A Numerical integration schemes

We briefly review the time integration schemes that we consider in this study: forward Euler
(FE), leapfrog (LF), Runge-Kutta 4 (RK4), backward Euler (BE), and the second-order backward
differentiation formula (BDF2). Other sources also discuss these integration schemes, for example
Siili and Mayers [49], Hairer et al. [12], Hairer and Wanner [[11]].

Time integration with the explicit Euler method leads to
Tp = Tp_1 + 0t f(l‘k_1),

where 6t > 0 is the time step size and f is the right-hand side function. The explicit Runge-Kutta 4
scheme is

ot
Ty = Tp—1 + — (h1 + 2hg + 2hs + ha),

6
where
hi = f(xr—1) ho = f(ag—1+ 0t /2h1)
hs = f(xr—1+ 0t /2hs) hy = f(xr—1 + 0t /2h3)
fork =1,..., K. For leapfrog integration we separate the components of the state x = (g, p) and

f(qx,px) = (g, pr.) and compute:

5t .
Dk+1/2 = Pk + 5Pk

Qk+1 = Gk + G(Qk, Pry1/2) 0F
ot .
Dk+1 = Plt1/2 + 5?(Qk+17pk+1/2)

where the notation (g, p+1,/2) denotes the ¢ component of f(qx, pr+1,/2) and analogously for p.

We also consider the implicit Euler method, which is given by the potentially nonlinear equation
xp — 0t f(zg) = xp—1

that is solved in each time step k = 1,..., K.

We tested another implicit method, BDF2. This is a second order multistep method with the formula
given by
4 1 2
Tk~ GUh—1 T 3Th—2 = gétf(t/ka)
To kickstart this method, which requires two steps of history, we initially do one step of backward
Euler. This maintains the stability and error properties of the method.

B Learning methods

B.1 Training

Training for both step and derivative problem formulations is done with the Adam [17]] optimizer for
all neural networks, except the neural network kernel which uses standard stochastic gradient descent
with learning rate 0.001 and weight decay 0.0001. With the Adam optimizer, no weight decay is
used, and most networks use a learning rate of 1 x 1073, Exceptions to this are: CNNs, MLPs and
the u-net for Navier-Stokes, and CNNs and MLPs on the spring mesh. For both of these systems the
CNNs and MLPs use a learning rate of 1 x 10~% and the u-net uses 4 x 1074,

On the Navier-Stokes system we also perturbed each batch of training data with normally-distributed
noise with a variance of 1 x 1073, For step prediction the previous step was corrupted and the
subsequent step left uncorrupted. For derivative prediction, the derivatives were updated to correct
for the noise (i.e. # = x + N = & = & — N where N is the sampled noise). This is inspired by
the approach taken in Pfaff et al. [34] and we found it to improve stability for neural networks on the

Navier-Stokes system.

The number of training epochs varies based on the target system. On spring, wave, and spring
mesh the networks are trained for 400, 250, 800, and 800 epochs, respectively. When reporting
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evaluation errors below, we average errors over all time steps of each randomly-sampled trajectory in
the held-out evaluation set.

We train three independent copies of each neural network. When evaluating these, each test trajectory
is evaluated with each duplicate neural network and the performance results are collected and pro-
cessed together. Variance in plots of these results is produced both by the differences in performance
for the three duplicated neural networks, and differing performance across the sampled evaluation
trajectories.

B.2 KNN regressor

We use a k-nearest neighbors regressor to predict the value of the state derivatives, using k = 1.

With this method fg (i:,(;)) finds the closest matching point in the training set, and uses that point’s
associated derivatives as its approximation, 17:,(;) in the case of derivative prediction. For direct step
prediction, the KNN finds the closest point and returns the next time step from that point’s trajectory in
the training set. We use the KNN implemented in scikit-learn [32]], along with its default Minkowski

metric.

B.3 Kernel methods

Kernel methods provide a nonparametric regression framework [48]]. In this benchmark we consider
dot-product kernels of the form k(x, z") = n({x, «’)), which can be efficiently implemented in their
primal formulation using random feature expansions [36]] via the representation

k(a") = Eenslplle, Dol )]~ 7 30, ol (@', 20)

where v is a rotationally-invariant probability distribution over parameters and z; ~ v iid. The
resulting maps x — p({x, z;)) are random features, associated with a shallow neural network with
‘frozen’ weights. While further choices of kernel may be considered in the future, dot-product kernels
have flexible approximation properties and are easily scalable [40].

In our experiments, we use p = ReLU and L = 32768 random features and train using kernel ridge
regression. We do not apply this approach to our Navier-Stokes system as its large state dimension
makes achieving a sufficiently large set of random features infeasible.

B.4 Deep networks

MLPs We apply simple multilayer perceptron (MLP) networks in a variety of sizes. The configura-
tion of the MLPs used varies with the target system. In particular, we divide our two systems into two
classes: those with smaller state dimension (the spring and wave systems), and those with a larger
state dimension (the spring mesh, and the Navier-Stokes problem). We describe these architectures in
terms of “depth” and “width.” The depth denotes the number of fully-connected operations in the
MLP, so that for a depth of d there are d — 1 hidden layers. The width is the size of each hidden layer;
the input and output dimensions are fixed by the state dimension of the system. The MLPs use tanh
activations.

For the small systems we use three MLP architectures: (1) a depth of 2 and a hidden dimension
(width) of 2048, (2) a depth of 3 and width of 200, and (3) a depth of 5 and a hidden dimension of
2048. For the large systems, we use two architectures: (1) a depth of 4 and width of 4096, and (2) a
depth of 5 and width of 2048. The 10 x 10 spring mesh merges both sets of MLP architectures.

For the Navier-Stokes and spring mesh systems, the MLP gets as input both the current network state,
and a one-hot mask indicating which points in the discrete simulation space are “fixed,” meaning
either a boundary point, a point in an obstacle, or an immovable, fixed particle.

CNNs We also test several feed-forward convolutional neural networks. These use ReLU activa-
tions and we specify their architectures by a kernel size, and internal channel count. We use these
simple CNNs only on the larger systems: the spring mesh and the Navier-Stokes. For both of these
systems we test two CNN architectures: both have a kernel size of 9 x 9 and, respectively, 32 and
64 channels internally. The number of input channels is fixed by the system. Both systems have
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five: for the spring mesh, two channels each for position and momentum; and for the Navier-Stokes
system two channels for velocity, one for pressure field, and two more for one-hot masks highlighing
boundaries and the obstacles.

U-net Finally, we implement another convolutional network—only for the Navier-Stokes system—
a u-net following the architecture tested in Thuerey et al. [S1]. That work applied this architecture
to another Navier-Stokes problem, predicting a single step of flow about an airfoil profile. Here we
adjust the input and output channels of this architecture, and test on our Navier-Stokes problem,
performing several recurrent steps of derivative or step prediction around circular obstacles.

The architecture itself consists of seven convolution operations on both the downsampling and
upsampling side. The convolutions have a mix of 4 x 4 and 2 x 2 kernels, and have strides of two. The
network includes skip connections common to u-net-style architectures. With each downsampling,
the number of channels is doubled starting from an internal channel count of 64. Our Navier-Stokes
system has a grid size of 221 x 42. To accommodate the amount of downsampling in this architecture
we first upsample to 256 x 256 with bilinear interpolation.

B.5 Other experimental details

Our experiments were conducted on NYU’s research HPC system, Greene. Neural networks were
predominantly trained using NVIDIA RTX8000 GPUs, with a few runs on V100 GPUs. CPU-based
runs used Intel Xeon Platinum 8268 CPUs. Our neural networks required, on average, approximately
two hours to train and we consumed in total approximately 1785 hours of GPU time, across all our
experiments, including some early experimental and exploratory runs not discussed here. Our dataset
generation and non-neural network evaluation runs, which do not use GPUs, consumed approximately
2270 core-hours of CPU time, again including some exploratory runs. Datasets were generated
using CPUs only. Neural network training and evaluation passes ran using GPUs through PyTorch.
Evaluations and trainings of baseline numerical integrators and KNNs ran on CPU only.

C Experiment results

To illustrate the error distribution for each neural network over the evaluation sampling distribution,
we plot the errors as a box plot. Figures[6] [7] 8] [0 and [I0]show these error distributions, one plot for
each system configuration.

Each plot is divided into two panes: one for derivative, and the other for step prediction. The datasets
and training protocols followed are identical between the two task formulations. In each, the boxes
are grouped first according to learning method, labeled at the bottom on the z-axis. For derivative
prediction, the boxes are assembled into sub-groups according to the integrator applied (forward
Euler/FE, leapfrog/LF, RK4, backward Euler/BE, or BDF2). These integrators are also indicated by
the color of the box. In each group, from left to right the boxes become darker; this indicates the
increasing training set size (see Table E]) The final box is hatched; this shows the evaluation results
on the out-of-distribution set for the network exposed to the largest training set.

The boxes illustrate the distribution over per-trajectory average errors. For each system configuration
(a system, derivative/step prediction, learning method, integrator, and particular training set size)
we compute the per-step MSE against a ground truth result; these per-step errors are averaged to
produce an error estimate for the trajectory. We also train three independent instantiations of each
neural network architecture and evaluate each of these on all trajectories independently. These three
repetitions of each trajectory for each network are included as part of the distribution in the box
plot. The KNNs and numerical integrators are run a single time each. The errors of these different
sampled trajectories form the distribution summarized by the box plot. The variance in the results
is produced by a combination of the training results for the three copies of each network, and by
the varying performance on each of the sampled evaluation trajectories. These plots were generated
using Matplotlib’s [[14] box plot routines. The box itself ends at the first and third quartiles of the data
and the line in the middle is placed at the median of the data. The whiskers extend past the box by
1.5 times the size of the box. Circles are plotted for outlier points which lie outside the range of the
whiskers. The plots here have a logarithmic y-axis to accommodate the wide range of error values,
thus the boxes do not appear symmetric.
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Figure 6: Error distribution for spring system for multiple training set sizes as well as out-of-
distribution results.
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Figure 9: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has a single randomly-positioned obstacle. Note that this system
does not have results for plain numerical integration.
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Figure 10: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has four randomly-positioned obstacles.
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C.1 Weighted errors

In most cases, due to accumulated errors, per-step errors increase as numerical integration proceeds
away from the initial condition. To compensate for this trend and in an effort to explore the impact
of early vs. late step errors, we include several plots of error distributions for which each time
step’s MSE has been weighted. To produce these weights, each step’s MSE is scaled by a value
1/ exp(In(10?) - p;) where p; € [0, 1] is a scalar representing the proportional time of the step (zero
at start of the trajectory, and one at the end). This produces an exponential decay from the initial steps
to the end and reduces the contribution of the final steps by two orders of magnitude. These scaled
MSE:s are then averaged for each trajectory and each neural network retraining as in the plots above.

The results of these distributions for the Navier-Stokes system—both single- and multi-obstacle
forms—are included in Figure [TT] and Figure [I2] below. A change in the relative behavior of the
learned methods is most visible in the step prediction results in Figure Without the weighting,
many of the learning methods perform comparably to the KNN; however when emphasizing early
steps, these methods demonstrate improved errors relative to the re-weighted KNN errors. This
indicates that the learned methods outperform the accuracy of the KNN on the early steps, but are
somewhat unstable as the simulation progresses.

For other systems, we did not observe significant changes in relative performance of the learned
methods. MSE distributions shifted, but roughly in proportion to each other. This represents a greater
general stability in the learned methods on other systems, likely reflecting the more predictable
long-term behavior of the other systems. The spring system is periodic, the wave system is stable
over time, and the spring mesh system has an energy decay term which simplifies and stabilizes
its long-term evolution. As a result, in most cases, successfully learning the target task permits
the learned methods to maintain some stability over time, which decreases the relative effect of the
per-step weighting.
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Figure 11: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has a single randomly-positioned obstacle. Per-step errors are
weighted to decrease the contribution of later time steps with higher errors.
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Figure 12: Error distribution for Navier-Stokes system for multiple training set sizes, and out-of-
distribution results. Each trajectory has four randomly-positioned obstacles. Per-step errors are
weighted to decrease the contribution of later time steps with higher errors.
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D Dataset and software documentation

This section contains information documenting the contents, structure, and intended uses of the
datasets used in this work.

D.1 Overview

The datasets used in this work consist of snapshots gathered from numerical simulations of dynamical
systems. These simulations were carried out as part of this work and the software used to generate
them as well as stored outputs are made available for use and further modification. The software
source code is available under the MIT license, and the stored data is available under a Creative
Commons Attribution 4.0 license (CC BY 4.0).

Simulations are carried out for four system types, described in greater detail in the main work, above:
(1) spring, (2) wave, (3) spring mesh, and (4) Navier-Stokes. Each simulation’s outputs are intended
to be used for developing and testing machine learning methods for numerical simulations. They
include snapshots of each system’s state across several data channels, as well as time derivatives,
either of which can be used as learning targets.

An archival copy of the stored data and software source code has been placed in the NYU Faculty
Digital Archive (https://archive.nyu.edu/handle/2451/63285) for long-term storage. The
source code is also available on GitHub at https://github.com/karlotness/nn-benchmark.

The stored data for each simulation type is stored in two components: a JSON file containing
metadata for the particular simulation, and an associated uncompressed NumPy .npz-formatted
file containing the numerical results. Details of the contents of these files are provided below. Our
experiments were carried out in Python and these files are readable using the Python standard
library’s json module and the widely-used NumPy library. For other languages or environments, the
.npz files are ZIP archives containing NumPy .npy files whose format is documented by NumPy
https://numpy.org/doc/stable/reference/generated/numpy.lib.format.htmll

D.2 Stored format

Each dataset is a directory storing two files: “system_meta.json” and “trajectories.npz”. The .npz
file contains several NumPy array records with various shapes and data types. The names of each
of these records are referenced in the JSON file (documented below). When loading the data from
these systems these names should be treated as opaque and always sourced from the JSON-formatted
metadata. In some cases, the same name is referenced several times for purposes of data deduplication.
The .npz file is used for bulk storage of numerical data, separated from general metadata.

The simulation snapshots are divided into trajectories, each defined by a particular initial condition
from which a series of snapshots is taken at several later time steps, by numerical simulation. Each
trajectory is divided into several “channels” of data, in particular separating various state quantities,
state time derivatives, and masks marking special spatial locations for that trajectory, particular to that
system. The JSON file also contains trajectory-level parameter information, and settings for global
system-level parameters.

The stored data sets are intended to be used to test against the same snapshots used in this work,
without needing to configure the dependencies necessary to generate the snapshots. The process of
running the simulations and reproducing the tests described in this work is discussed in a separate
section, below.

D.2.1 Top-level object contents

The JSON-formatted metadata file contains important information used when loading these data sets.
The contents of certain sections vary by simulated system to reflect differences in relevant parameters
and other generic data. However, each has a similar global structure. Each JSON file contains a
top-level object with the same four keys: system, system_args, metadata, and trajectories.

The value of system is a string identifying which system is stored in that dataset. Its value will be

CLIT3 CLINT3

one of: “spring”, “wave”, “spring-mesh”, or “navier-stokes”.
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The value of system_args is another object storing the parameters which were passed to the
simulation code to generate these snapshots. These contents vary per system, but may be useful in
understanding what settings were configured for the simulators.

The system_args object stores several key-value pairs which vary by system reflecting different
global parameters which apply to every trajectory in the set. However it also always contains a
key system_args.trajectory_defs whose value is an array of objects which contain parameters
which may vary per-trajectory.

In addition to parameters in these objects which vary by system, several are always present with the
same meaning: num_time_steps, time_step_size, and subsample. The field num_time_steps
is an integer which sets the number of snapshots which are to be generated, including the first snapshot
which contains the initial condition. The parameter time_step_size is a floating-point value which
sets the time difference between each stored snapshot. The physical effect of the time step varies per
system. The parameter subsample is an integer (1 or larger) which allows generating the dataset on
a finer time grid than is reflected in the stored trajectory. Values greater than 1 cause the simulator
to run at a time step of time_step_size/subsample for num_time_step - subsample steps, and
to discard intermediate snapshots to produce an output at an un-subsampled stride. This allows
generating data sets at a higher simulation quality while keeping the same end time and desired
number of steps.

The metadata key stores an object with key-value pairs providing system-dependent information on
particular global parameters.

The trajectories key contains an array of objects giving information about the stored trajectory
data. These are likely to be the most useful when loading the snapshots as this object also provides a

LT3

mapping from each system’s data channels to the array in the dataset’s “trajectories.npz” file.

The objects in the trajectories array each contain system-dependent per-trajectory metadata
which will be discussed below, but as elsewhere several entries are always present. The first is a
name entry which gives a human-readable name for the trajectory. The keys num_time_steps and
time_step_size have the same value and function as discussed above. The timing entry contains
an object with information on timing of the data generation process. At present this object has one
entry of its own: traj_gen_time, which gives the time to generate this trajectory measured in
seconds.

Beyond these, each object in the trajectories array contains a key field_keys storing an object.
This object has keys for each data channel in this system whose values are strings giving the name
of a record stored in the “trajectories.npz” file. These mappings are the best way to determine the
correspondence between a trajectory in the dataset and the stored bulk arrays which make up its
snapshot data. The names used for keys follow a general pattern, usually prefixed with the name of
the trajectory discussed above, but they should be treated as opaque and always sourced from the
JSON files. This mapping is in some cases used to reduce duplication and some array records may be
referenced multiple times.

Next, we discuss per-system variation in the overall structure listed above, describing the metadata
components and data channels which are specific to each system.

D.2.2 Spring

This system is identified by a system entry with value “spring”.

Under system_args this system has no additional global parameters, only per-trajectory parameters
in the system_args.trajectory_defs array. These per-trajectory objects have a system-specific
initial_condition attribute which is a sub-object with attributes q and p, both of which are
floating-point, giving the initial values for the position and momentum of the simulated spring.

The metadata object contains one attribute, n_grid for consistency with the wave system, below.
Its value is always the integer 1.

The objects in the trajectories array contain only the standard values defining the number of time
steps and the name of each trajectory. The object field_keys defines name mappings for the data
channels of this system described below. Some additional details for each channel are included in
Table 3l
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The channels “q” and “p” give the position and momentum of the spring, respectively. Both values
evolve in the one-dimensional space of the system. Channels “dqdt” and “dpdt” are time derivatives
of these two quantities. The vector “t” gives the time of each snapshot in the trajectory.

Table 3: Data channels for the Spring system. /V; denotes the number of time steps in the trajectory.

Channel name Shape  Data type

q (N, 1) float64
p (N, 1) floato4
dqdt (N, 1)  float64
dpdt (N, 1) floato4
t (Ny) float64

D.2.3 Wave

This system is identified by a system entry with value “wave”.

Under system_args, the wave system has two global parameters: n_grid and space_max. The
parameter n_grid controls how many points are sampled on a regular, one-dimensional spatial
grid covering the interval [0, space_max], with a periodic boundary condition. space_max is a
floating-point value controlling the end point of this interval.

System-specific per-trajectory elements in system_args.trajectory_defs are wave_speed,
start_type, and start_type_args. The wave_speed parameter is a floating-point value control-
ling the distance the wave pulses travel in a unit of time.

The other two parameters control the shape and position of the initial pulse. start_type is a string
parameter selecting the type of pulse to form; at present only “cubic_splines” is supported. The value
of start_type_args is an object with additional parameters which affect the starting pulse. For a
cubic spline these are: height, width, and position. Each of these is a floating-point value which
scales the height and width of the pulse, and selects its center point in the spatial interval.

The metadata object repeats the values of the n_grid and space_max attributes described above.

Each object in the trajectories array contains the trajectory’s value of the wave_speed parameter
discussed above. There are no further system-specific entries in these objects, other than the data
channels. Some attributes of these are given in Table ]
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The channels “q” and “p” give the position/height and vertical velocity of the wave at each grid point,
respectively. The channels “dqdt” and “dpdt” are time derivatives of these quantities. The vector “t”
gives the simulation time for each snapshot in the trajectory.

Table 4: Data channels for the Wave system. N, denotes the number of time steps in the trajectory,
and N, denotes the number of points in the spatial grid, determined by n_grid.

Channel name  Shape Data type
q (N¢, Np)  floate4
p Ny, N,)  float64
dqdt (N¢, Np)  float64
dpdt (N¢, Np)  float64
t (Ny) float64

D.2.4 Spring mesh

This system is identified by a system entry with value “spring-mesh”.

Under system_args, this system has a global parameter vel_decay which is a floating-point
value configuring the damping applied to the velocity of each mass. Per-trajectory elements in
system_args.trajectory_defs objects are particles and springs, which are both arrays of
objects.
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Each object in particles has three attributes: is_fixed, a boolean indicating whether this particle
is fixed in place and immovable; mass, a floating-point value for the particle’s mass; and position,
an array of two floating-point values giving the z and y coordinates of the particle’s initial position.
The order of the particles is significant and their index in this array is their index referenced in
springs, below.

The objects in the springs array have four attributes: a, b, rest_length, and spring_const. The
values of a and b are integers specifying which two particles this spring connects in the order of the
objects in the particles array. The springs are undirected so the order of a and b is not important.
The values rest_length and spring_const are floats giving the rest length of the spring and its
spring constant, respectively. In this work, the edges described in the array are one-hop nearest
neighbors in each axis-aligned direction, and are the edges of the regular, square grid.

The metadata object has attributes repeating some values from system_args: edges is an array
of objects repeating springs as described above, and particles repeats the corresponding array,
both sourced from the first entry in system_args.trajectory_defs.

Beyond these in metadata are: n_dim, giving the spatial dimensions in which the particles move
(in this work, always 2); n_grid, repeating the same value; n_particles, giving the length of the
particles array; and the vel_decay value repeated here as well.

There are no system-specific entries in the objects in the trajectories array, other than the data
channels. Some attributes of each of these are given in Table 3]

The channel “q” and “p” give the per-particle position and momentum, respectively. These values are
provided in both  and y components for the two-dimensional space. The channels “dqdt” and “dpdt”
give time derivatives for these quantities.

The channel “t” provides the simulation time at which each snapshot was taken.

The “edge_indices” gives the locations of the edges (the springs) between each particle. The integers
in this channel index in the same order as the per-particle N, dimension in the other channels. The
values in this channel are directed so each spring is repeated twice, once with its two end indices in
both orders.

The array for “masses” gives the mass of each particle in the same order as the N, dimensions in
other channels.

The channel “fixed_mask” is a boolean mask with true for each particle which is fixed in place.
The channels “fixed_mask_q” and “fixed_mask_p” are the same, except with repeated values to be
suitable for broadcasting.

Table 5: Data channels for the Spring-Mesh system. [V; denotes the number of time steps in the
trajectory, /V;, denotes the number of particles, /N, denotes the number of edges.

Channel name Shape Data type Notes

q (N¢, Np,2)  float64

p (N¢, Np,2)  float64

dqdt (N, N, 2)  float6d

dpdt (N, N,,2)  float6d

t (Vy) float64

edge_indices (2,N.) int64

masses (N,) float64

fixed_mask (Np) bool

fixed_mask_q (Np,2) bool

fixed_mask_p (Np,2) bool Alias: “fixed_mask_q”
extra_fixed_mask (N,,) bool Alias: “fixed_mask”

D.2.5 Navier-Stokes

i

The Navier-Stokes system is identified by a system entry with value “navier-stokes”.
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Under system_args, this system has a global parameter grid_resolution which is a floating-point
value, giving the space stride of the regular grid on which the solutions are sampled. Per-trajectory
elements in system_args.trajectory_defs objects are viscosity and in_velocity, which
are parameters passed to the FEM solver giving the viscosity of the fluid and the velocity of the
incoming flow, respectively. Both are floating-point values.

The objects in system_args.trajectory_defs also have a parameter mesh which describes the
location of obstacles in the simulated space. Each entry in the array is an object with two keys:
radius, a single floating point value for the radius of the circular obstacle, and center, an array of
two floating point values giving the = and y position of the center of the circle. These values allow
placing multiple obstacles in the simulation space and impact the mesh which is generated and used
by the external finite element solver.

The metadata entry for this system contains two values: grid_resolution and viscosity, a
copy of the same values as described above. The viscosity value is taken from the first trajectory
entry.

The objects in the trajectories array have extra global parameter values: in_velocity, and
viscosity, which are as discussed above. Their field_keys entries have mapped names for
the data channels listed in Table [§] The “q”- and “p”-related channels are present as aliases for
consistency with other systems.

The core values for this system are the “solutions” and “pressures” channels which store the flow
velocity of the fluid and the pressure field, respectively. The two channels for the solutions are the x
and y flow velocities.

Separately the “grads” and “pressures_grads” channels store approximated time derivatives computed
from neighboring time steps from the FEM solver’s output.

The “t” channel is a vector giving the simulation time of each snapshot.

The channels “vertices” and “edge_indices” identify the spatial position and neighboring grid points
for each sample point, respectively. “vertices” gives the z- and y-coordinates as separate channels,
and “edge_indices” stores indexes into the per-particle dimension [V, of each spatial value. The edges
described in the array are one-hop nearest neighbors in each axis-aligned direction, the edges of the
regular, square grid.

The “fixed_mask” channels are boolean masks for the sample points, indicating which of them form
part of the boundary or an obstacle. “fixed_mask” itself stores a value of true for points which are
either a boundary or an obstacle. The arrays “fixed_mask_solutions” and “fixed_mask_pressures”
store the same, just repeated to match the dimensions of the corresponding data channels, suitable for
broadcasting and masking or other purposes. The “extra_fixed_mask” is like “fixed_mask” except
that it provides boolean per-particle masks for two kinds of points. The last dimension of this mask
separates the two sub-channels, one for each type of mask. Mask 0 has true for the obstacles and
the boundaries, while mask 1 has true only for the obstacles.
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Table 6: Data channels for Navier-Stokes system. NN, denotes the number of time steps in the
trajectory, and [V,, denotes the number of points in the regular grid. N, = 9282 for the datasets in
this work.

Channel name Shape Data type  Notes

solutions Ny, N,,2) float64

pressures N, N, ) float64

grads Ny, N,,2) float64

pressures_grads Ny, ) float64

t float64

q Nt, ») float64 Alias: “pressures”
p Ny, Np,2)  float64 Alias: “solutions”

(
(
(
(
(Ve
(
(
(
dpdt (
(
(
(
(
(
(
(
(

dqdt Nt, ) float64 Alias: “pressures_grads”
N¢yN,,2)  float64 Alias: “grads”

edge_indices 2, N, int64

vertices Np, 2 float64

fixed_mask Np) bool

fixed_mask_solutions (N, 2) bool

fixed_mask_pressures Np) bool

fixed_mask_q N,) bool Alias: “fixed_mask_pressures”

fixed_mask_p Ny, 2) bool Alias: “fixed_mask_solutions”

extra_fixed_mask Ny, 2) bool

D.3 Data generation

The section above discussed how to make use of the stored data sets. Here we document the process
used to configure these data sets and invoke the simulators to produce the snapshots. The steps
used here cover the very similar process of running the neural network training and evaluation
phases. Following the steps here on the run descriptions we have distributed allows recreating the
experimental setup used in the report above.

D.3.1 Dependencies

This section includes instructions for configuring the software environment.

While the software we have produced for this work is available under an open source license, the
required dependencies are made available under a variety of other licenses. These include some
proprietary components such as NVIDIA’s CUDA libraries, and Intel’s Math Kernel Library (MKL).
Review the licenses of the required dependencies before installing or running.

Anaconda The majority of software dependencies can be installed using the Conda package
management tool (https://docs.conda.io). The root directory of our software project contains
an environment definition in the file “environment.yml”. Using this file will create an environment
nn-benchmark containing the Python dependencies needed for this project. If you are obtaining
these dependencies from another source, the contents of this file include the names of the packages
which will be required.

PolyFEM In addition to the Python libraries needed for the project, if you wish to generate
new Navier-Stokes trajectories, you will also need a copy of PolyFEM. The source code for this
software can be obtained from the PolyFEM GitHub repository (https://github.com/polyfem/
polyfem/). This portion of the project requires a copy of PolyFEM linked with Intel’s Math Kernel
Library (MKL). To do this, locate the root directory of your MKL installation and build PolyFEM
from the root directory of its source code with:

mkdir build

cd build

MKLROOT=/path/to/mkl/root/ cmake .. -DPOLYSOLVE_WITH_PARDISO=0N -DPOLYFEM_NO_UI=0N
make
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This will produce a binary PolyFEM_bin, required to produce new Navier-Stokes trajectories. This
binary must either be placed in the directory from which you will run the simulation software, or you
should specify the parent directory of this binary in the environment variable POLYFEM_BIN_DIR so
that it can be located.

Singularity container (optional) It is possible to run the software directly in a manually-created
Anaconda environment. However, for convenience we include a build definition file for a Singularity
container (https://singularity.hpcng.org). Building a .sif container from this definition
will produce an environment suitable for running the software, including PolyFEM and the required
environment variables. Consult the Singularity documentation for more information on building these
containers in your computing environment.

If you choose to use the Singularity container, either place it in the directory from which you will
run the simulation software or provide the path to the resulting nn-benchmark.sif file’s parent
directory in the environment variable SCRATCH. The run management scripts (described below) will
look in this directory for the container and use it to run jobs if it is found.

D.3.2 Run descriptions

The software used to generate the datasets, train networks, and perform evaluations takes arguments
from JSON files, specified on the command line. This makes it possible to provide a large number
of arguments, to submit the jobs in batches, and to detect tasks that have failed or that remain
outstanding. The structure of these files is relatively complex, so we provide additional tooling to
assist in generating them.

These utilities are located in the src/run_generators directory, in utils. py. Examples of their
use are included in the other Python scripts in that directory. These tools consist of several object
definitions which define jobs to run. These are divided into three phases: data generation, network
training, and evaluation. To produce the descriptions of the desired jobs, one constructs Python
objects representing each of these, and calls their write_description(dir) methods. This method
takes a single argument: the root directory under which the job descriptions and the resulting outputs
will be stored. Create a new directory for each experiment.

Each task takes an Experiment object as an argument; this principally sets a prefix on the resulting
file names, and records the experiment name in the run description file. This separation is not enforced
and results of jobs combining different Experiment objects can freely be mixed.

Datasets are generated by creating various Dataset subclass objects. Each of these takes as an
argument an InitialConditionSource which provides the sampling of initial conditions de-
scribed above. Be aware that these objects cache the initial conditions they have previously gener-
ated. This ensures that larger datasets drawn from the same source are always strict supersets of
smaller datasets. The initial condition sources have parameters which control the distribution from
which samples are drawn, and the datasets themselves have parameters controlling the simulations
which are carried out from these samples (such as the time step size, number of steps, etc.). The
InitialConditionSource objects do not represent jobs and do not have write_description
methods.

Neural network training tasks are created by providing both an Experiment object and two datasets:
one for training, and one for validation. The objects representing each dataset are provided as
constructor arguments to the objects representing each type of neural network. Most networks have
parameters which control their architecture, choosing kernel sizes, hidden dimensions, etc.

Finally, evaluation run descriptions are generated by the NetworkEvaluation object. This takes an
Experiment object, the object representing the network training task, an object for the evaluation set
to use, and the numerical integrator to combine with the network. The exception to this is configuring
runs for the KNNs. These do not have a normal training phase and run entirely at evaluation-time.
These evaluation objects take an additional parameter for their training dataset. When run, the job
will load this training set, fit the KNN, and then proceed with the rest of the regular evaluation phase.
KNNPredictorOneshot runs a KNN for step prediction and KNNRegressorOneshot runs a KNN
for derivative prediction with the integrator specified as an argument to its constructor.

As an illustration of configuring jobs using these utilities we provide the Python scripts used to
generate the run descriptions for the experiments discussed above. Be aware that running these scripts
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will sample new datasets from the distributions specified above. Each script takes the name of the
directory created for its experiment as an argument and writes the run descriptions to that directory in
a descr directory, with three subdirectories, one for each of the three phases.

D.3.3 Launching jobs

Once the run descriptions are generated, running the jobs is in large part managed by the
manage_runs. py script. This script can inspect the experiment directory to identify runs which are
outstanding, appear possibly incomplete, or whose description files have been modified after the job
was launched. The script also runs the jobs from the description file, either serially, or in parallel by
submitting to a Slurm queue.

Scanning Running python manage_runs.py scan <experiment directory> will output
information about the state of all jobs in that experiment. The script will indicate whether the
jobs are yet to be run (outstanding), appear to be incomplete, or whether their descriptions were mod-
ified after the job launched. Jobs in one of the error states (incomplete or mismatched descriptions)
can be deleted by adding the --delete=<mismatch or incomplete> argument. This extra flag
deletes the jobs in the specified state with no further confirmation.

Launching python manage_runs.py launch <experiment directory> <phase> where
phase is one of data_gen, train, or eval will launch all outstanding jobs for the specified experi-
ment and phase. Wait for all jobs from earlier phases to complete before beginning the next phase. By
default the script will attempt to run the jobs locally in serial, but if the sbatch program is detected
it will submit jobs to the Slurm queue instead. This selection can be overridden by passing one of
slurm or local to the --launch_type argument. If the Singularity container is being used the
script may output a warning that the “nn-benchmark” Anaconda environment is not loaded. This
warning can be ignored as the container will provide the necessary environment.

D.3.4 Recreating experiments

We provide the JSON run descriptions for the experiments discussed above. Once the software
environment is configured, the manage_runs.py script can be used to launch copies of these
experiments.
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