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1 Experiments on Network Competition

We have shown in Theorem 5 (of the main paper) that SFP converges to a unique QRE in any
weighted zero-sum network population game even if there are multiple Nash equilibria underlying
that game. In the following, we corroborate this by providing empirical evidence in agent-based
simulations with different belief initialization.

Game Description. Consider a five-population asymmetric matching pennies game [3]], where the
network structure is a line (depicted in Figure 1). Each agent has two actions {H,T'}. Agents in
populations 1 and 5 do not learn; they always play strategies [ and 7', respectively. For agents in
populations 2 to 4, they receive +1 if they match the strategy of the opponent in the next population,
and receive —1 if they mismatch. On the contrary, they receive +1 if they mismatch the strategy
of the opponent in the previous population, and receive —1 if they match. Hence, this game has
infinitely many Nash equilibria of the form: agents in populations 2 and 4 play strategy 7', whereas
agents in population 3 are indifferent between strategies H and 7.

Experimental Setups. In this game, agents in each population form two beliefs (one for the
previous population and one for the next population). We are mainly interested in the strategies of
population 3, as the Nash equilibria differ in the strategies in population 3. Thus, we let the initial
beliefs about populations 1, 3 and 5 remain unchanged across different cases, and vary population 3’s
initial beliefs about populations 2 and 4. The initial beliefs about populations 1, 3 and 5, denoted
by p1m, usy and ps g, are distributed according to the distributions Beta(20, 10), Beta(6,4), and
Beta(10, 5), respectively. The initial beliefs about populations are given in the legends of Figure 2.
In all cases, the initial sum of weights A = 10 and the temperature 5 = 10. Note that ;7 = 1 —
for all populations ¢ = 1,2,3,4,5. We run 100 simulation runs for each initialization, and each
simulation run consists of 1,000 agents in each population.

Results. As shown in Figure[2] given differential initialization of beliefs, agents in population 3
converge to the same equilibrium where they all take strategy H with probability 0.5. Therefore,
even when the underlying zero-sum game has many Nash equilibria, SFP with different initial belief
heterogeneity selects a unique equilibrium, addressing the problem of equilibrium selection.

. 1 C\+1 -1 +1 -1 o\ +1 )
Population 1 Population 2 Population 4 Population 5
H {H, T} {H, T} T
Match Match Match Match
Figure 1: Asymmetric Matching Pennies.
Probability of Playing H in Population 3
1Vary the inital Mean, Fix the initial Variance \lfary the initial Variance, Fix the initial Mean
B(5,10), B(8,2) \ —— B(10, 20), B(16, 4)
— B(5,10), B(2,8) — B(2.5,5),B(4,1)
B(10,5), B(8,2) B(50, 100), B(80, 20)
305 ~ ' 305
0 0
100 200 300 400 100 200 300 400
Time ¢ Time ¢

Figure 2: With different belief initialization, SFP selects a unique equilibrium where all agents in
population 3 play strategy [ with probability 0.5. The thin lines represent the mean mixed strategy
(the choice probability of H) and the shaded areas represent the variance of the mixed strategies in
the population. In the legends, B denotes Beta distribution; the two Beta distributions correspond to
the initial beliefs about the neighbor populations 2 and 4, respectively.



s 2 Proof of Proposition 1

40 It follows from Equation 2 and Equation 3 of the main paper that the change in u; (k, t) between two
41 discrete time steps is
)_(j (t) - p; (kv t)

1
A+t+1 M

42 Lemma 1. Under Assumption 1 of the main paper, for an arbitrary agent k in population 1, its belief
Lt (k, t) about a neighbor population j will never reach the extreme belief, i.e., the probability density
44 for the boundary of the simplex A; will remain zero.

(ke t+ 1) = i (k) +

45 Proof. Assumption 1 ensures that X;(0) is in the interior of the simplex A;. Moreover, the logit
46 choice function (Equation 5 in the main paper) also ensures that X, (t) stays in the interior of A;
47 afterwards for a finite temperature 3. Hence, from Equation |1} one can see that p; (k,t) for every
4¢ time step ¢ will stay in the interior of A;. O

49 In the following, for notation convenience, we sometimes drop the agent index % and the time index ¢
so0 depending on the context. Consider a population 7. We rewrite the change in the beliefs about this
51 population as follows.

%i(t) — (1)

A+t+1 @

it +1) = p(t) +

52 Suppose that the amount of time that passes between two successive time steps is § € (0,1]. We
53 rewrite the above equation as

it +8) = () + 65D~ #ilD)

A+t+1 )

54 Next, we consider a test function 6(u;). Define
E[0(w;(t + )] — E[0(ri(1))]
5 .
55 Applying Taylor series for 6(u;(t + 0)) at p;(¢), we obtain
]
I

b oy ) — 0] HOG) [(0) — o)

o[ eo]) ®

s6 where H denotes the Hessian matrix. Hence, the expectation E[0(u, (¢ + §))] is
J
E , =E ) —
0G0t +0)] = E[O(w, ()] + 11—

* 2(/\_|_6t_|_1)2E [[%:(t) — i ()] THO(w,) [%:(t) — ()]

2
+ o Bl - w0P)] ©

Y =

“

O(u;(t +0)) = 0(r;(1)) 0(u;) [Xi(t) — 1 (2)]

E[0y,0(k; (1)) (Xi(t) — 1(1))]

57 Moving the term E[6(u,(t))] to the left hand side and dividing both sides by d, we recover the
58 quantity Y, i.e.,

E[0y, 0(m; (1) (%i(2) — ;(1))]

E[[%;(t) — w; ()] THO(1; (1)) [%:(t) — 1;(8)] + 0 (% (1) — mi($))*)] (D

TAtt+1
5

Tt
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Taking the limit of Y with § — 0, the contribution of the second term on the right hand side vanishes,
yielding

lim ¥ = < B[00, () (5i(0) — (1) ®)
| PO [0 B () (0) — (0] e 0 ©)

Apply integration by parts. We obtain
li Y = 0= [0 )V [, (0, i0) — 1, (6))] s 1) (10)

where we have leveraged that the probability mass p(u;, t) at the boundary 0A; remains zero as a
result of Lemma 1. On the other hand, according to the definition of Y,

P20 Z 0l gy — (o)t D, (D)

limY = li O(u;(t
lim (g%f (ki (1))
Therefore, we have the equality

j 00 (D)aup (i, iy = —5———

As 0 is a test function, this leads to

[ 008,007 o 00050 = w0 (12

Op(His t) = =57 Vo [P( (0, ) (i (1) — i (1))] (13)

Rearranging the terms, we obtain Equation 7 of the main paper. By the definition of expectation
given a probability distribution, it is straightforward to obtain Equation 8 of the main paper. Q.E.D.

3 Proof of Theorem 1

Without loss of generality, we consider the variance of the belief 1,5, about strategy s; of population
1. Note that

Var(uis,) = Bl (pis,)?] — (fiis,)*- (14)
Hence, we have )
dvar(MiS ) dE[(/’('zs) ] - dﬂzs
K3 — 3 _ 2 . . 1 . 1

Consider the first term on the right hand side. We apply the Leibniz rule to interchange differentiation

and integration, and then substitute w with Equation 8 in the main paper.
dE[ (pis, )?]
dt
op(u;, t)
2 i)
= is;) —=——du,; 16
J(u DT (16)
2 X — M
- isi) V- iat d i 17
J(u ) (p(u )A+t+1> i (17)
. at 18; His; du. 18
fuzl > ,Ls7<u“)A+t+1 M, (18)
;€S
J [is; ) Z Ois, P p(ist) (Zis, — pis;) du; + ’YJ(MSZ) p(K;,t) Z aﬂ?c Tis, — flis;) AW,
$;€S; $;€S;
(19)
where v := — 5577 t —7- Applying integration by parts to the first term in Equatlon. ylelds
J ,u'lbl Z auls sz xlsi - ,u’isi) duz

;€S

- J(Nisi)2p<uiv t) Z a/yb“/l (i.lsg - /hs;) + P(Hi» t)a,uisi [(/Jisi)2(ffisi - ,Ufzsl)] dul (20)

SIiESi



75 where we have leveraged that the probability mass at the boundary remains zero (Lemma 1). Com-
76  bining the above two equations, we obtain

d]E[(Mis¢)2]
dt

=7 J(Misi)2p(uia t) 2 ap,is/i (jjzs; - :uis/i) + P(Hi, t)amsi [(Misi)Q(jisi - Misi>] dui

S;ESi

+ vf(msi)"’p(ui,t) D7 O, (Tis, — pis,) dus; 1)

S;ES;

= 7J [_p(p’iv t)aﬂi.s1 [(N’qu)z(‘fl& - ILLZSI):I:I + (:U'isi)Qp(p'iv t)aﬂisi (jisi - N’qu) d”’i (22)

=7 f 2(ptis,)*p(1y, t)du; — f 2%, flis, p(1y, t)dp; (23)

2B [ (pris, )] — 2Zis, fiis,
—_ : ibisi 24
A+t+1 (24)

77 Next, we consider the second term in Equation[T5] By Lemma[2} we have

_ dﬁls 2ﬂ15 (Eis - ﬂis)
2 i i i i il 25
Hise ™ gt A+rt+l (2)

78 Combining Equations [24]and 23] the dynamics of the variance is

dVar(p;s, ) 2E[(pis; )] — 2is, flis;,  2fhis; (Tis;, — [lis;)

a Att+1 N tt+1 (26)
2(fris, )? — 2E[(pis, )?]
= Aisi i 27
AM+t+1 @7
2Var(p;s,)
__ WVar(pis,) 28
ANttt (28)

79 Q.E.D.

so 4 Proof of Proposition 2

st Lemma 2. The dynamics of the mean belief p; about each population i € V is governed by a
82 differential equation

dﬂi& Tis; — ﬂiS'
i i i V i S’L 29
dt A+t+17 %€ @9)

83 Proof. The time derivative of the mean belief about strategy s; is

dﬂzsl o d
@ Pis; P(R;, t)dp,;. (30)



s+ We apply the Leibniz rule to interchange differentiation and integration, and then substitute (6” i:t)
85 with Equation 8 in the main paper.

d
n 185 Z’at d i 31
dtfu p(ug; t)dp €2))
Xi — M
- zev z‘at : d i 33
fu(, (p(u ))\+t+1> u (33)
is o gy Zis — Hisi ) gy 34
fulsé ,l5<um)k+t+1 i (34)
=7 ljuzsl Z wis, P (Hz,t)) (xzsL Mzsl)dpz J‘/-Lzsb Um Z ap,“ Tis; — Mzsl)dpz
;€8 ;€85
(35)
g6 where v == — ﬁ Apply integration by parts to the first term in Equation
Jﬂzsl Z O#zs p(uy, )) (Tis, — pis;) A,
S;ES;

- J‘/Jisip(”ia t) Z a“’is’i ('izs; - ,uis;) + p(uiv t)amsi [Mi& (i'isi - Misi)] dui (36)
SgESi

g7 where we have leveraged that the probability mass at the boundary remains zero. Hence, it follows
88 from Equation [33]that

d
s ,t)du, 37
dtfuzp(ul)u (37
77J‘,Ufzs p Hm Z (?,uw xm Nz’s;)dui - VJ‘p(uivt)amsi [/1457 (fl& - ,U'Ls7)] dl"’z
s’ ES
+ VJMH P(int) . Ou,., (Fis, — pis,) diy, (38)
S;ES;
= [ 080 ) (B, @i = 150 = B, e @i, = )] (39)
=7 fp(ui, ) his, dp; — Jp(ui, )4, dp; (40)
ji& - /j/zs
=22 1% 41
A+t+1 @1
89 O

90 We repeat the mean probability Z;,,, which has been given in Equation 8 in the main paper, as

91 follows:
exp (Buis,)

sheS; €xXp ﬂuzs jev; jev;

2 where ujs, =30y, el Ay u;. Define i := {[1,}ev; and
exp (8 Xy, el A1)
Zs;esi exp (8 ngvi el—/i Ay llj)
93 Applying the Taylor expansion to approximate this function at the mean belief p, we have

Fo ({0} gev) = o)+ V() (= )+ oy (ke — ) VLA () (= )+ 5 O( e — )
(44)

fsi ({1 tjevy) = (43)
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where H denotes the Hessian matrix. Hence, we can rewrite Equation 42| as

Tis, = Jf@ {HJ}]GV Hp Hja (ndHJ> (45)

JEVi JEVi
+Jvhm%uPDM%ﬂ<ﬂdw>—V&m%u
JEV; JEV;
1
+j§m ) Hf (W) — ) [ ] oy, 0) O}dw>
JEV: JEV;
O(Hu al)? [ ] p(wjt) (Hduj> (46)
JEV: JjEVi

Observe that in Equation@ the second and the third term can be canceled out. Moreover, for any two
neighbor populations j, k € V;, the beliefs p;, p;, about these two populations are updated separately
and independently. Hence, the covariance of these beliefs are zero. We apply the moment closure
approximation [4} 2]] with the second order and obtain

‘\2f
.’Ezsl ad f51 Z Z 81 (/1/]5]) (47)
]EV s;€S;

Hence, substituting Z;,, in Lemmal[2) with the above approximation, we have the mean belief dynamics

% fs; ()
dﬂisi f&(ﬁ) — His; ZJGV ZSJGS (Omjs )2V r(‘ujsj) (48)
d ~ A+t+1 (A+t+n

QED.

5 Proof of Proposition 3

It follows from Equation 2 and Equation 3 of the main paper that the change in beliefs between two
successive time steps is as follows.

x;(t) — w;(t)
A+t+1

Suppose that the amount of time that passes between two successive time steps is 0 € (0, 1]. We
rewrite the above equation as

wi(t+1) = p,(t) + (49)

xi(t) — uy(t)

ui(t+6) =p(t) +0 A+i+1 (50)
Move the term p,(¢) to the right hand side and divide both sides by 4,
it +0) —w(t) _ xi(t) — py(t) (51
J A+t+1
Assume that the amount of time J between two successive time steps goes to zero. we have
du; it +0) — () xi(t) — k(0
iy J AL L 52
dt 50 5 A+i+1 62)
Q.E.D.
6 Proof of Proposition 4
It is straightforward to see that
du, R
R R T (53)

dt A+t+1
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Denote the equilibrium points of the system dynamics, which satisfies the above equation, by (x, u¥)
for each population . By the logit choice rule, we have

* 0 _ €xXp (ﬁuzsL) _ exp (ﬁ Z]EVL e; Aij l.l;k)
P Daes, @ (Buis)  Xges, exp (B Ljev, e Aijk})

Leveraging that x; = p}, Vi € V at equilibrium, we can replace p¥ with x3. Q.E.D.

xT

(54)

7 Proof of Theorem 2

Consider an agent ¢ in a classic network game. The set of neighbors is V;, the set of beliefs about the
neighbors is { u; }jev,» and the choice distribution is x;. Given a classic network game, the expected

payoff is given by x; Z( ij)EE Ajju;. Define a perturbed payoff function

mi (%3, g bievs) = I D Aimy + v(xi) (55)
JEV:
where v(x;) = —% Ys,es, Tis; In(Tis,). Under this form of v(x;), the maximization of 7; yields the

choice distribution x; from the logit choice function [1]]. Based on this, we establish the following
lemma.

Lemma 3. For a choice distribution x; of SFP in a network game,

axiﬂ'i (Xi, {uj}jEV;) =0 and Z (Aijpj)T = —6xiv(xi). (56)
jeVi

Proof. This lemma immediately follows from the fact that the maximization of m; will yield the
choice distribution x; from the logit choice function [1]. ]

The belief dynamics of an agent can be simplified after time-reparameterization.

Lemma 4. Given 7 = In ’\)\’Lir;l, the belief dynamics of homogeneous systems (given in Equation 11

in the main paper) is equivalent to

du;
=X — W 57
s (57)
Proof. From 7 = In ’\If{l , we have
t=(M+1(exp(r)—1). (58)
By the chain rule, for each dimension s;,
dps, dps, dt
i i At 59
dr dt dr (59
Tis, — fhis; d (A + 1)(exp (1) — 1))
= t t 60
A+t+1 dr (60)
Tis; — Mis;
= : : A+1 61
A0+ Dep @ - nr1 e D
= Tjs; — Mis; - (62)
O
Next, we define the Lyapunov function L as
L = Z wiLi S.t. Li =T (XZ‘, {Hj}jevi) — T (u“ {uj}jEV,:) . (63)

eV
where {w; };cv is the set of positive weights defined in the weighted zero-sum I'. The function L is

non-negative because for every ¢ € V, x; maximizes the function 7;. When foreveryi e V, x; = u,,
the function L reaches the minimum value 0.
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Rewrite L as

L= Z lwmi (i, {uj}jew) —wip] Z Aiju; _WiU(Ui)] } (64)

i€V JEV:

We observe that m; (x;, {l;}jev;) is convex in u;,j € V; by Danskin’s theorem, and —v(u;) is
strictly convex in p,;. Moreover, by the weighted zero-sum property given in Equation 2 in the main
paper, we have

> (wi”? > Aijuj> =0 (65)

eV JEV:

since p; € Ag, uj € A; for every 4, j € V. Therefore, the function L is a strictly convex function and
attains its minimum value 0 at a unique point x; = p,, Vi € V.
Consider the function L;. Its time derivative is

Li = 0w, mi (%i, {1 }jev,) Xi + Z [a”jm (xir {1} e uj]
JEV:

— Oy, i (uiv {Hj}je%) H; — Z [auﬂri (Hia {Hj}jevq,) P.‘j] .

JEV;

(66)

Note that the partial derivative Ox,7; equals 0 by Lemma([3] Thus, we can rewrite this as

Li = O, mi (s {1y jev,) By + Z [@pjm (x5 {1, }jev,) — Ou, T (1, {uj}jew)] [, (67)
jev;

- lZ (Aijuj)T + awv(uz-)} (xi —m;) + Z (x{ Aij — i Aij) (x5 — ;) (68)

JEV; JEV;

[Ox,0(6) = Qv ()] (xi = 1) + Y (] Ay — ] Aggxy — x] Ay + ] Aguy) -
ievs
(69)

. . T .
where from Equatlon to we apply Lemmato substitute >}/ . (Ajj p.j) with —dx,v(x;).
Hence, summing over all the populations, the time derivative of L is

L= 3w [ 00x1) — Buv(i)] (5 — 1)
i€V
+ 20 2w (% Aigxg — i) Agxy —x] A + ] Aguyg) . (70)
i€V jev;

The summation in the second line is equivalent to

Z (wix] Aijx; + wix] Ajix;) — (wib] Aijx; + wix) Ajip,) (71)
(i,)eE

— (wix] Agjpj +win] Ajix) + (wibt] At + win Ajin,). (72)

By the weighted zero-sum property given in Equation 2 in the main paper, this summation equals 0,
yielding

L= wi[do(x) = Ouo(r)] (xi — ). (73)
eV

Note that the function v is strictly concave such that its second derivative is negative definite. By this

property, L < 0 with equality only if x; = u,, Vi € V, which corresponds to the QRE. Therefore, L
is a strict Lyapunov function, and the global asymptotic stability of the QRE follows. Q.E.D.
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8 Proof of Theorem 3

Consider a root agent j of a star structure. Its set of leaf (neighbor) agents is V}, the set of beliefs
about the leaf agents is {u, };cv;, and the choice distribution is x;. Given the game T', the expected

payoff is X;!— Zievj Ajipn;. Define a perturbed payoff function

i (%5, {miiev,) = x] Y Ajin; + v(x;) (74)
i€V
where v(x;) = —% 2is,es; Lis; In(2js,). Under this form of v(x;), the maximization of 7; yields

the choice distribution x; from the logit choice function [[1].
Consider a leaf agent ¢ of the root agent j. It has only one neighbor, which is population j. Thus,
given the game T, the expected payoff is x; A; ju;. Define a perturbed payoff function

v (XZ‘, !JJ> = Xinj IJJ + ’U(Xi) (75)

where v(x;) = —% ZSZ es, Tis; In(x;s,). Similarly, the maximization of 7; yields the choice distribu-
tion x; from the logit choice function [1]. Based on this, we establish the following lemma.
Lemma S. For choice distributions of SFP in a network game with a star structure,

0x; 75 (%5, {M;}iev,) =0 and Z ﬂpl = —0x,;v(X5) if j is a root agent,  (76)
i€V
Ox; T (Xi, pj) =0 and (Aij pj)—r = —0x,v(X;) ifiis aleaf agent.  (77)
Proof. This lemma immediately follows from the fact that the maximization of 7; and 7; , respec-
tively, yield the choice distributions x; and x; from the logit choice function [[1]. ]
Let R = V be the set of all root agents. We define

L= L st Ly=u Y A +o(u) + Y v(p,). (78)

JER ieV; ieV;
Consider the function L;. Its time derivative L j 18
L= auj(UjT Z Ajing)p; + Z am(”} Z Ajin) it | + 0oy, + Z O, v(H) B

i€V i€V i€V i€V

(79)

= Z ]zuz Z H] j’L X z) + aHJU(u] Z ﬁulv pz - ui)'

i€V i€V i€Vj
(80)

Since we have (A;; uj) = uj Al = uf Aj;, applying Lemmal we can substitute >, (A i) "
with —0y, v(x;), and ] Aj; with —0y,v(x;), yielding

£y = =0, 006) (x5 — ) + | D) (=0 v)) ki = 1) | + i) (x5 — 1)

i€V
+ D7 Ouv(b) (xi — 1) (81)
iE€V;
= (aujv(”j) - axj’U(Xj))(Xj - pj) + Z (auiv(ui> - axi’U(Xi»(Xi - Hi) (82)

i€V
Note that the function v is strictly concave such that its second derivative is negative definite. By this
property, L; > 0 with equality only if x; = p;, Vi € V; and x; = ;. Thus, the time derivative of the
function L, i.e., L = Zjen Lj > 0 with equality only if x; = p;, Vi€ V;,x; = n;,Vj € R. QE.D.

10
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9 Proof of Lemma 1

Definition 1. A nonautonomous system of differential equations in R™

2 = f(t, ) (83)
is said to be asymptotically autonomous with limit equation
' =9), (84)

if f(t,x) — g(z),t — oo, where the convergence is uniform on each compact subset of R™.
Conventionally, the solution flow of Eq. [83)is called the asymptotically autonomous semiflow (denoted
by ¢) and the solution flow of Eq. (84|is called the limit semiflow (denoted by ©).

We first time-reparameterize the mean belief dynamics of heterogeneous systems. Assume 7 =

In >‘/\+7f1r1 By the chain rule and Equation 48| for each dimension s;,
dﬂzs dﬂzs dt
i i 7 85
dr dt dr 85)
0 fs )
| i) e, Do Bses, T 7V (O e () =1)

A+t+1 20+t +1) dr

2
_ fsi( ) /‘zsl +3 dev Zs €S (Op; (1)1-2) (Ai\jtil) 02(/%5]')
B )\—l—()\—l—l)(exp() 1)+1

0 fs
= fo. () = flis, + 5 Z Z f@” o®(pjs, ) exp (—27). (88)

jGV s;€S; aﬂjs]

A+ 1)exp(7) 87)

Observe that exp (—27) decays to zero exponentially fast and that both o2 () and (Z foy (glz) are

bounded for every u in the simplex HjeVi A ;. Hence, Equation [88fconverges locally and uniformly
to the following equation:

d 18 _
e o (B) = i (89)

Note that z;5, = fs,(jt) for a smgle representative agent, and thus the above equation is algebraically
equivalent to the limit equation in Lemma 1 of the main paper. Q.E.D.

10 Numerical Methods, Source Code, and Computing Resource

Numerical Method for the PDE model. Only limited types of PDEs allow analytic solutions.
Hence, we numerically solve the PDE using the finite difference method [S]. The theoretical
predictions in Figure 1 of the main paper are generated using the finite difference method given a
specific initial setting (the initial sum of weights is A = 10, the temperature is 8 = 10, the initial
belief distribution is specified in the caption of the figures).

Source Code and Computing Resource. We have attached the source code for reproducing our
main experiments. The Matlab script finitedifference.m numerically solves our PDE model presented
in Proposition 1 in the main paper. The Matlab script regionofattraction.m visualizes the region of
attraction of different equilibria in stag hunt games, which are depicted in Figure 2. The Python
scripts simulation(staghunt).py and simulation(matchingpennies).py correspond to the agent-based
simulations in two-population stag hunt games and five-population asymmetric matching pennies
games, respectively. We use a laptop (CPU: AMD Ryzen 7 5800H) to run all the experiments.
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