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1 Experiments on Network Competition12

We have shown in Theorem 5 (of the main paper) that SFP converges to a unique QRE in any13

weighted zero-sum network population game even if there are multiple Nash equilibria underlying14

that game. In the following, we corroborate this by providing empirical evidence in agent-based15

simulations with different belief initialization.16

Game Description. Consider a five-population asymmetric matching pennies game [3], where the17

network structure is a line (depicted in Figure 1). Each agent has two actions tH,T u. Agents in18

populations 1 and 5 do not learn; they always play strategies H and T , respectively. For agents in19

populations 2 to 4, they receive `1 if they match the strategy of the opponent in the next population,20

and receive ´1 if they mismatch. On the contrary, they receive `1 if they mismatch the strategy21

of the opponent in the previous population, and receive ´1 if they match. Hence, this game has22

infinitely many Nash equilibria of the form: agents in populations 2 and 4 play strategy T , whereas23

agents in population 3 are indifferent between strategies H and T .24

Experimental Setups. In this game, agents in each population form two beliefs (one for the25

previous population and one for the next population). We are mainly interested in the strategies of26

population 3, as the Nash equilibria differ in the strategies in population 3. Thus, we let the initial27

beliefs about populations 1, 3 and 5 remain unchanged across different cases, and vary population 3’s28

initial beliefs about populations 2 and 4. The initial beliefs about populations 1, 3 and 5, denoted29

by µ1H , µ3H and µ5H , are distributed according to the distributions Betap20, 10q, Betap6, 4q, and30

Betap10, 5q, respectively. The initial beliefs about populations are given in the legends of Figure 2.31

In all cases, the initial sum of weights λ “ 10 and the temperature β “ 10. Note that µiT “ 1 ´ µiH32

for all populations i “ 1, 2, 3, 4, 5. We run 100 simulation runs for each initialization, and each33

simulation run consists of 1, 000 agents in each population.34

Results. As shown in Figure 2, given differential initialization of beliefs, agents in population 335

converge to the same equilibrium where they all take strategy H with probability 0.5. Therefore,36

even when the underlying zero-sum game has many Nash equilibria, SFP with different initial belief37

heterogeneity selects a unique equilibrium, addressing the problem of equilibrium selection.38

Figure 1: Asymmetric Matching Pennies.

Figure 2: With different belief initialization, SFP selects a unique equilibrium where all agents in
population 3 play strategy H with probability 0.5. The thin lines represent the mean mixed strategy
(the choice probability of H) and the shaded areas represent the variance of the mixed strategies in
the population. In the legends, B denotes Beta distribution; the two Beta distributions correspond to
the initial beliefs about the neighbor populations 2 and 4, respectively.
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2 Proof of Proposition 139

It follows from Equation 2 and Equation 3 of the main paper that the change in µi
jpk, tq between two40

discrete time steps is41

µi
jpk, t ` 1q “ µi

jpk, tq `
x̄jptq ´ µi

jpk, tq

λ ` t ` 1
. (1)

Lemma 1. Under Assumption 1 of the main paper, for an arbitrary agent k in population i, its belief42

µi
jpk, tq about a neighbor population j will never reach the extreme belief, i.e., the probability density43

for the boundary of the simplex ∆i will remain zero.44

Proof. Assumption 1 ensures that x̄jp0q is in the interior of the simplex ∆j . Moreover, the logit45

choice function (Equation 5 in the main paper) also ensures that x̄jptq stays in the interior of ∆j46

afterwards for a finite temperature β. Hence, from Equation 1, one can see that µi
jpk, tq for every47

time step t will stay in the interior of ∆j .48

In the following, for notation convenience, we sometimes drop the agent index k and the time index t49

depending on the context. Consider a population i. We rewrite the change in the beliefs about this50

population as follows.51

µipt ` 1q “ µiptq `
x̄iptq ´ µiptq

λ ` t ` 1
. (2)

Suppose that the amount of time that passes between two successive time steps is δ P p0, 1s. We52

rewrite the above equation as53

µipt ` δq “ µiptq ` δ
x̄iptq ´ µiptq

λ ` t ` 1
. (3)

Next, we consider a test function θpµiq. Define54

Y “
Erθpµipt ` δqqs ´ Erθpµiptqqs

δ
. (4)

Applying Taylor series for θpµipt ` δqq at µiptq, we obtain55

θpµipt ` δqq “ θpµiptqq `
δ

λ ` t ` 1
Bµi

θpµiq rx̄iptq ´ µiptqs

`
δ2

2pλ ` t ` 1q2
rx̄iptq ´ µiptqs

J
Hθpµiq rx̄iptq ´ µiptqs

` o

˜

„

δ
x̄iptq ´ µiptq

λ ` t ` 1

ȷ2
¸

(5)

where H denotes the Hessian matrix. Hence, the expectation Erθpµipt ` δqqs is56

Erθpµipt ` δqqs “ Erθpµiptqqs `
δ

λ ` t ` 1
ErBµi

θpµiptqqpx̄iptq ´ µiptqqs

`
δ2

2pλ ` t ` 1q2
E

“

rx̄iptq ´ µiptqsJHθpµiq rx̄iptq ´ µiptqs
‰

`
δ2

2pλ ` t ` 1q2
Eroprx̄iptq ´ µiptqs2qs (6)

Moving the term Erθpµiptqqs to the left hand side and dividing both sides by δ, we recover the57

quantity Y , i.e.,58

Y “
1

λ ` t ` 1
ErBµi

θpµiptqqpx̄iptq ´ µiptqqs

`
δ

2pλ ` t ` 1q2
Errx̄iptq ´ µiptqsJHθpµiptqqrx̄iptq ´ µiptqs ` o

`

px̄iptq ´ µiptqq2
˘

s (7)
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Taking the limit of Y with δ Ñ 0, the contribution of the second term on the right hand side vanishes,59

yielding60

lim
δÑ0

Y “
1

λ ` t ` 1
ErBµi

θpµiptqqpx̄iptq ´ µiptqqs (8)

“
1

λ ` t ` 1

ż

ppµiptq, tq
“

Bµi
θpµiptqqpx̄iptq ´ µiptqq

‰

dµiptq. (9)

Apply integration by parts. We obtain61

lim
δÑ0

Y “ 0 ´
1

λ ` t ` 1

ż

θpµiptqq∇ ¨ rppµiptq, tqpx̄iptq ´ µiptqqs dµiptq (10)

where we have leveraged that the probability mass ppµi, tq at the boundary B∆i remains zero as a62

result of Lemma 1. On the other hand, according to the definition of Y ,63

lim
δÑ0

Y “ lim
δÑ0

ż

θpµiptqq
ppµi, t ` δq ´ ppµi, tq

δ
dµi “

ż

θpµiptqqBtppµi, tqdµi. (11)

Therefore, we have the equality64
ż

θpµiptqqBtppµi, tqdµi “ ´
1

λ ` t ` 1

ż

θpµiptqq∇ ¨ rppµiptq, tqpx̄iptq ´ µiptqqs dµiptq. (12)

As θ is a test function, this leads to65

Btppµi, tq “ ´
1

λ ` t ` 1
∇ ¨ rppµiptq, tqpx̄iptq ´ µiptqqs . (13)

Rearranging the terms, we obtain Equation 7 of the main paper. By the definition of expectation66

given a probability distribution, it is straightforward to obtain Equation 8 of the main paper. Q.E.D.67

3 Proof of Theorem 168

Without loss of generality, we consider the variance of the belief µisi about strategy si of population69

i. Note that70

Varpµisiq “ Erpµisiq
2s ´ pµ̄isiq

2. (14)
Hence, we have71

dVarpµisiq

dt
“

dErpµisiq
2s

dt
´ 2µ̄isi

dµ̄isi

dt
. (15)

Consider the first term on the right hand side. We apply the Leibniz rule to interchange differentiation72

and integration, and then substitute Bppµi,tq
Bt with Equation 8 in the main paper.73

dErpµisiq
2s

dt

“

ż

pµisiq
2 Bppµi, tq

Bt
dµi (16)

“ ´

ż

pµisiq
2∇ ¨

ˆ

ppµi, tq
x̄i ´ µi

λ ` t ` 1

˙

dµi (17)

“ ´

ż

pµisiq
2

ÿ

siPSi

Bµisi

ˆ

ppµi, tq
x̄isi ´ µisi

λ ` t ` 1

˙

dµi (18)

“ γ

ż

pµisiq
2

ÿ

siPSi

Bµisi
ppµi, tq px̄isi ´ µisiq dµi ` γ

ż

pµisiq
2ppµi, tq

ÿ

siPSi

Bµisi
px̄isi ´ µisiq dµi

(19)

where γ :“ ´ 1
λ`t`1 . Applying integration by parts to the first term in Equation 19 yields74

ż

pµisiq
2

ÿ

siPSi

Bµisi
ppµi, tq px̄isi ´ µisiq dµi

“ ´

ż

pµisiq
2ppµi, tq

»

–

ÿ

s1
iPSi

Bµis1
i
px̄is1

i
´ µis1

i
q

fi

fl ` ppµi, tqBµisi

“

pµisiq
2px̄isi ´ µisiq

‰

dµi (20)
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where we have leveraged that the probability mass at the boundary remains zero (Lemma 1). Com-75

bining the above two equations, we obtain76

dErpµisiq
2s

dt

“ ´γ

ż

pµisiq
2ppµi, tq

»

–

ÿ

s1
iPSi

Bµis1
i
px̄is1

i
´ µis1

i
q

fi

fl ` ppµi, tqBµisi

“

pµisiq
2px̄isi ´ µisiq

‰

dµi

` γ

ż

pµisiq
2ppµi, tq

ÿ

siPSi

Bµisi
px̄isi ´ µisiq dµi (21)

“ γ

ż

“

´ppµi, tqBµisi

“

pµisiq
2px̄isi ´ µisiq

‰‰

` pµisiq
2ppµi, tqBµisi

px̄isi ´ µisiq dµi (22)

“ γ

ż

2pµisiq
2ppµi, tqdµi ´ γ

ż

2x̄isiµisippµi, tqdµi (23)

“ ´
2Erpµisiq

2s ´ 2x̄isi µ̄isi

λ ` t ` 1
. (24)

Next, we consider the second term in Equation 15. By Lemma 2, we have77

2µ̄isi

dµ̄isi

dt
“

2µ̄isipx̄isi ´ µ̄isiq

λ ` t ` 1
. (25)

Combining Equations 24 and 25, the dynamics of the variance is78

dVarpµisiq

dt
“ ´

2Erpµisiq
2s ´ 2x̄isi µ̄isi

λ ` t ` 1
´

2µ̄isipx̄isi ´ µ̄isiq

λ ` t ` 1
(26)

“
2pµ̄isiq

2 ´ 2Erpµisiq
2s

λ ` t ` 1
(27)

“ ´
2Varpµisiq

λ ` t ` 1
. (28)

Q.E.D.79

4 Proof of Proposition 280

Lemma 2. The dynamics of the mean belief µ̄i about each population i P V is governed by a81

differential equation82

dµ̄isi

dt
“

x̄isi ´ µ̄isi

λ ` t ` 1
, @si P Si. (29)

Proof. The time derivative of the mean belief about strategy si is83

dµ̄isi

dt
“

d

dt

ż

µisippµi, tqdµi. (30)
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We apply the Leibniz rule to interchange differentiation and integration, and then substitute Bppµi,tq
Bt84

with Equation 8 in the main paper.85

d

dt

ż

µisippµi, tqdµi (31)

“

ż

µisi

Bppµi, tq

Bt
dµi (32)

“ ´

ż

µisi∇ ¨

ˆ

ppµi, tq
x̄i ´ µi

λ ` t ` 1

˙

dµi (33)

“ ´

ż

µisi

ÿ

siPSi

Bµisi

ˆ

ppµi, tq
x̄isi ´ µisi

λ ` t ` 1

˙

dµi (34)

“ γ

«

ż

µisi

ÿ

siPSi

`

Bµisi
ppµi, tq

˘

px̄isi ´ µisiq dµi `

ż

µisippµi, tq
ÿ

siPSi

Bµisi
px̄isi ´ µisiq dµi

ff

(35)

where γ :“ ´ 1
λ`t`1 . Apply integration by parts to the first term in Equation 35.86

ż

µisi

ÿ

siPSi

`

Bµisi
ppµi, tq

˘

px̄isi ´ µisiq dµi

“ ´

ż

µisippµi, tq

»

–

ÿ

s1
iPSi

Bµis1
i
px̄is1

i
´ µis1

i
q

fi

fl ` ppµi, tqBµisi
rµisipx̄isi ´ µisiqs dµi (36)

where we have leveraged that the probability mass at the boundary remains zero. Hence, it follows87

from Equation 35 that88

d

dt

ż

µisippµi, tqdµi (37)

“ ´γ

ż

µisippµi, tq
ÿ

s1
iPSi

Bµis1
i
px̄is1

i
´ µis1

i
qdµi ´ γ

ż

ppµi, tqBµisi
rµisipx̄isi ´ µisiqs dµi

` γ

ż

µisippµi, tq
ÿ

siPSi

Bµisi
px̄isi ´ µisiq dµi (38)

“ γ

ż

ppµi, tq
“

µisiBµisi
px̄isi ´ µisiq ´ Bµisi

rµisipx̄isi ´ µisiqs
‰

dµi (39)

“ γ

ż

ppµi, tqµisidµi ´

ż

ppµi, tqx̄isidµi (40)

“
x̄isi ´ µ̄isi

λ ` t ` 1
(41)

89

We repeat the mean probability x̄isi , which has been given in Equation 8 in the main paper, as90

follows:91

x̄isi “

ż

exp pβuisiq
ř

s1
iPSi

exp pβuis1
i
q

ź

jPVi

ppµj , tq

˜

ź

jPVi

dµj

¸

(42)

where uisi “
ř

jPVi
eJ
siAijµj . Define µ̄ :“ tµ̄jujPVi

and92

fsiptµjujPVi
q :“

exp pβ
ř

jPVi
eJ
siAijµjq

ř

s1
iPSi

exp pβ
ř

jPVi
eJ
s1
i
Aijµjq

. (43)

Applying the Taylor expansion to approximate this function at the mean belief µ̄, we have93

fsiptµjujPVi
q “ fsipµ̄q ` ∇fsipµ̄q ¨ pµ ´ µ̄q `

1

2!
pµ ´ µ̄qJHfsipµ̄qpµ ´ µ̄q `

1

3!
Op||µ ´ µ̄||3q

(44)
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where H denotes the Hessian matrix. Hence, we can rewrite Equation 42 as94

x̄isi “

ż

fsiptµjujPVi
q

ź

jPVi

ppµj , tq

˜

ź

jPVi

dµj

¸

(45)

« fsipµ̄q `

ż

∇fsipµ̄q ¨ µ
ź

jPVi

ppµj , tq

˜

ź

jPVi

dµj

¸

´ ∇fsipµ̄q ¨ µ̄

`

ż

1

2
pµ ´ µ̄qJHfsipµ̄qpµ ´ µ̄q

ź

jPVi

ppµj , tq

˜

ź

jPVi

dµj

¸

`

ż

1

3!
Op||µ ´ µ̄||q3

ź

jPVi

ppµj , tq

˜

ź

jPVi

dµj

¸

(46)

Observe that in Equation 46, the second and the third term can be canceled out. Moreover, for any two95

neighbor populations j, k P Vi, the beliefs µj ,µk about these two populations are updated separately96

and independently. Hence, the covariance of these beliefs are zero. We apply the moment closure97

approximation [4, 2] with the second order and obtain98

x̄isi « fsipµ̄q `
1

2

ÿ

jPVi

ÿ

sjPSj

B2fsipµ̄q

pBµjsj q2
Varpµjsj q. (47)

Hence, substituting x̄isi in Lemma 2 with the above approximation, we have the mean belief dynamics99

dµ̄isi

dt
«

fsipµ̄q ´ µ̄isi

λ ` t ` 1
`

ř

jPVi

ř

sjPSj

B
2fsi pµ̄q

pBµjsj
q2

Varpµjsj q

2pλ ` t ` 1q
. (48)

Q.E.D.100

5 Proof of Proposition 3101

It follows from Equation 2 and Equation 3 of the main paper that the change in beliefs between two102

successive time steps is as follows.103

µipt ` 1q “ µiptq `
xiptq ´ µiptq

λ ` t ` 1
. (49)

Suppose that the amount of time that passes between two successive time steps is δ P p0, 1s. We104

rewrite the above equation as105

µipt ` δq “ µiptq ` δ
xiptq ´ µiptq

λ ` t ` 1
. (50)

Move the term µiptq to the right hand side and divide both sides by δ,106

µipt ` δq ´ µiptq

δ
“

xiptq ´ µiptq

λ ` t ` 1
. (51)

Assume that the amount of time δ between two successive time steps goes to zero. we have107

dµi

dt
“ lim

δÑ0

µipt ` δq ´ µiptq

δ
“

xiptq ´ µiptq

λ ` t ` 1
. (52)

Q.E.D.108

6 Proof of Proposition 4109

It is straightforward to see that110

dµi

dt
“

xi ´ µi

λ ` t ` 1
“ 0 ùñ xi “ µi. (53)

7



Denote the equilibrium points of the system dynamics, which satisfies the above equation, by px˚
i ,µ

˚
i q111

for each population i. By the logit choice rule, we have112

x˚
isi “

exp pβuisiq
ř

s1
iPSi

exp pβuis1
i
q

“
exp pβ

ř

jPVi
eJ
siAijµ

˚
j q

ř

s1
iPSi

exp pβ
ř

jPVi
eJ
s1
i
Aijµ

˚
j q

. (54)

Leveraging that x˚
i “ µ˚

i ,@i P V at equilibrium, we can replace µ˚
j with x˚

j . Q.E.D.113

7 Proof of Theorem 2114

Consider an agent i in a classic network game. The set of neighbors is Vi, the set of beliefs about the115

neighbors is tµjujPVi
, and the choice distribution is xi. Given a classic network game, the expected116

payoff is given by xJ
i

ř

pi,jqPE Aijµj . Define a perturbed payoff function117

πi

`

xi, tµjujPVi

˘

:“ xJ
i

ÿ

jPVi

Aijµj ` vpxiq (55)

where vpxiq “ ´ 1
β

ř

siPSi
xisi lnpxisiq. Under this form of vpxiq, the maximization of πi yields the118

choice distribution xi from the logit choice function [1]. Based on this, we establish the following119

lemma.120

Lemma 3. For a choice distribution xi of SFP in a network game,121

Bxi
πi

`

xi, tµjujPVi

˘

“ 0 and
ÿ

jPVi

`

Aijµj

˘J
“ ´Bxi

vpxiq. (56)

Proof. This lemma immediately follows from the fact that the maximization of πi will yield the122

choice distribution xi from the logit choice function [1].123

The belief dynamics of an agent can be simplified after time-reparameterization.124

Lemma 4. Given τ “ ln λ`t`1
λ`1 , the belief dynamics of homogeneous systems (given in Equation 11125

in the main paper) is equivalent to126

dµi

dτ
“ xi ´ µi. (57)

Proof. From τ “ ln λ`t`1
λ`1 , we have127

t “ pλ ` 1qpexp pτq ´ 1q. (58)

By the chain rule, for each dimension si,128

dµisi

dτ
“

dµisi

dt

dt

dτ
(59)

“
xisi ´ µisi

λ ` t ` 1

d ppλ ` 1qpexp pτq ´ 1qq

dτ
(60)

“
xisi ´ µisi

λ ` pλ ` 1qpexp pτq ´ 1q ` 1
pλ ` 1q exp pτq (61)

“ xisi ´ µisi . (62)

129

Next, we define the Lyapunov function L as130

L :“
ÿ

iPV

ωiLi s.t. Li :“ πi

`

xi, tµjujPVi

˘

´ πi

`

µi, tµjujPVi

˘

. (63)

where tωiuiPV is the set of positive weights defined in the weighted zero-sum Γ. The function L is131

non-negative because for every i P V , xi maximizes the function πi. When for every i P V , xi “ µi,132

the function L reaches the minimum value 0.133

8



Rewrite L as134

L “
ÿ

iPV

«

ωiπi

`

xi, tµjujPVi

˘

´ ωiµ
J
i

ÿ

jPVi

Aijµj ´ ωivpµiq

ff

. (64)

We observe that πi

`

xi, tµjujPVi

˘

is convex in µj , j P Vi by Danskin’s theorem, and ´vpµiq is135

strictly convex in µi. Moreover, by the weighted zero-sum property given in Equation 2 in the main136

paper, we have137

ÿ

iPV

˜

ωiµ
J
i

ÿ

jPVi

Aijµj

¸

“ 0 (65)

since µi P ∆i, µj P ∆j for every i, j P V. Therefore, the function L is a strictly convex function and138

attains its minimum value 0 at a unique point xi “ µi, @i P V.139

Consider the function Li. Its time derivative is140

9Li “ Bxi
πi

`

xi, tµjujPVi

˘

9xi `
ÿ

jPVi

”

Bµj
πi

`

xi, tµjujPVi

˘

9µj

ı

´ Bµi
πi

`

µi, tµjujPVi

˘

9µi ´
ÿ

jPVi

”

Bµj
πi

`

µi, tµjujPVi

˘

9µj

ı

.
(66)

Note that the partial derivative Bxi
πi equals 0 by Lemma 3. Thus, we can rewrite this as141

9Li “ Bµi
πi

`

µi, tµjujPVi

˘

9µi `
ÿ

jPVi

”

Bµj
πi

`

xi, tµjujPVi

˘

´ Bµj
πi

`

µi, tµjujPVi

˘

ı

9µj (67)

“ ´

«

ÿ

jPVi

`

Aijµj

˘J
` Bµi

vpµiq

ff

pxi ´ µiq `
ÿ

jPVi

`

xJ
i Aij ´ µJ

i Aij

˘

pxj ´ µjq (68)

“ rBxivpxiq ´ Bµivpµiqs pxi ´ µiq `
ÿ

jPVi

`

xJ
i Aijxj ´ µJ

i Aijxj ´ xJ
i Aijµj ` µJ

i Aijµj

˘

.

(69)

where from Equation 68 to 69, we apply Lemma 3 to substitute
ř

jPVi

`

Aijµj

˘J
with ´Bxivpxiq.142

Hence, summing over all the populations, the time derivative of L is143

9L “
ÿ

iPV

ωi rBxi
vpxiq ´ Bµi

vpµiqs pxi ´ µiq

`
ÿ

iPV

ÿ

jPVi

ωi

`

xJ
i Aijxj ´ µJ

i Aijxj ´ xJ
i Aijµj ` µJ

i Aijµj

˘

. (70)

The summation in the second line is equivalent to144

ÿ

pi,jqPE

pωix
J
i Aijxj ` ωjx

J
j Ajixiq ´ pωiµ

J
i Aijxj ` ωjx

J
j Ajiµiq (71)

´ pωix
J
i Aijµj ` ωjµ

J
j Ajixiq ` pωiµ

J
i Aijµj ` ωjµ

J
j Ajiµiq. (72)

By the weighted zero-sum property given in Equation 2 in the main paper, this summation equals 0,145

yielding146

9L “
ÿ

iPV

ωi rBxi
vpxiq ´ Bµi

vpµiqs pxi ´ µiq. (73)

Note that the function v is strictly concave such that its second derivative is negative definite. By this147

property, 9L ď 0 with equality only if xi “ µi,@i P V , which corresponds to the QRE. Therefore, L148

is a strict Lyapunov function, and the global asymptotic stability of the QRE follows. Q.E.D.149
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8 Proof of Theorem 3150

Consider a root agent j of a star structure. Its set of leaf (neighbor) agents is Vj , the set of beliefs151

about the leaf agents is tµiuiPVj , and the choice distribution is xj . Given the game Γ, the expected152

payoff is xJ
j

ř

iPVj
Ajiµi. Define a perturbed payoff function153

πj

`

xj , tµiuiPVj

˘

:“ xJ
j

ÿ

iPVj

Ajiµi ` vpxjq (74)

where vpxjq “ ´ 1
β

ř

sjPSj
xjsj lnpxjsj q. Under this form of vpxjq, the maximization of πj yields154

the choice distribution xj from the logit choice function [1].155

Consider a leaf agent i of the root agent j. It has only one neighbor, which is population j. Thus,156

given the game Γ, the expected payoff is xJ
i Aijµj . Define a perturbed payoff function157

πi

`

xi,µj

˘

:“ xJ
i Aijµj ` vpxiq (75)

where vpxiq “ ´ 1
β

ř

siPSi
xisi lnpxisiq. Similarly, the maximization of πi yields the choice distribu-158

tion xi from the logit choice function [1]. Based on this, we establish the following lemma.159

Lemma 5. For choice distributions of SFP in a network game with a star structure,160

Bxjπj

`

xj , tµiuiPVj

˘

“ 0 and
ÿ

iPVj

pAjiµiq
J

“ ´Bxjvpxjq if j is a root agent, (76)

Bxiπi

`

xi,µj

˘

“ 0 and
`

Aijµj

˘J
“ ´Bxivpxiq if i is a leaf agent. (77)

Proof. This lemma immediately follows from the fact that the maximization of πj and πi , respec-161

tively, yield the choice distributions xj and xi from the logit choice function [1].162

Let R Ă V be the set of all root agents. We define163

L :“
ÿ

jPR
Lj s.t. Lj :“ µJ

j

ÿ

iPVj

Ajiµi ` vpµjq `
ÿ

iPVj

vpµiq. (78)

Consider the function Lj . Its time derivative 9Lj is164

9Lj “

»

–Bµj
pµJ

j

ÿ

iPVj

Ajiµiq 9µj `
ÿ

iPVj

Bµi
pµJ

j

ÿ

iPVj

Ajiµiq 9µi

fi

fl ` Bµj
vpµjq 9µj `

ÿ

iPVj

Bµi
vpµiq 9µi

(79)

“
ÿ

iPVj

pAjiµiq
Jpxj ´ µjq `

»

–

ÿ

iPVj

µJ
j Ajipxi ´ µiq

fi

fl ` Bµj
vpµjqpxj ´ µjq `

ÿ

iPVj

Bµi
vpµiqpxi ´ µiq.

(80)

Since we have
`

Aijµj

˘J
“ µJ

j A
J
ij “ µJ

j Aji, applying Lemma 5, we can substitute
ř

iPVj
pAjiµiq

J165

with ´Bxj
vpxjq, and µJ

j Aji with ´Bxi
vpxiq, yielding166

9Lj “ ´Bxjvpxjqpxj ´ µjq `

»

–

ÿ

iPVj

p´Bxivpxiqqpxi ´ µiq

fi

fl ` Bµjvpµjqpxj ´ µjq

`
ÿ

iPVj

Bµivpµiqpxi ´ µiq (81)

“ pBµj
vpµjq ´ Bxj

vpxjqqpxj ´ µjq `
ÿ

iPVj

pBµi
vpµiq ´ Bxi

vpxiqqpxi ´ µiq (82)

Note that the function v is strictly concave such that its second derivative is negative definite. By this167

property, 9Lj ě 0 with equality only if xi “ µi,@i P Vj and xj “ µj . Thus, the time derivative of the168

function L, i.e., 9L “
ř

jPR
9Lj ě 0 with equality only if xi “ µi,@i P Vj ,xj “ µj ,@j P R. Q.E.D.169
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9 Proof of Lemma 1170

Definition 1. A nonautonomous system of differential equations in Rn171

x1 “ fpt, xq (83)

is said to be asymptotically autonomous with limit equation172

y1 “ gpyq, (84)

if fpt, xq Ñ gpxq, t Ñ 8, where the convergence is uniform on each compact subset of Rn.173

Conventionally, the solution flow of Eq. 83 is called the asymptotically autonomous semiflow (denoted174

by ϕ) and the solution flow of Eq. 84 is called the limit semiflow (denoted by Θ).175

We first time-reparameterize the mean belief dynamics of heterogeneous systems. Assume τ “176

ln λ`t`1
λ`1 . By the chain rule and Equation 48, for each dimension si,177

dµ̄isi

dτ
“

dµ̄isi

dt

dt

dτ
(85)

“

»

—

–

fsipµ̄q ´ µ̄isi

λ ` t ` 1
`

ř

jPVi

ř

sjPSj

B
2fsi pµ̄q

pBµjsj
q2

Varpµjsj q

2pλ ` t ` 1q

fi

ffi

fl

d ppλ ` 1qpexp pτq ´ 1qq

dτ
(86)

“

fsipµ̄q ´ µ̄isi ` 1
2

ř

jPVi

ř

sjPSj

B
2fsi pµ̄q

pBµjsj
q2

´

λ`1
λ`t`1

¯2

σ2pµjsj q

λ ` pλ ` 1qpexp pτq ´ 1q ` 1
pλ ` 1q exp pτq (87)

“ fsipµ̄q ´ µ̄isi `
1

2

ÿ

jPVi

ÿ

sjPSj

B2fsipµ̄q

pBµjsj q2
σ2pµjsj q exp p´2τq. (88)

Observe that exp p´2τq decays to zero exponentially fast and that both σ2pµjsj q and B
2fsi pµ̄q

pBµjsj
q2

are178

bounded for every µ in the simplex
ś

jPVi
∆j . Hence, Equation 88 converges locally and uniformly179

to the following equation:180

dµ̄isi

dτ
“ fsipµ̄q ´ µ̄isi . (89)

Note that xisi “ fsipµ̄q for a single representative agent, and thus the above equation is algebraically181

equivalent to the limit equation in Lemma 1 of the main paper. Q.E.D.182

10 Numerical Methods, Source Code, and Computing Resource183

Numerical Method for the PDE model. Only limited types of PDEs allow analytic solutions.184

Hence, we numerically solve the PDE using the finite difference method [5]. The theoretical185

predictions in Figure 1 of the main paper are generated using the finite difference method given a186

specific initial setting (the initial sum of weights is λ “ 10, the temperature is β “ 10, the initial187

belief distribution is specified in the caption of the figures).188

Source Code and Computing Resource. We have attached the source code for reproducing our189

main experiments. The Matlab script finitedifference.m numerically solves our PDE model presented190

in Proposition 1 in the main paper. The Matlab script regionofattraction.m visualizes the region of191

attraction of different equilibria in stag hunt games, which are depicted in Figure 2. The Python192

scripts simulation(staghunt).py and simulation(matchingpennies).py correspond to the agent-based193

simulations in two-population stag hunt games and five-population asymmetric matching pennies194

games, respectively. We use a laptop (CPU: AMD Ryzen 7 5800H) to run all the experiments.195
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