝟙𝑖𝑜𝑢𝑏𝑠 ∥1
·




𝟙𝑖𝑜𝑢𝑏𝑠 ⊗ (

B̃𝑠 − 𝑖𝑜𝑢𝑏𝑠
) 



2

2
, (6c)

where | | · | |𝑝 denotes the vector 𝑝-norm, and | | · | |𝑝,𝑞 denotes the
entry-wise matrix 𝑝, 𝑞-norm; 𝟙{𝑖𝑜𝑢𝑚𝑠 } indicates whether the Inter-
section over Union (IoU) between mask prediction and assigned
ground truth is higher than a threshold 𝜂𝑚𝑠 ; and 𝟙{𝑖𝑜𝑢𝑏𝑠 } indicates
whether IoU between box prediction and assigned ground truth is
higher than a threshold 𝜂𝑏𝑠 . In the experiments, we used 𝛽𝑐𝑙𝑠 = 0.5
for class classification, 𝛽𝑚𝑎𝑠𝑘 = 1 for mask prediction, 𝛽𝑠 = 0.5 for
mask score prediction, 𝛽𝑏𝑠 = 0.5 for box score prediction, 𝛽𝑏 = 1
for box prediction, and 𝜂𝑚𝑠 = 𝜂𝑏𝑠 = 0.5.

To assign proposals to each ground truth instance, we formulate
a pairwise matching cost 𝐶𝑖 𝑗 to assess the similarity between the
𝑖-th proposal and the 𝑗-th ground truth. The matching cost 𝐶𝑖 𝑗 is
defined as [30]:

𝐶𝑖 𝑗 = −𝜆𝑐𝑙𝑠 .𝑝𝑖,𝑐 𝑗 + 𝜆𝑚𝑎𝑠𝑘𝐶
𝑚𝑎𝑠𝑘
𝑖 𝑗 , (7)

where 𝑝𝑖,𝑐 𝑗 denotes the 𝑐 𝑗 -th semantic category probability of the
𝑖-th proposal;𝐶𝑚𝑎𝑠𝑘

𝑖 𝑗
denotes superpoint mask matching score; 𝜆𝑐𝑙𝑠

and 𝜆𝑚𝑎𝑠𝑘 are the coefficients of each term respectively. In the
experiments, we set 𝜆𝑐𝑙𝑠 = 0.5 and 𝜆𝑚𝑎𝑠𝑘 = 1. The superpoint
mask matching cost 𝐶𝑚𝑎𝑠𝑘

𝑖 𝑗
is calculated based on a binary cross-

entropy (BCE) and a dice loss with a Laplace smoothing [22]:

𝐶𝑚𝑎𝑠𝑘
𝑖 𝑗 = 𝐵𝐶𝐸

(
m̃𝑖 ,m𝑗

)
+

m̃𝑖 ·m𝑇
𝑗
+ 1

∥m̃𝑖 ∥1 + ∥m𝑗 ∥1 + 1
, (8)

where m̃𝑖 is the 𝑖-th row of the superpoint mask prediction M̃,
and m𝑗 is the 𝑗-th row of the ground truth maskM. Additionally,
we treat the task of matching proposals with ground truth as an
optimal assignment problem. Hence, we employ the Hungarian
algorithm [13] to identify the optimal solution for this task. Once
completing the assignment, we categorize the proposals not as-
signed to ground truth as the “no instance” class.
Inference. During inference, we compute instance confidence,
considering that the number of proposals 𝑁𝑜 can be greater than
the number of ground truth instances 𝑁𝐼 . The confidence score
of 𝑖-th proposal is computed based on classification probability
c̃𝑖 , IoU box score 𝑏𝑠,𝑖 , IoU score𝑚𝑠,𝑖 of corresponding superpoint
mask. Follow [14, 30], we utilize a superpoint mask score 𝑎𝑖 by
computing by averaging the probabilities of superpoint that have
a probability greater than 0.5 in each superpoint mask prediction.
The final confidence score for each instance is defined as {𝑠}𝑁𝑜

𝑖=1 ={̃
c𝑖 · 𝑏𝑠,𝑖 ·𝑚𝑠,𝑖 · 𝑎𝑖

}𝑁𝑜

𝑖=0
and utilized for ranking predicted instances.

In this work, we do not employ post-processing (non-maximum
suppression or DBSCAN) as [21, 23, 29] to enhance inference speed.

4 EXPERIMENTAL RESULTS
In this section, we introduce the datasets and evaluation metrics
utilized to validate the effectiveness of the proposed model in Sec-
tion 4.1, and implementation details are described in Section 4.2. Fol-
lowing this, performance comparisons are presented in Section 4.3,
and analyses of additional studies on the model are demonstrated
in Section 4.4.

4.1 Dataset and Evaluation Metric
Dataset: To validate the effectiveness of the proposed framework,
we conducted experiments on the ScanNetV2 dataset [4], Scan-
Net200 dataset [28], and S3DIS dataset [1].

ScanNetV2 comprises 1613 scans, with 1201 scans for training,
312 for validation, and 100 for testing. It includes 18 object cate-
gories commonly used for 3D instance segmentation evaluation.

ScanNet200 [28] extends ScanNetV2 [4] with fine-grained cat-
egories and includes 198 instances with an additional 2 semantic
classes. The dataset division into training, validation, and testing
sets mirrors the original ScanNetV2 dataset.

S3DIS consists of 271 scenes across 6 different areas, with each
area containing 13 categories. For the experiments in this paper,
evaluations were conducted using datasets of Area 5.
Evaluation Metric: The evaluation of instance segmentation typ-
ically relies on task-mean average precision (mAP), a widely-used
metric that averages scores across various IoU thresholds ranging

2024-04-12 07:17. Page 5 of 1–9.
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Table 1: Performance comparisons of 3D instance segmentation on ScanNetV2 hidden test set in terms of the mean average
precision and mAP25 scores for each class
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DyCo3D [8] CVPR 21 39.5 64.1 76.1 100 93.5 89.3 75.2 86.3 60.0 58.8 74.2 64.1 63.3 54.6 55.0 85.7 78.9 85.3 76.2 98.7 69.9
SSTNet [18] ICCV 21 50.6 78.9 69.8 100 84.0 88.8 71.7 83.5 71.7 68.4 62.7 72.4 65.2 72.7 60.0 100 91.2 82.2 75.7 100 69.1
HAIS [3] ICCV 21 45.7 69.9 80.3 100 99.4 82.0 75.9 85.5 55.4 88.2 82.7 61.5 67.6 63.8 64.6 100 91.2 79.7 76.7 99.4 72.6
DKNet [34] ECCV 22 53.2 71.8 81.5 100 93.0 84.4 76.5 91.5 53.4 80.5 80.5 80.7 65.4 76.3 65.0 100 79.4 88.1 76.6 100 75.8
PBNet [38] ICCV 23 57.3 74.7 82.5 100 96.3 83.7 84.3 86.5 82.2 64.7 87.8 73.3 63.9 68.3 65.0 100 85.3 87.0 82.0 100 74.4
TD3D [12] WACV 24 48.9 75.1 87.5 100 97.6 87.7 78.3 97.0 88.9 82.8 94.5 80.3 71.3 72.0 70.9 100 93.6 93.4 87.3 100 79.1
SoftGroup [32] CVPR 22 50.4 76.1 86.5 100 96.9 86.0 86.0 91.3 55.8 89.9 91.1 76.0 82.8 73.6 80.2 98.1 91.9 87.5 87.7 100 82.0
ISBNet [23] CVPR 23 55.9 75.7 83.5 100 95.0 73.1 81.9 91.8 79.0 74.0 85.1 83.1 66.1 74.2 65.0 100 93.7 81.4 83.6 100 76.5
SPFormer [30] AAAI 23 54.9 77.0 85.1 100 99.4 80.6 77.4 94.2 63.7 84.9 85.9 88.9 72.0 73.0 66.5 100 91.1 86.8 87.3 100 79.6
Mask3D [29] ICRA 23 55.2 78.0 87.0 100 98.5 78.2 81.8 93.8 76.0 74.9 92.3 87.7 76.0 78.5 82.0 100 91.2 86.4 87.8 98.3 82.5
MAFT [14] ICCV 23 59.6 78.6 86.0 100 99.0 81.0 82.9 94.9 80.9 68.8 83.6 90.4 75.1 79.6 74.1 100 86.4 84.8 83.7 100 82.8
QueryFormer [21] ICCV 23 58.3 78.7 87.4 100 97.8 80.9 87.6 93.6 70.2 71.6 92.0 87.5 76.6 77.2 81.8 100 99.5 91.6 89.2 100 76.7
MSTA3D (Ours) - 56.9 79.5 87.9 100 99.4 92.1 80.7 93.9 77.1 88.7 92.3 86.2 72.2 76.8 75.6 100 91.0 90.4 83.6 99.9 82.4

Table 2: Performance comparisons of 3D instance segmenta-
tion on ScanNetV2 validation set in terms of mean average
precision (mAP).

Methods mAP mAP50 mAP25
DyCo3D [8] 35.4 57.6 72.9
HAIS [3] 43.5 64.4 75.6
DKNet [34] 50.8 66.7 76.9
SoftGroup [32] 45.8 67.6 78.9
PBNet [38] 54.3 70.5 78.9
TD3D [12] 47.3 71.2 81.9
ISBNet [23] 54.5 73.1 82.5
Mask3D [29] 55.2 73.7 83.5
SPFormer [30] 56.3 73.9 82.9
QueryFormer [21] 56.5 74.2 83.3
MAFT [14] 58.4 75.6 84.5
MSTA3D (Ours) 58.4 77.0 85.4

from 50% to 95%, incremented by 5%. mAP50 and mAP25 repre-
sent the scores at IoU thresholds of 50% and 25%, respectively. Our
evaluation of the ScanNetV2 and ScanNet200 datasets included
mAP, mAP50, and mAP25 metrics, and we also utilized mean preci-
sion (mPrec) and mean recall (mRec) in our analysis of the S3DIS
dataset.

4.2 Implementation Details
We implemented the proposed model using the PyTorch deep learn-
ing framework [25] and conducted training with the AdamW op-
timizer [20]. The training was performed on a single A100 GPU
with 40GB of memory. We used an initial learning rate of 0.0001,
weight decay of 0.05, and batch size of 2, and employed a polynomial
scheduler with a base of 0.9 for 512 epochs. For data augmenta-
tion, we applied random scaling, elastic distortion, random rotation,
horizontal flipping around the z-axis, and random scaling for 𝑥 , 𝑦,
and 𝑧 coordinates. Additionally, we utilized noise and brightness
augmentation for red, green, and blue colors. Both ScanNetV2 and

ScanNet200 datasets were processed with a voxel size of 2𝑐𝑚. For
S3DIS dataset, we used a voxel size of 5𝑐𝑚. The proposed model
adopted the same backbone design described in [14, 30], resulting in
a feature map with 32 channels (𝐷𝑏 = 32). During training, scenes
were limited to a maximum of 250, 000 points. During inference,
the entire scenes were inputted into the network without any crop-
ping, and the top 100 instances were selected based on their highest
scores.

4.3 Experimental Results
ScanNetV2. The instance segmentation results of the ScanNetV2
test and validation sets are presented in Tables 11 and 2. Overall, the
proposedmodel shows a significant improvement inmAP compared
to previous studies, indicating its capability to capture intricate
details and generate high-quality instance segmentation. In partic-
ular, compared to SPFormer [30], the proposed model achieved a
performance increase of +2.0 mAP, +2.5 mAP50, and +2.8 mAP25.
Compared to Mask3D [29], the improvement was +1.7 mAP, +1.5
mAP50, and +0.9 mAP25. Compared to MAFT [14], the gains were
+0.9 mAP50 and +1.9 mAP25. Finally, compared to QueryFormer
[21], the increases were +0.8 mAP50 and +0.5 mAP25 on the hid-
den test set. On the validation set, the proposed model outper-
formed other methods across all three metrics: mAP, mAP25, and
mAP50. Specifically, compared to QueryFormer [21], the proposed
model achieved a +1.9 mAP improvement, +2.8 mAP50 improve-
ment, and +2.1 mAP25 improvement. Compared to MAFT [14], the
gains were +1.4 mAP50 and +0.9 mAP25. As evidenced by the mAP
scores for each class, the proposed model exhibited superior per-
formance, particularly for relatively large objects such as beds or
bookshelves. Notably, it established a considerable lead of over
10% mAP25 specifically for the bookshelf category. This demon-
strates that our proposed method effectively captures large objects
to mitigate over-segmentation.

1Note that the results presented were obtained from the ScanNet benchmark on March
25, 2024
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Table 3: Performance comparisons of 3D on ScanNet200 vali-
dation set. The asterisk(*) indicates reproduced results.

Methods mAP mAP50 mAP25
PointGroup [11] - 24.5 -
PointGroup + LGround [28] - 26.1 -
ISBNet [23] 24.5 32.7 -
SPFormer* [30] 25.2 33.8 39.6
TD3D* [12] 23.1 34.8 40.4
MSTA3D (Ours) 26.2 35.2 40.1

Table 4: Performance comparisons of 3D instance segmenta-
tion on Area 5 of the S3DIS dataset

Methods mAP50 mPrec mRec

DyCo3D [8] - 64.3 64.2
DKNet [34] - 70.8 65.3
HAIS [3] - 71.1 65.0
SoftGroup [32] 66.1 73.6 66.6
TD3D [12] 65.1 74.4 64.8
PBNet [38] 66.4 74.9 65.4
SPFormer [30] 66.8 72.8 67.1
MAFT [14] 69.1 - -
QueryFormer [21] 69.9 70.5 72.2
Mask3D [29] 71.9 74.3 63.7
MSTA3D (Ours) 70.0 80.6 70.1

ScanNet200.We also evaluated the proposed model on the Scan-
Net200 dataset using the validation set. As shown in Table 3, the re-
sults of the proposed model indicate a significant improvement com-
pared to other methods. Specifically, the proposed model achieved
an increase of +1 in mAP, +1.4 in mAP50 and +0.5 in mAP25 com-
pared to SPFormer [30]. Especially, compared to TD3D [12], our
model achieved a +3.1 mAP and +0.4 mAP50 improvement. Never-
theless, this dataset presents challenges for superpoint-wise labels
due to its limited number of classes, indicating that point-wise
methods will likely remain dominant.
S3DIS. We conducted an evaluation of the proposed model on
S3DIS using Area 5. As shown in Table 4, the results demonstrate
slight improvements compared to previous works such as MAFT or
QueryFormer. In comparison to SPFormer, we achieved a notable
improvement of +3.2 mAP50. Additionally, the proposed method
outperformed other methods in terms of the mPrec metric.

4.4 Ablation Study
In this section, we conduct a thorough analysis to validate each
component of the proposed approach, as outlined below.
Multi-scale Feature Representation and Loss Functions.We
assessed performance to further analyze the effectiveness of multi-
scale feature representations and the proposed loss functions by
disabling one or more components. The results of this study are
tabulated in Table 6. The results when utilizing instance bounding
boxes confirmed that the introduced box queries improved the
accuracy of instance recognition. Furthermore, utilizing bounding
box features with box scores enhanced recognition accuracy even
further. The introduced box regularizer also improved the accuracy

Table 5: Performance comparisons with varying the number
of queries on the ScanNetV2 validation set

Methods # Queries mAP mAP50 mAP25
SPFormer [30] 100 54.2 72.4 82.8
SPFormer [30] 200 55.2 73.3 82.4
SPFormer [30] 400 56.3 73.9 82.9
SPFormer [30] 800 55.9 73.7 83.8
MAFT [14] 400 58.4 75.6 84.5
MSTA3D (Ours) 150 57.2 76.1 84.3
MSTA3D (Ours) 200 57.4 75.8 85.2
MSTA3D (Ours) 250 58.2 76.9 85.4
MSTA3D (Ours) 300 58.4 77.0 85.4
MSTA3D (Ours) 350 58.6 76.6 85.2
MSTA3D (Ours) 400 58.1 76.4 84.7
MSTA3D (Ours) 450 58.9 76.7 85.0

OursHAIS Softgroup Mask3D

15

QueryFormer MAFT
0

5

10

20

25

30

35

40

64

66

68

70

72

74

76

P
a
ra

m
et

er
 (

M
)

m
A

P 5
0

Parameter
mAP50

30.9 30.9

39.6

42.3

20.4

17.8

Figure 5: Comparisons of model complexity

of instance recognition, indicating the effectiveness of augmenting
instance-wise spatial features with scene-wise spatial features from
the superpoint-wise predictor.

When comparing the performance of multi-scale feature repre-
sentation against single-scale feature representation, the results
demonstrate that multi-scale superpoints enhanced the feature rep-
resentation at different scales. This finding is consistent with the re-
sults presented in Table 1, where the proposed model outperformed
relatively large objects while performing well in recognizing small
objects.
Number of Queries. We conducted a performance comparison of
the proposed model using varying numbers of queries as shown in
Table 5. To ensure fairness in comparison, we exclusively evaluated
models that utilize superpoint-wise information for both training
and inference, namely SPFormer [30] and MAFT [14]. Remarkably,
the proposed model achieved superior performance across all three
metrics with only 150 queries, compared to SPFormer’s 400 queries.
Furthermore, the proposed model outperformed MAFT in two met-
rics, mAP, and mAP50 with only 200 queries, and achieved better
results in three metrics with 250 queries.
Model Complexity. To validate the efficiency of the proposed
model alongside the analysis of the number of queries, we com-
pared the number of parameters of various methods. The results
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Table 6: Ablation study on different loss functions using both single-scale feature and the proposed multi-scale feature
representation

Instance Box Box Low-scale only High-scale only Multi-scale
Box Score Regularizer mAP mAP50 mAP25 mAP mAP50 mAP25 mAP mAP50 mAP25
– – – 47.2 67.4 78.0 56.3 73.9 82.9 56.4 75.0 84.0
✓ – – 47.3 67.1 78.8 56.7 74.6 84.6 57.0 74.8 84.4
– – ✓ 48.0 68.0 79.6 56.2 74.6 83.5 56.9 75.5 84.3
✓ ✓ – 48.3 68.6 79.4 56.8 75.6 83.8 57.1 75.2 84.3
✓ – ✓ 48.1 68.9 79.9 57.4 75.0 84.6 57.5 75.4 84.8
✓ ✓ ✓ 49.4 68.0 81.2 57.6 75.6 84.5 58.4 77.0 85.4

Input Low-scale Superpoint High-scale Superpoint Ground-truth

ISBNet SPFormer MAFT Ours

Figure 6: Qualitative comparison of the proposed model with other methods on ScanNetV2.

demonstrate that the proposed model achieved superior perfor-
mance with significantly fewer parameters, specifically 24.5 million
fewer than QueryFormer [21] and 2.6 million fewer thanMAFT [14].
Compared to the recent transformer-based method Mask3D [29],
the proposed model utilized fewer than 21.8 million parameters, as
evidenced in Figure 5.

5 CONCLUSION
In this paper, we presented MSTA3D, a transformer-based method
designed for 3D point cloud instance segmentation. To address
the challenge of over-segmentation, particularly with background
or large objects in the scene, we devised a multi-scale superpoint
strategy. Furthermore, we introduced a twin-attention decoder to
leverage both high-scale and low-scale superpoints simultaneously.
This enhancement expands the model’s capacity to capture fea-
tures at various scales, thereby enabling better performance on
large objects and reducing over-segmentation. In addition to the

semantic query, we introduced the notion of a box query. This pro-
vides spatial context for generating high-quality instance proposals,
assists the box regularizer in producing reliable instance masks,
and contributes to box score regression, leading to significant per-
formance improvements. Finally, we rigorously evaluated each of
these components through extensive experiments.
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