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Appendices

A Notation

M(x) Inertia matrix
V (x) Potential energy
µµµ coefficients of friction
eP coefficients of restitution
ps = (M(x), V (x)) System properties
pc = (µµµ, eP ) Contact properties

fC Contact Impulses
fE Equality Constraint Impulses
JC(x) Contact Jacobian
JE(x) Equality Constraint Jacobian
v−/ v+ velocities (in Cartesian space) before/after a general impulse
v−C / v+

C velocities (in contact space) before/after a general impulse
vc−
C / vc+

C velocities (in contact space) before/after the compression phase
vr+
C velocities (in contact space) after the restitution phase

B Functional form of the constrained Lagrangian and Hamiltonian
dynamics

In this section, we present the functional form of system dynamics that we use in the experiments.
Instead of using generalized coordinates, we use Cartesian coordinates. This is because the inertia
matrix under Cartesian coordinates are constant and independent of the coordinates, which makes the
learning of inertia easier, as pointed out in Finzi et al. [1].

B.1 Equality constraint Jacobian

Holonomic constraints are equality constraints which can be collected into a column vector Φ(x) ∈
RE with equality Φ(x) = 0. Differentiating this constraint w.r.t. time, we have

Φ̇ = (DxΦ)ẋ = (DxΦ)v = JE(x) · v = 0, (S.1)
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where we denote the equality constraint Jacobian JE(x) := DxΦ ∈ RE×D. Eqn. (S.1) implies that
holonomic constraints require the velocity v to be always in the null space of equality constraint
Jacobian JE(x). We will use this property to derive impulses caused by equality constraints.

B.2 Constrained Lagrangian dynamics

The first-order dynamics can be obtained from Finzi et al. [1], which is(
ẋ
v̇

)
= g(x,v;ps)=

(
v

M−1JT
E [JEM

−1JT
E ]−1[JEM

−1∇xV −(Dx(JE · v)) · v]−M−1∇xV

)
(S.2)

B.3 Constrained Hamiltonian dynamics

The Hamiltonian dynamics deal with position x ∈ RD and momentum px = Mv instead of (x,v).
The derivation is not as straightforward as in the Lagrangian case. We denote z = (x,px). The
Hamiltonian equals the total energy of the system and can be written as

H(x,px) =
1

2
pT
xM

−1px + V (x), (S.3)

For the E holonomic constraints Φ(x) = 0, we can get another E constraints on position and
momentum, i.e., Φ̇(x,px) = 0, and collect these 2E constraints in a vector Ψ(z) = (Φ, Φ̇). Then
the Hamiltonian dynamics in z can be written as the following differential equations

ż = J∇zH − J(DzΨ)T [(DzΨ)J(DzΨ)T ]−1(DzΨ)J∇zH, (S.4)

where J is a symplectic matrix

J =

[
0 ID
−ID 0

]
, (S.5)

and ID is the D ×D identity matrix. In order to convert the ODE into a set of ODE in (x,v), we
introduce the matrix

M̃−1 =

[
ID 0
0 M−1

]
, (S.6)

then we obtain the first order ODE(
ẋ
v̇

)
=

[
ID 0
0 M−1

](
ẋ
ṗx

)
= M̃−1J∇zH − M̃−1J(DzΨ)T [(DzΨ)J(DzΨ)T ]−1(DzΨ)J∇zH

(S.7)

C Mathematical Derivation of the differentiable contact model

For simplicity, we present the model by referring to x and v as position and velocity in Cartesian
space, but the derivation is valid for any other choice of coordinate system. A summary of the notation
used here can be found in Section A.

C.1 Frictional contact and contact Jacobian

Contacts in general can be expressed as inequalities ΦC(x) ≥ 0. A ball bouncing on the ground, for
example, requires the whole ball to be above the ground. When the equality holds for a contact, we
refer to the contact as an active contact, otherwise, an inactive contact. If there exists active contacts,
contact impulses will cause an instantaneous velocity change. In practice, the set of active contacts is
calculated by a collision detection (CD) module.

A conceptual contact can contribute to one or more dimensions in the contact space, corresponding
to one or more dimensions of contact impulse. Take Fig. S.1 as an example. Mass 2 at the end of
the pendulum would experience a contact impulse fC = (fn, ft) in the two dimensional contact
space - fn is the component normal to the contact surface, and ft is the friction impulse tangential
to the contact surface. For 3D systems, the contact space is three dimensional with two tangential
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components. Assume that the contact space for all active contacts is C dimensional, then we define
contact Jacobian JC(x) ∈ RC×D, which maps velocities v in the coordinate space to vC in the
contact space,

vC = JC(x) · v. (S.8)

C.2 Project velocity change into contact space

When there are active contacts, we construct the contact Jacobian JC for active contacts. For brevity
of notation, we drop explicit dependence on x from now onward. From Newton’s second law, the
change of momentum during contact equals the impulses, which can be described as

Mv+ = Mv− + JT
CfC + JT

EfE , (S.9)

where v− and v+ denote the Cartesian space velocity before and after the instantaneous velocity
change, M is the inertia matrix, JT

C maps contact impulses in the contact space fC to contact impulses
in Cartesian space and JT

E maps equality constraint impulses fE to equality constraint impulses in
Cartesian space. The impulses fC and fE should not be confused with forces. An impulse is an
integral of force over time, which contributes to the change in momentum.

2 1

2

1

2

1

Coordinate Space Contact Space Impulses 

During Contact

Frictional Contact

Figure S.1: A ball collide with a pendulum. The equality constraint impulse fE ensures that equality
constraints are always satisfied.

The equality constraint impulses fE is caused by contact impulse fC . See Fig. S.1 for an intuitive
example. Their dependence can be revealed from the fact that the velocity in Cartesian space at any
time is in the null space of JE (Sec. B.1.) We can left multiply the above equation by JEM

−1 and
solve for fE ,

fE = −(JEM
−1JT

E)−1JEM
−1JT

CfC . (S.10)
Thus, from Eqn. (S.9) and (S.10), we can express instantaneous velocity change as

v+ = v− + M̂−1JT
CfC , (S.11)

where
M̂−1 = M−1 −M−1JT

E(JEM
−1JT

E)−1JEM
−1. (S.12)

M̂ can be interpreted as the inertia that incorporates equality constraints.

In order to solve for contact impulses, we left multiply Eqn. (S.11) by JC to project the instantaneous
velocity change into the contact space:

v+
C = v−C + AfC , (S.13)

where A = JCM̂
−1JT

C , which can be interpreted as the inverse inertia in the contact space. Our
contact model solves contact impulses in two phases - the compression phase and the restitution
phase, both of which can be described by Eqn. (S.13). Here we express the instantaneous velocity
change in two phases as follows

vc+
C = vc−

C + Af cC , (S.14)

vr+
C = vc+

C − v∗C + AfrC , (S.15)

where f cC and frC are the contact impulses during the compression phase and the restitution phase and
need to be solved by the contact model. The target velocity v∗C is included in the restitution phase
to compensate existing penetration in the simulation. See Appendix G for details on compensating
penetration.
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C.3 Contact model in compression phase

From the maximum dissipation principle, the objective is to minimize the kinetic energy, which leads
to the following optimization problem1

Minimize
fcC ,vc+

C

1

2
(vc+

C )TA−1vc+
C (S.16)

subject to (S.14), (3), (4).

By substitute Eqn. (S.14) into (S.16), we get the optimization problem (5) in the paper. Similarly,
optimization problem (7) can be derived.

D Elasticity and coefficient of restitution

The elasticity of a collision can be captured by the coefficient of restitution (COR). According to
Newton’s hypothesis [2], COR is defined as the ratio of the normal relative velocity after the collision
to that before the collision, ranging from 0 to 1. This definition of COR can cause unrealistic energy
increases when the contact is frictional and the COR is close to 1 [3, 4]. Alternatively, Poisson [5]
divides the collision into two phases. The former, referred to as the compression phase, start with
the first contact of the bodies and stops at the greatest compression. The latter, referred to as the
restitution phase, start right after the compression phase till the separation of bodies. According to
Poisson’s hypothesis, the COR is defined as the ratio of the normal contact impulse in the restitution
phase to that in the compression phase. Poisson’s hypothesis is favored in simulation since it will not
lead to unrealistic energy increase. For a detailed comparison of different hypotheses, please refer to
[6, 7]. In this paper, we define COR eP in accordance with Poisson’s hypothesis.

E Proof of positive semi-definiteness of A

By definition, we have A = JCM̂
−1JT

C ∈ RC×C , where

M̂−1 = M−1 −M−1JT
E(JEM

−1JT
E)−1JEM

−1. (S.17)

For any real physical system, the inertia matrix M is symmetric and positive definite. Thus, its inverse
exists and can be decomposed using Cholesky decomposition M = LLT . We can then express the
inverse inertia that incorporates equality constraints as M̂−1 = L(I−P)LT , where P is a projection
matrix

P = LTJT
E(JEM

−1JT
E)−1JEL, (S.18)

which satisfies P2 = P. A property of projection matrices is that the eigenvalues can only take two
values: 1 or 0. By eigen-decomposition, P and I−P can be written as

P = (V0 V1)

(
0 0
0 I

)(
VT

0

VT
1

)
= V1V

T
1 , (S.19)

I−P = (V0 V1)

(
I 0
0 I

)(
VT

0

VT
1

)
− (V0 V1)

(
0 0
0 I

)(
VT

0

VT
1

)
= V0V

T
0 , (S.20)

where V0 ∈ RD×(D−E). So we can decompose A into A = AT
d Ad, where Ad = VT

0 L
TJT

C . Then
for any vector c ∈ RC , we have

cTAc = (Adc)TAdc ≥ 0, (S.21)

which proves that A is positive semi-definite. If the system does not have equality constraints, A has
full rank and can be decomposed using Cholesky decomposition.

Note that in this forward pass, we need to use torch.symeig on matrix P. However, torch.symeig
operation does not support backward gradient calculation with non-distinct eigenvalues. In practice,
we use the implementation in [8] to calculate the gradient of torch.symeig operation.

1Strictly speaking, this form is not correct because A is invertible only if there exists no equality constraint
in the system. When equality constraints do exist, a pseudo-inverse of A should be used here, and the form Eqn.
(5) can still be derived.
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F Solving contact impulses using CvxpyLayers

In this section, we show an implementation of setting up the differentiable optimization problem in the
compression phase using CvxpyLayers and PyTorch. We then show how we use this implementation
in CM and CMr.

1 import torch
2 import cvxpy as cp
3 from cvxpylayers.torch import CvxpyLayer
4

5 def solve_compression_impulse(
6 A_d: torch.Tensor , # shape (D-E, C) or (C, C), decomposition

of matrix A
7 v_: torch.Tensor , # shape (C, 1), velocity before impulse in

contact space
8 mu: torch.Tensor , # shape (n_cld , 1), coefficient of friction
9 n_cld: int , # number of active (conceptual) contacts

10 d: int , # dimension of each conceptual contact space , can take
value 2 or 3

11 ):
12 C = v_.shape [0] # C = n_cld*d
13 f = cp.Variable ((C, 1)) # impulse variable to be solved
14 A_d_p = cp.Parameter(A_d.shape)
15 v_p = cp.Parameter ((C, 1))
16 mu_p = cp.Parameter ((mu.shape[0], 1))
17 # set up objective , constraints , cvx problem and cvxpylayer
18 objective = cp.Minimize (0.5 * cp.sum_squares(A_d_p @ f) + cp.sum(

cp.multiply(f, v_p)))
19 constraints = [cp.SOC(cp.multiply(mu_p[i], f[i*d]), f[i*d+1:i*d+d

])
20 for i in range(n_cld)] \
21 + [f[i*d] >= 0 for i in range(n_cld)]
22 problem = cp.Problem(objective , constraints)
23 cvxpylayer = CvxpyLayer(problem , parameters =[A_d_p , v_p , mu_p],

variables =[f])
24 # forward pass
25 impulse , = cvxpylayer(A_d , v_, mu)
26 return impulse

Listing S.1: Implementation of solving compression phase impulse using CvxpyLayers

1 ...
2 # get A_d as stated in Section E.
3 A_d # shape (D-E, C)
4 impulse = solve_compression_impulse(A_d , v_, mu , n_cld , d)

Listing S.2: pseudocode of solving compression phase impulse in CM

1 ...
2 # regularization
3 R = torch.eye(A.shape [0]).type_as(A)*1e-2 # shape (C, C)
4 A_d = torch.cholesky(A+R, upper=True) # shape (C, C)
5 impulse = solve_compression_impulse(A_d , v_, mu , n_cld , d)

Listing S.3: pseudocode of solving compression phase impulse in CMr

The only difference between CM and CMr is how we construct the matrix Ad. In CM, Ad is
constructed as described in Section E, while in CMr, Ad is constructed by adding a regularization
and performing Cholesky decomposition.

G Penetration compensation

To compensate for an existing penetration during restitution phase in the simulation, we use the target
velocity v∗C ∈ RC and the optimization problem (7). In this section, we discuss how to calculate the
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target velocity v∗C so that it does not violate the equality constraints of the system. The calculation
of v∗C might be nontrivial; however, in the backward pass, the gradients of v∗C are not required for
learning contact properties. Thus, in practice, we do not calculate the backward gradients for every
calculation introduced in this section.

To choose the target velocity v∗C , we first come up with a desired velocity vd
C ∈ RC . For each

direction normal to contact surfaces, the component in vd
C is calculated as the depth of penetration

divided by integration time interval. For each tangential dimension, the component in vd
C is set to

zero. This choice of vd
C will fix penetration in the next time step. The downside is that for totally

inelastic contacts, in the next few time steps, the bodies in collision might separate (because the
relative velocity normal to the contact surface is greater than zero), which make the contact looks like
partially elastic. This phenomenon can be avoided by using more than one time step to compensate
the penetration, i.e., by setting the components in vd

C to be a fraction of the depth of the penetration,
as shown in the figure below. The reason that we cannot use vd

C as the target velocity is that vd
C
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Figure S.2: Different vd
C for compensation in a bouncing point mass with gravity and COR=0. First

row: fixing penetration in 1 time step. The circle bounces off the ground after touching the ground.
Second row: fixing penetration in 4 time steps. The penetration is fixed and the point mass doesn’t
bounce up. Third row: no penetration compensation. The penetration are not fixed over time.

might violate equality constraints. Take a ball collide with a pendulum as an example (Fig. 1 in main
paper), vd

C would violate the equality constraint of the pendulum, i.e., the velocity of object 2 can
only be perpendicular to the pendulum. Thus, we need to transform vd

C into target velocity v∗C that
satisfies the equality constraints.

The idea of obtaining a target velocity v∗C is to project the desired velocity vd
C into Cartesian space,

make corrections to satisfy equality constraints and then project it back to the contact space. In
Section C.2, we showed how to project impulses between contact space and Cartesian space. However,
strictly speaking, the projection defined would introduce a scaling if one, say, project a vector from
contact space to Cartesian space and back to contact space. This is not a problem for solving contact
impulses, but it will be problematic if we have this scaling in calculating target velocity v∗C . To
fix this issue, we need to introduce the pseudoinverse of JC . Let’s assume we have some form of
pseudoinverse J+

C (we will define it later.) Then the target velocity in Cartesian space is the sum of
the desired velocity vd

C projected into Cartesian space and a correction term.

v∗ = J+
Cv

d
C + JT

Ev
d
E (S.22)

The equality constraints require JEv
∗ = 0, from which we can solve for vd

E =
−(JEJ

T
E)−1JEJ

+
Cv

d
C , then we project the target velocity in Cartesian space v∗ into contact space

and get
v∗C = JCv

∗ = JC(I− JC(JEJ
T
E)−1JE)J+

Cv
d
C (S.23)

The form of the pseudoinverse J+
C we use here is dependent on the shape of JC . We define the

pseudoinverse of JC as

J+
C =

{
JT
C(JCJ

T
C)−1, if C ≤ D

(JT
CJC)−1JT

C , if C > D
(S.24)

6



When C ≤ D, the dimension of contact space is smaller than that of Cartesian space, we can verify
that projecting a velocity from contact space to Cartesian space and back to contact space equals the
original velocity, i.e., JCJ

+
C = IC . When C > D, the dimension of contact space is greater than that

of Cartesian space, we can verify that projecting a velocity from Cartesian space to contact space and
back to Cartesian space equals the original velocity, i.e., J+

CJC = ID.

H Simulated systems

Bouncing point masses. This system is often referred to as bouncing balls in previous works [9, 10].
We call it bouncing point masses instead since each object is essentially a circle with a point mass at
the center and cannot rotate like real balls. For n objects bouncing in the box, there exists n(n− 1)/2
possible contacts between objects and 4n possible contacts between objects and walls. These contacts
cannot be all active simultaneously. We set up two tasks of 5 bouncing point masses with different
configurations, which will be referred to as BP5-e and BP5. BP5-e is a homogeneous setting, where
the masses and radii are the same for all objects, and contact properties (eP = 1 and µ = 0) are the
same for all contacts. This task conserves energy since no energy is lost during the collisions and
during collision-free periods. BP5 is a heterogeneous setting where the masses and radii are different
for different points and contact properties are different for different contacts.

Bouncing disks. A real 2D disk has mass spread over the circle and thus can rotate, especially when
frictional contacts are involved. Thus we extend the bouncing point masses system to bouncing disks,
where all the disks can rotate. We use the extended bodies representation introduced in [1] to embed
the motion of disks in Cartesian coordinates. The idea is to use the motion of 3 points - the center of
mass as well as the unit vectors aligned with two principle axes - to describe the motion of a disk.
Since the relative position of these 3 points are fixed, this representation will introduce 3 equality
constraints for each disk. A contact impulse will be distributed properly into these 3 points in a way
that obeys the law of physics. Please refer to [1] for more details on this representation. We simulate
5 heterogeneous bouncing disks with heterogeneous contact properties. This task is referred to as
BD5.

Chained pendulums with ground. The 2-pendulum colliding with ground has been used to study
and analyze contact models more than three decades ago [3]. Until recently, some works [1, 11] have
studied learning dynamics of N-pendulums without contacts. Here we simulate a 3-pendulum system
above the ground where the lowest pendulum can collide with the ground. The masses are located at
the joints and the sizes of the joints are different. We follow the convention to assume that pendulums
cannot collide with each other. We propose two tasks: CP3-e with eP = 1 and µ = 0, where energy
is conserved, and CP3 with eP = 0 and µ = 0.5.

Gyroscope with a wall. Gyroscope is a 3D system that exhibits complex dynamics such as precession
and nutation. In order to test our contact model in 3D space, we extend the gyroscope system by
putting a wall near it so that collisions can happen. The motion of the gyroscope is embedded in
Cartesian coordinates using the extended bodies representation[1]. This representation introduces
6 equality constraints. As the gyroscope is attached to a ball joint, one more equality constraint is
introduced. We propose two tasks: Gyro-e with eP = 1 and µ = 0, which conserves energy, and
Gyro with eP = 0.8 and µ = 0.1.

Rope. Our contact model can also capture limits in joint angles and distances, which we show in this
rope system. The motion of the rope is described by 10 equally spaced points along the rope. The
distance between adjacent points are not fixed as in the chained pendulums system. Instead, the rope
can be stretched. The stretch is modelled by elastic springs connecting each pair of adjacent points.
We set the maximum stretch and minimum stretch to be 1.2 and 0.8, respectively, which implies that
two adjacent points are not allowed to be pushed or pulled by more than 20% of their distance at rest.
We also assume that two adjacent segments cannot be bent over a predefined angle (0.2rad). The
above stretch and bending constraint can be handled by our contact model with e = 0 and µ = 0.
During simulation of the rope, a total of 19 “contacts" can be active at the same time, which makes it
nontrivial to solve for contact impulses. The force of the spring is modelled via the potential energy,
which results in a potential energy function that is not linear in the location of points. This is the only
system tested in this work that has a nonlinear potential energy function. This setup is similar to
the rope proposed in [12], and differs from string proposed in [9], as the latter impose no bending
constraint.

7



I Mass ratio details

Here we show the learned mass ratios in BP5-e, BP5, CP3-e and CP3 tasks. We can see the learned
mass ratios match the ground truth with high accuracy. This shows our framework learns interpretable
mass ratios.

Table S.1: Learned mass ratios in BP5-e
Mass ratio m2/m1 m3/m1 m4/m1 m5/m1

True 1.0000 1.0000 1.0000 1.0000

CM-CD-CLNN 1.0000 1.0000 1.0002 1.0003
CM-CD-CHNN 0.9998 1.0000 1.0000 1.0000
CMr-CD-CLNN 1.0000 0.9993 0.9991 0.9989
CMr-CD-CHNN 1.0004 0.9994 0.9999 0.9997

Table S.2: Learned mass ratios in BP5
Mass ratio m2/m1 m3/m1 m4/m1 m5/m1

True 2.0000 6.0000 8.0000 10.0000

CM-CD-CLNN 2.0000 6.0036 8.0014 10.0024
CM-CD-CHNN 2.0005 6.0020 8.0015 10.0029
CMr-CD-CLNN 1.9998 6.0004 8.0033 9.9997
CMr-CD-CHNN 2.0002 6.0001 7.9985 10.0010

Table S.3: Learned mass ratios in CP3 and CP3-e
Mass CP3 CP3-e
ratio m2/m1 m3/m1 m2/m1 m3/m1

True 0.6500 0.7500 2.0000 1.5000

CM-CD-CLNN 0.6500 0.7502 2.0006 1.4990
CM-CD-CHNN 0.6499 0.7500 1.9996 1.4994
CMr-CD-CLNN 0.6500 0.7521 2.0002 1.5001
CMr-CD-CHNN 0.6503 0.7526 2.0009 1.5009

J Analysis of LCP baseline

We use the formulation and codebase provided in [13]. The core implementation of differentiable LCP
solver is the LCPFunction class, which is a subclass of torch.autograd.Function. The forward
pass of the LCPFunction solves a LCP problem and the backward pass computes the gradients. Both
the forward pass and the backward pass leverage the primal dual interior point method (pdipm) to
compute relevant quantities. However, the provided codebase is outdated and is not compatible with
the latest Pytorch release. In order to leverage the codebase to compare it against our method, we
first update the core implementation to make it compatible with the latest Pytorch release. We have
done a sanity check on the examples provided in the codebase to make sure the updated forward pass
and backward pass gives the same results as in the original codebase.

We formulate our 2D and 3D contact problems as LCP problems and use the updated codebase for
simulation. As the standard LCP formulation adopts Newton’s hypothesis to model elasticity, we
adopts Newton’s hypothesis in our LCP formulation as well. We plan to use the bouncing point
masses system to compare differentiable LCP and our method, since here Newton’s hypothesis
and Poisson’s hypothesis results in the same contact impulses. (In a general system, such as the
gyroscope with wall, these two hypotheses result in different contact impulses.) We observe that
our LCP formulation generate expected rigid body motions, which shows that the forward pass of
LCPFunction works well with the CLNN/CHNN dynamics and the extended bodies representation
[1]. However, when we try to learn system and contact properties from generated trajectories, we
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observe that the backward pass of LCPFunction always gives gradients as NaNs. To be specific,
the place where NaNs first show up is the pdipm.solve_kkt() function call in the backward pass
of LCPFunction. This indicates a problem with the computation of gradients in the LCP solver.
Further investigation is required to see if this is a problem about the primal dual interior point method
(pdipm) itself or numerical stability in the implementation.

K Robustness analysis details

In this section, we show additional robustness results. These results shows that our model is robust
under model mismatch (LCP generated training data) and noise.

Table S.4: Robustness on LCP data (contact properties)
CP3 CP3-e BP5-e Gyro

µ eP µ eP µ eP µ eP

True 0.500 0.000 0.000 1.000 0.000 1.000 0.100 0.800

Trained by CM data 0.500 0.004 0.000 1.000 0.000 1.000 0.100 0.800
Trained by LCP data 0.500 0.005 0.003 1.000 0.000 1.000 0.100 0.822

Table S.5: Robustness on LCP data (trajectory relative error w. 95% conficence interval)
CP3 CP3-e BP5-e Gyro

Trained by CM data,
validated on CM val. data

2.34e-5(1.29e-5) 3.85e-3(9.51e-4) 2.83e-3(3.64e-4) 2.39e-3(1.36e-3)

Trained by LCP data,
validated on CM val. data

2.54e-3(3.73e-3) 3.73e-3(6.92e-4) 1.57e-2(5.00e-3) 5.50e-3(1.67e-3)

Trained by LCP data,
validated on LCP val. data

7.35e-4(3.32e-4) 1.31e-3(3.26e-4) 5.46e-3(2.30e-3) 4.51e-4(2.65e-4)

Table S.6: Robustness on noisy data (contact properties)
Noisy CP3 CP3-e
Data µ eP µ eP

True 0.500 0.000 0.000 1.000

0 0.500 0.023 0.002 1.000
N (0, 0.01) 0.496 0.036 0.004 1.000
N (0, 0.05) 0.462 0.061 0.004 1.000

L Scalability details

In this section we show more results on scalability. We use the Rope system to explore how the
trajectory relative error changes with the neural network size, number of training trajectory N and
the degrees of freedom D (equivalently, the number of contacts). All results reported in the tables are
averaged over 100 test trajectories with 95% confidence interval.

Table S.8 shows the effect of network size. Our default network used in CLNN (to approximate
potential energy) is an MLP with 3 layers with hidden sizes of 256. We enlarge the network with 6
layers with hidden sizes of 512. We find that large networks doesn’t improve our models performance.
This is likely because with the default size, the potential energy is already estimated well enough.

Table S.9 shows how the trajectory relative error varies with different number of training trajectories.
As expected, for all of the four models, the error decreases with increasing number of training
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Table S.7: Robustness on the Regularizer in CMr (contact properties)
Regularizer CP3 Gyro

Ablation µ eP µ eP

True 0.500 0.000 0.100 0.800

ε = 0.001 0.500 0.007 0.100 0.811
ε = 0.01 0.500 0.023 0.099 0.892
ε = 0.1 0.501 0.180 0.100 0.886

learnable 0.497 0.453 0.100 0.861

trajectories. For CM-CD-CLNN, it seems the decreasing trend hasn’t converge yet. For MLP-CD-
CLNN, the errors doesn’t change much from N=800 to N=12800. For IN-CP-CLNN and IN-SP-CP,
it is hard to tell if the decrease has converged or not, but it is clear that they have the highest errors
across four models (each row). If we compare CM-CD-CLNN and MLP-CD-CLNN, we can clearly
see that the gap between our model and the baseline decreases from N=25 to N=800 and increases
from N=800 to N=12800. If we compare our model and the other two baselines, the gap decreases
from N=25 to N=800, but the trend from N=800 to N=12800 is unclear. The decreasing trend might
be unexpected. The underlying reason is that our model performs well with a small amount data.
For our model, the difference between N=25 and N=12800 is just 2.9e-4. For baseline models, this
difference (between N=25 and N=12800) is at least one order of magnitude higher. Since our model
has strong physics priors, this result is expected and shows that our model is data efficient.

Table S.10 shows the trajectory relative error (the same metric used in Figure 3) of ropes discretized
in different number of segments (The configurations in Table 3). We find that the performance gap
between our model and baselines is the smallest in D=400 scenario. This indicates that our model
might not have a clear advantage over baselines in contact-rich scenarios.

These set of results shows that our model might not perform well for contact-rich scenarios. We’d also
like to point out that even if our model does not have a clear advantage in contact-rich scenarios, our
main contribution is to demonstrate the framework’s ability in simultaneously learning of unknown
system dynamics and contact properties from trajectory data.

Table S.8: Scalability - large networks
CM-CD-CLNN

default network 3.20e-3(5.69e-4)
large size 6.89e-3(5.07e-4)

Table S.9: Scalability - different training trajectories
CM-CD-CLNN MLP-CD-CLNN IN-CP-CLNN IN-SP-CP

N=25 1.91e-3(3.06e-4) 2.96e-2(8.04e-3) 3.73e-2(3.41e-3) 5.96e-2(7.10e-3)
N=50 1.87e-3(9.60e-4) 1.25e-2(2.32e-3) 3.06e-2(2.35e-3) 6.49e-2(7.71e-3)

N=100 2.04e-3(2.91e-4) 7.36e-3(9.63-e4) 2.10e-2(1.13e-3) 2.82e-2(1.92e-3)
N=200 1.92e-3(3.12e-4) 8.66e-3(1.04e-3) 2.68e-2(1.61e-3) 3.59e-2(2.39e-3)
N=400 1.90e-3(3.40e-4) 7.02e-3(7.76e-4) 1.44e-2(1.01e-3) 2.71e-2(1.61e-3)
N=800 3.20e-3(5.69e-4) 5.98e-3(5.21e-4) 6.87e-3(5.11e-4) 8.94e-3(5.30e-4)

N=1600 2.27e-3(3.51e-4) 5.94e-3(5.26e-4) 6.86e-3(4.88e-4) 9.19e-3(5.27e-4)
N=3200 1.64e-3(2.73e-4) 5.98e-3(5.27e-4) 6.21e-3(5.14e-4) 7.33e-3(5.26e-4)
N=6400 1.57e-3(2.27e-4) 5.92e-3(5.26e-4) 5.90e-3(5.27e-4) 7.72e-3(5.85e-4)
N=12800 1.20e-3(2.88e-4) 5.93e-3(5.29e-4) 5.90e-3(5.27e-4) 7.40e-3(5.31e-4)
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