
Under review as a conference paper at ICLR 2021

Appendix A. Reproducibility Checklist (borrowed from NLP field)

For all reported experimental results:

• A clear description of the mathematical setting, algorithm, and/or model
: See in Section 3.

• Submission of a zip file containing source code, with specification of all dependencies,
including external libraries, or a link to such resources (while still anonymized)
: An anonymized Github link is attached.

• Description of computing infrastructure used
: We used 6 Titan Xp (12G)

• Average runtime for each approach
: The runtime depends on the number of processes running in the computing server.
Approximately, it took 3 hour/epoch in large datasets (DBpedia, YelpReview) and
30min/epoch in small datasets. (YahooAnswer(Up&Low), AGNews, IMDB)

• Number of parameters in each model : A TextCNN model has 136K parameters except for
word embedding parameters. It varies by the size of word embeddings.

• Corresponding validation performance for each reported test result
: See in Figure 2. We will do the experiments again and report the result in rebuttal period
if reviewers need the validation performance in the baselines.

• Explanation of evaluation metrics used, with links to code
: All the metric on the classification tasks was accuracy.

For all experiments with hyperparameter search:

• Bounds for each hyperparameter

• Hyperparameter configurations for best-performing models

• Number of hyperparameter search trials

• The method of choosing hyperparameter values (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among them (e.g., accuracy)

• Expected validation performance, or the mean and variance as a function of the number of
hyperparameter trials

: To these all bullets, since our approach was tested in 6 different text classification
tasks, we did not search specific hyperparameters. Instead, we followed general hyperpa-
rameters widely used in other studies. (e.g., Adam optimizer, 1e-3 learning rate, kernel
size, multi-channel approach)

For all datasets used:

• Relevant statistics such as number of examples
: See Table 1.

• Details of train/validation/test splits
: See Table 1 and Section 4.1.

• Explanation of any data that were excluded, and all pre-processing steps
: No data were excluded. In the pre-processing step, we added space before and after
special symbols (e.g., !@$%) and then we tokenized the raw text by space.

• A link to a downloadable version of the data
: https://drive.google.com/drive/u/0/folders/ 0Bz8a
Dbh9Qhbfll6bVpmNUtUcFdjYmF2 SEpmZUZUcVNiMUw1TWN6RDV3a0JHT
3kxLVhVR2M
When you copy and paste this link, make sure that ‘ ’ is included in your copied text **
Because of some bugs, the above link is oversized when we wrap the link using url
: for YahooAnswer, we used https://cogcomp.seas.upenn.edu/page/resource_

12

https://cogcomp.seas.upenn.edu/page/resource_view/89
https://cogcomp.seas.upenn.edu/page/resource_view/89
https://cogcomp.seas.upenn.edu/page/resource_view/89

Under review as a conference paper at ICLR 2021

view/89

• For new data collected, a complete description of the data collection process, such as in-
structions to annotators and methods for quality control
: No new data were collected

Appendix B. Data Statistics

Table 9: The data information used in text classification. YahooAnswer dataset is used for two
different tasks, which are to classify upper-level categories and to classify lower-level categories,
respectively. The vocabulary size can be slightly different due to the tokenizing methods and the
predefined special tokens.

DBpedia Yah(Up) Yah(Low) AGNews Yelp IMDB
#Train 560,000 133,703 133,703 120,000 650,000 25,000
#Test 70,000 23,595 23,595 7,600 50,000 25,000
#Class 14 17 280 4 5 2
#Vocab 626,717 154,142 154,142 66,049 198,625 47,113

Appendix C. Model Comparison & Justification

First, this is the performance of Very Deep Convolutional Neural Net (Conneau et al., 2017) ac-
cording to their report, github implementation, and our modification. Note again that YahooAnswer
dataset is different, but it is the original dataset, as described in Appendix.

Table 10: The performance of TextCNN classifiers and the standard deviation with GraVeR accord-
ing to the gradualness policy. The default method is to increase the number of maskers when the
validation performance decreases.

DBpedia Yah(Up) Yah(Low) AGNews Yelp IMDB
TextCNNbase (Ours) 98.01±.03 67.41±.07 44.69±.15 88.87±.01 61.75±.33 86.42±.35
TextCNNtune (Ours) 98.49±.06 69.26±.31 46.85±.18 90.06±.35 63.24±.34 86.11±1.17
9-VDCNN(Reported) 98.75 - - 90.17 61.96 -
9-VDCNN(Github) 98.35 - - 89.22 61.18 -
9-VDCNN(Word-level) 98.34 69.24 46.15 89.50 64.65 81.38
9-VDCNN +GraVeR 98.51 73.34 49.58 91.14 64.65 87.66
24-VDCNN(Word-level) 98.34 55.63 41.11 80.20 61.01 51.02

However, our framework is fully based on words, whereas the model is based on character-
embedding. So, we slightly modified the model to use word embeddings and use the same pre-
processing codes. Our modification does not harm original performance that much, as seen in Ta-
ble 10.
We also attempt to use 29-depth, which showed the best performance in their paper. The results
in DBpedia and Yelp are almost the same with Depth=9, but it overfits to small datasets such as
AGNews, Yahoo, and IMDB.
In conclusion, one of the strong baseline, Very Deep Convolutional Neural Net is ‘slightly’ better,
and GraVeR also works in the model. Therefore, we claim that our TextCNNtune is not a weak
baseline.

13

https://cogcomp.seas.upenn.edu/page/resource_view/89
https://cogcomp.seas.upenn.edu/page/resource_view/89
https://cogcomp.seas.upenn.edu/page/resource_view/89

Under review as a conference paper at ICLR 2021

Appendix D. Word Distribution Visualization & Other CueWords

Figure 3: Plots of nearest top-100 words of a cue word (love) in initial embedding (Initial), after
fine-tuned once (FineTuned), and our method GraVeR in 6 text classification tasks. The word vector
distribution is largely changed through GraVeR when compared with the fine-tuned once, which is
extracted from 1 conventional training. Note that the distribution of GraVeR representation is trained
further than the fine-tuned once embedding.

14

Under review as a conference paper at ICLR 2021

Table 11: List of top-20 nearest words of cue words in initial embedding, after fine-tuned once, and
our method GraVeR. The difference between initial embedding and fine-tuned once, and fine-tuned
once and GraVeR are marked in bold and underlined, respectively. GraVeR attempts to find better
embedding distributions.

Word Method Top-20 Nearest Words

hate

Initial

dont(.73),stupid(.72),hates(.72),think(.71),why(.69),love(.69),hating(.69),
hated(.69),shit(.68),know(.68),damn(.68),say(.68),crap(.67),believe(.67),

n’t(.67),want(.67),saying(.67),dislike(.66),thing(.66),because(.66)

Fine

Tuned

dont(.72),hates(.71),stupid(.7),hating(.67),shit(.66),believe(.66),think(.66),
hated(.65),crap(.65),know(.65),afraid(.64),love(.64),hatred(.64),

cant(.64),because(.63),cuz(.63),dislike(.63),damn(.63),fear(.63),want(.63)

GraVeR

hates(.7),stupid(.67),hating(.66),think(.65),know(.65),believe(.64),shit(.64),
crap(.64),afraid(.63),because(.63),want(.63),dislike(.63),hatred(.63),

hated(.62),ppl(.62),damn(.62),cuz(.61),blame(.61),realize(.61),honestly(.61)

peace

Initial

peaceful(.64),freedom(.63),hope(.63),unity(.61),happiness(.6),harmony(.59),
prosperity(.58),prayer(.57),democracy(.57),faith(.57),conflict(.57),god(.56),

bring(.56),justice(.56),friendship(.56),life(.56),love(.55),
joy(.54),truth(.54),war(.54),

Fine

Tuned

peaceful(.61),justice(.57),freedom(.56),harmony(.56),happiness(.54),
friendship(.54),hope(.53),bring(.53),wish(.53),unity(.53),god(.52).

war(.52),democracy(.52),prosperity(.52),conflict(.51),promise(.51),.(.51),
faith(.51),cooperation(.51),calm(.51)

GraVeR

peaceful(.61),harmony(.55),justice(.55),happiness(.54),unity(.54),
freedom(.53),friendship(.52),god(.52),wish(.51),him(.5),war(.5),

tranquility(.5),cooperation(.5),prosperity(.5),calm(.5),independence(.49),
democracy(.49),rest(.49),hope(.49),pray(.49)

15

