Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to answer these questions. For each question, change the default **[TODO]** to **[Yes]**, **[No]**, or **[N/A]**. You are strongly encouraged to include a **justification to your answer**, either by referencing the appropriate section of your paper or providing a brief inline description. For example:

- Did you include the license to the code and datasets? [Yes] See Section ??.
- Did you include the license to the code and datasets? [No] The code and the data are proprietary.
- Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist section does not count towards the page limit. In your paper, please delete this instructions block and only keep the Checklist section heading above along with the questions/answers below.

- 1. For all authors...
 - (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
 - (b) Did you describe the limitations of your work? [Yes] See Section 5.2 Interpretability, where we showed that the rule set learned using our method is inferior to CG in terms of complexity.
 - (c) Did you discuss any potential negative societal impacts of your work? [No]
 - (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [Yes] See Proposition 2, in which we stated that the approximation guarantee can be obtained if the subproblem is solved to optimality.
 - (b) Did you include complete proofs of all theoretical results? [Yes] Proposition 1 and 3 have been proved. Proofs for Proposition 2 were referred to [23].
- 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [No] Our code is proprietary.
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Section 5.1 Parameter tuning.
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] All reported numerical results are with error bars.
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [No]
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.1 Baselines.
 - (b) Did you mention the license of the assets? [No]
 - (c) Did you include any new assets either in the supplemental material or as a URL? [No]
 - (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [Yes] We cited the UCI repository and the sources of COMPAS and FICO datasets.
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [No]
- 5. If you used crowdsourcing or conducted research with human subjects...
 - (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]

- (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
- (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

A Appendix

A.1 Other rule set learning objectives

We show that several other learning objectives for rule sets may reduce to (3).

A.1.1 0-1 loss with complexity penalty

Let $l(\hat{y}, y) = \mathbb{I}(\hat{y} \neq y)$ be the 0-1 loss and $\Omega(S) = \lambda \sum_{\mathcal{R} \in S} |\mathcal{R}|$ be the complexity penalty. Then

$$\sum_{i=1}^{n} l\left(P_{\mathcal{S}}(\mathbf{x}_{i}), y_{i}\right) + \Omega(\mathcal{S})$$

= $\left|\mathcal{X}^{+} \setminus \mathcal{X}_{\mathcal{S}}^{+}\right| + \left|\mathcal{X}_{\mathcal{S}}^{-}\right| + \lambda \sum_{\mathcal{R} \in \mathcal{S}} |\mathcal{R}|$
 $\leq \left|\mathcal{X}^{+} \setminus \mathcal{X}_{\mathcal{S}}^{+}\right| + \sum_{\mathcal{R} \in \mathcal{S}} \left|\mathcal{X}_{\{\mathcal{R}\}}^{-}\right| + \lambda \sum_{\mathcal{R} \in \mathcal{S}} |\mathcal{R}| =: L_{1}(\mathcal{S}).$

It is obvious that $L_1(S)$ is equal to L(S) with $\beta_0 = \beta_1 = 1$ and $\beta_2 = 0$. Therefore, minimizing L(S) can be interpreted as minimizing an upper bounding surrogate of the penalized 0-1 loss.

A.1.2 0-1 loss with overlap penalty

Let $\Omega(S) = \eta \left(\sum_{\mathcal{R} \in S} |\mathcal{X}_{\{\mathcal{R}\}}| - |\mathcal{X}_{S}| \right)$ be the overlap penalty, in which $\mathcal{X}_{S} \coloneqq \{i | P_{S}(\mathbf{x}_{i})\}$. If $\eta \leq 1$, we have

$$\sum_{i=1}^{n} l\left(P_{\mathcal{S}}(\mathbf{x}_{i}), y_{i}\right) + \Omega(\mathcal{S})$$

$$= \left|\mathcal{X}^{+} \setminus \mathcal{X}_{\mathcal{S}}^{+}\right| + \left|\mathcal{X}_{\mathcal{S}}^{-}\right| + \eta\left(\sum_{\mathcal{R}\in\mathcal{S}} \left|\mathcal{X}_{\{\mathcal{R}\}}\right| - \left|\mathcal{X}_{\mathcal{S}}\right|\right)$$

$$= \left|\mathcal{X}^{+}\right| - \left|\mathcal{X}_{\mathcal{S}}^{+}\right| + \left|\mathcal{X}_{\mathcal{S}}^{-}\right| - \eta(\left|\mathcal{X}_{\mathcal{S}}^{+}\right| + \left|\mathcal{X}_{\mathcal{S}}^{-}\right|\right) + \eta\sum_{\mathcal{R}\in\mathcal{S}} \left|\mathcal{X}_{\{\mathcal{R}\}}^{+}\right| + \left|\mathcal{X}_{\{\mathcal{R}\}}^{-}\right|$$

$$= \left|\mathcal{X}^{+}\right| - (1+\eta)\left|\mathcal{X}_{\mathcal{S}}^{+}\right| + (1-\eta)\left|\mathcal{X}_{\mathcal{S}}^{-}\right| + \eta\sum_{\mathcal{R}\in\mathcal{S}} \left|\mathcal{X}_{\{\mathcal{R}\}}^{+}\right| + \left|\mathcal{X}_{\{\mathcal{R}\}}^{-}\right|$$

$$\leq \left|\mathcal{X}^{+}\right| - (1+\eta)\left|\mathcal{X}_{\mathcal{S}}^{+}\right| + (1-\eta)\sum_{\mathcal{R}\in\mathcal{S}} \left|\mathcal{X}_{\{\mathcal{R}\}}^{-}\right| + \eta\sum_{\mathcal{R}\in\mathcal{S}} \left|\mathcal{X}_{\{\mathcal{R}\}}^{+}\right| + \left|\mathcal{X}_{\{\mathcal{R}\}}^{-}\right|$$

$$= \left|\mathcal{X}^{+}\right| - (1+\eta)\left|\mathcal{X}_{\mathcal{S}}^{+}\right| + \sum_{\mathcal{R}\in\mathcal{S}} \eta\left|\mathcal{X}_{\{\mathcal{R}\}}^{+}\right| + \left|\mathcal{X}_{\{\mathcal{R}\}}^{-}\right| =: L_{2}(\mathcal{S}).$$

It can be observed that $L_2(S)$ is equal to L(S) with $\beta_0 = \beta_1 = 1$, $\beta_2 = \eta$ and $\lambda = 0$.

A.1.3 Hamming loss

The Hamming loss employed by Dash et al. [14] is equal to L(S) with $\beta_0 = \beta_1 = 1$, $\beta_2 = 0$ and $\lambda = 0$.

A.2 Guidance for hyperparameter tuning

As pointed out in Section 4.2, the multiplier $\alpha := (1 - 1/K)^{K-k} \ge 1/e$ for $K \in \mathbb{N}^+$ and $k = 1, \ldots, K$. Then $\omega := \alpha(\beta_1 + \beta_2) - \beta_2 > 0$ is ensured by choosing $\beta_1 > (e - 1)\beta_2$, as:

$$\alpha(\beta_1 + \beta_2) - \beta_2$$

$$\geq \frac{1}{e}(\beta_1 + \beta_2) - \beta_2$$

$$\geq \frac{1}{e}[(e-1)\beta_2 + \beta_2] - \beta_2 = 0$$

A.3 Additional algorithms

The output of Algorithm 1 is refined by the following local search algorithm, which tries to improve the objective V(S) through adding, removing, or replacing a rule.

```
Algorithm 4 Refine a rule set
```

```
1 Input: Training data \{(\mathbf{x}_i, y_i)\}_{i=1}^n, hyperparameters (\boldsymbol{\beta}, \lambda), cardinality K, initial solution S
 2 while true do
           \mathcal{S}' \leftarrow \mathcal{S}
 3
           for k = |\mathcal{S}| to K - 1 do
 4
                Define v(\mathcal{R}) = g(\mathcal{R}|\mathcal{S}) - c(\mathcal{R})
 5
                Solve \mathcal{R}^{\star} \leftarrow \arg \max_{\mathcal{R} \subseteq [d]} v(\mathcal{R})
 6
                if v(\mathcal{R}^{\star}) > 0 then \mathcal{S} \leftarrow \mathcal{S} \cup \{\mathcal{R}^{\star}\} end if
 7
 8
            end for
 9
            for \mathcal{R}' \in \mathcal{S} do
                \mathcal{S} \leftarrow \mathcal{S} \setminus \{\mathcal{R}'\}
10
                Define v(\mathcal{R}) = g(\mathcal{R}|\mathcal{S}) - c(\mathcal{R})
11
                Solve \mathcal{R}^* \leftarrow \arg \max_{\mathcal{R} \subseteq [d]} v(\mathcal{R})
if v(\mathcal{R}^*) > 0 then \mathcal{S} \leftarrow \mathcal{S} \cup \{\mathcal{R}^*\} end if
12
13
14
            end for
           if S = S' then break end if
15
16 end while
17 Output: S
```

The Enlarge subprocedure in Algorithm 3 expands the current solution into an active set of size M.

Algorithm 5 Enlarge($\tilde{\mathcal{R}}, M, u, w$)

1 for $k = |\tilde{\mathcal{R}}|$ to M - 1 do 2 $j^* \leftarrow \arg \max_j u(j|\tilde{\mathcal{R}})/w(j|\tilde{\mathcal{R}})$ 3 $\tilde{\mathcal{R}} \leftarrow \tilde{\mathcal{R}} \cup \{j^*\}$ 4 end for 5 Output: $\tilde{\mathcal{R}}$

The SwapLocalSearch subprocedure in Algorithm 3 tries to improve the output of DS-OPT through adding, removing or replacing a feature.

Dataset	#samples	#features	#binarized	#positives	#negatives
tic-tac-toe	958	9	54	626	332
liver	345	6	104	145	200
heart	303	13	118	165	138
ionosphere	351	34	566	225	126
ILPD	583	10	160	416	167
WDBC	569	30	540	212	357
pima	768	8	134	268	500
transfusion	748	4	64	178	570
banknote	1372	4	72	610	762
mushroom	8124	22	224	3916	4208
COMPAS-2016	5020	6	30	2246	2774
COMPAS-binary	6907	12	24	3196	3711
FICO-binary	10459	17	34	5000	5459
COMPAS	12381	22	180	3855	8526
FICO	10459	23	312	5000	5459
adult	48842	14	262	11687	37155
bank-market	11162	16	174	5289	5873
magic	19020	10	180	12332	6688
musk	6598	166	2922	1017	5581
gas	13910	128	2304	6778	7132

Table 4: Characteristics of datasets used in our experimental study.

Algorithm 6 SwapLocalSearch(\mathcal{R}, u, w)

1 while true do

 $2 \qquad \mathcal{R}'' \leftarrow \mathcal{R}$

3 while $\exists j \in [d] \setminus \mathcal{R}$ s.t. $v(j|\mathcal{R}) > 0$ do $\mathcal{R} \leftarrow \mathcal{R} \cup \{j\}$ end while

- 4 while $\exists j \in \mathcal{R} \text{ s.t. } v(j|\mathcal{R} \setminus \{j\}) \leq 0 \text{ do } \mathcal{R} \leftarrow \mathcal{R} \setminus \{j\} \text{ end while}$
- 5 while $\exists a \in \mathcal{R}, b \in [d] \setminus \mathcal{R}$ s.t. $v(b|\mathcal{R} \setminus \{a\}) > 0$ do $\mathcal{R} \leftarrow (\mathcal{R} \setminus \{a\}) \cup \{b\}$ end while
- 6 if $\mathcal{R} = \mathcal{R}''$ then break end if
- 7 end while
- 8 **Output:** \mathcal{R}

A.4 Dataset details

Table A shows several extra dataset characteristics, including the number of original features and the number of positive/negative samples in each dataset.

A.5 Running time

The average running time in seconds of each method was measured on a MacBook Pro (2019 edition, Intel Core i5). The hyperparameters of the methods were set to their typical values found in cross-validation. Results are summarized in Table 5

The readers should be aware that the running time comparison based on wall-clock time here is not totally fair, as the implementations of these methods are not optimized to a matching level. Among the baselines, CG, BRS and RIPPER are implemented in Python (with numerical computation offloaded to numpy), while CART and RF are based on a highly optimized Cython backend. Our method is implemented in Golang, a programming language that in general is faster than Python and is slower than C/C++. Nevertheless, this table, jointly with the reported experimental data on accuracy and interpretability, enables us to roughly understand the trade-offs of these methods.

Dataset	Ours	CG	RIPPER	BRS	CART	RF
tic-tac-toe	0.794	12.815	0.204	14.833	0.002	0.097
liver	4.113	62.482	0.232	19.513	0.002	0.083
heart	0.853	62.840	0.227	14.858	0.001	0.077
ionosphere	6.064	51.475	0.914	17.304	0.008	0.090
ILPD	0.909	81.869	0.325	23.254	0.004	0.097
WDBC	8.209	23.009	1.042	26.592	0.008	0.091
pima	1.580	66.515	0.471	54.542	0.005	0.105
transfusion	0.679	8.246	0.208	21.857	0.001	0.095
banknote	2.142	13.043	0.274	659.874	0.002	0.093
mushroom	1.637	16.369	2.083	48.763	0.031	0.252
COMPAS-2016	2.860	14.914	1.243	33.815	0.003	0.159
COMPAS-binary	3.380	16.151	2.178	41.120	0.003	0.174
FICO-binary	7.705	11.199	6.890	72.515	0.016	0.432
COMPAS	16.534	N/A	10.359	237.615	0.083	0.897
FICO	33.935	159.838	18.826	695.484	0.215	1.121
adult	15.952	288.338	202.279	39787.330	0.815	4.802
bank-market	34.185	107.736	30.563	8956.680	0.124	0.842
magic	39.432	222.451	65.904	N/A	0.197	1.459
musk	88.215	659.791	371.562	864.823	1.388	1.644
gas	192.125	5353.880	582.690	N/A	2.331	2.772

Table 5: Average running time in seconds.

A.6 Approximation quality

On the first nine datasets in Table 6 all of the subproblems could be exactly solved within ten minutes using BnB. For the remaining higher-dimensional datasets, we specified a time limit of 10 minutes for BnB. Although the solutions obtained by time-limited search are not guaranteed to be close to the optimal ones, we noticed that our fine-tuned BnB procedure generally did not find a better solution beyond the first two minutes of its time limit, which indicates that nearly optimal solution had been reached (but had not been proved). The largest gap occurs on the COMPAS dataset, for which the BnB based method spent about ten hours in total, while the proposed method terminated in one minute.

Dataset	#features	$V(\mathcal{S}_{approx})$	$V(\mathcal{S}_{bnb})$	Relative Gap
COMPAS-binary	24	871.00	875.00	0.0046
COMPAS-2016	30	594.40	590.00	-0.0075
FICO-binary	34	1977.00	1919.00	-0.0302
tic-tac-toe	54	433.78	433.78	0.0000
transfusion	64	12.00	12.00	0.0000
banknote	72	599.40	602.40	0.0050
heart	118	99.48	99.48	0.0000
ILPD	160	217.00	217.00	0.0000
mushroom	224	3908.00	3908.00	0.0000
liver	104	127.68	124.69	-0.0240
pima	134	. 74.84	76.00	. 0.0153
bank-market	174	3329.07	3323.59	-0.0016
magic	180	9251.09	9193.73	-0.0062
COMPAS	180	563.00	642.57	0.1238
adult	262	3690.00	3665.10	-0.0068
FICO	312	1936.30	1927.00	-0.0048
WDBC	540	209.00	207.01	-0.0096
ionosphere	566	198.80	199.20	0.0020
musk	2922	565.50	609.90	0.0728
gas	2304	6234.64	6181.82	-0.0085

Table 6: Approximation quality measured by relative gaps.