
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 RELATED WORKS ON QUANTIZATION OF TRANSFORMER-BASED MODELS

Quantization methods can be broadly categorized based whether retraining is required or not Gho-
lami et al. (2021a). Quantization-Aware Training (QAT) requires retraining the model to adapt its
weights to help recover accuracy after quantization Zafrir et al. (2019); Shen et al. (2020); Kim et al.
(2021); Zhang et al. (2023; 2020); Bai et al. (2020), whereas Post-Training Quantization (PTQ) does
not involve retraining Zhao et al. (2019); Cai et al. (2020); Shomron et al. (2021); Oh et al. (2022);
Li et al. (2023). While QAT often results in better accuracy, it is often infeasible for LLMs due to
the expensive retraining cost and/or lack of access to the training data and infrastructure. As such,
most works on LLM quantization have focused on PTQ Yao et al. (2022); Dettmers et al.; Frantar
et al. (2022); Yuan et al. (2023); Lin et al. (2023). Our work also focuses on the PTQ approach.

Quantization methods can be also classified as uniform or non-uniform Gholami et al. (2021a).
Uniform quantization Frantar et al. (2022); Lin et al. (2023); Dettmers et al. (2023); Zafrir et al.
(2019); Shen et al. (2020); Kim et al. (2021); Huang et al. (2023); Liu et al. (2023), which uniformly
divides weight ranges into bins, has gained popularity since it allows faster computation by using
quantized precision arithmetic. However, recent hardware trends indicate that faster computation
does not necessarily translate to improved end-to-end latency or throughput Gholami et al. (2021b),
particularly in memory-bound tasks like generative LLM inference (Sec. 3). Furthermore, uniform
quantization can be sub-optimal when the weight distribution is non-uniform, as in LLMs (Fig. 2).

Hence, we focus on non-uniform quantization, which non-uniformly allocates quantization bins
without constraints for a more accurate representation of weights and smaller quantization errors.
While it does not support integer arithmetic for computational acceleration, this drawback is not sig-
nificant for memory-bound problems as in our focus, where the primary bottleneck lies in memory
bandwidth rather than computation. Among non-uniform quantization methods Jeon et al. (2022);
Chung et al. (2020), the most similar work to ours is GOBO Zadeh et al. (2020), which introduces a
k-means clustering-based look-up table approach. Our work introduces two novel methods as com-
pared to GOBO: (i) sensitivity-aware and (ii) Dense-and-Sparse quantization methodologies, which
yield substantial improvements within the k-means-based non-uniform quantization framework.

A.2 LLAMA RUNTIME FOR DIFFERENT WEIGHT BIT PRECISION

16-bit 8-bit 4-bit
Weight Bit Precision

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ru

nt
im

e

Sequence Length 128

16-bit 8-bit 4-bit
Weight Bit Precision

0.0

0.2

0.4

0.6

0.8

1.0
Sequence Length 2048

Nonlinear Operations
MHA Act-to-Act Matmuls
MHA FC Layers
FFN FC Layers

Figure A.1: Normalized runtime for LLaMA-7B when reducing the bit precision for the weights
with sequence lengths of 128 (left) and 2048 (right). Results were obtained using a roofline-based
performance model for an A5000 GPU. Reducing only the precision of the weights (and not the
activations) is sufficient to obtain significant latency reductions.

A.3 EXPERIMENT SETUP (DETAILS)

Models and Datasets. We have conducted comprehensive evaluations of SqueezeLLM using vari-
ous models on different tasks. First, in the language modeling evaluation, we apply SqueezeLLM to
the LLaMA Touvron et al. (2023a), LLaMA2 Touvron et al. (2023b) and OPT Zhang et al. (2022)
models and measure the perplexity of the quantized models on the C4 Raffel et al. (2020) and Wiki-
Text2 Merity et al. (2016) datasets with a chunk size of 2048. We also evaluate the domain-specific
knowledge and problem-solving ability through zero-shot MMLU Hendrycks et al. (2021) using the
instruction-tuned Vicuna (v1.1 and v1.3) models. We used the Language Model Evaluation Harness

14

Under review as a conference paper at ICLR 2024

to run zero-shot evaluation across all tasks Gao et al. (2021). Finally, we evaluate the instruction fol-
lowing ability following the methodology presented in Chiang et al. (2023). To do so, we generate
answers for 80 sample questions and compared them to the answers generated by the FP16 counter-
part using the GPT-4 score. To minimize the ordering effect, we provide the answers to GPT-4 in
both orders, resulting in a total of 160 queries.

Baseline Methods. We compare SqueezeLLM against PTQ methods for LLMs including RTN as
well as state-of-the-art methods including GPTQ Frantar et al. (2022), AWQ Lin et al. (2023) and
SpQR Dettmers et al. (2023). To ensure a fair comparison, we use GPTQ with activation ordering
throughout all experiments unless specified, which addresses the significant performance drop that
would otherwise occur. For AWQ, we use official quantized models or reproduce using their official
code if they are not available except for LLaMA 65B with group size 256 which ran into OOM
even on A100-80G. Evaluations are then conducted based on our perplexity method. For SpQR,
we rely on the paper’s reported numbers since their perplexity evaluation methodology is identical
to ours. SpQR aims to enhance 3-bit and 4-bit models by introducing grouping, bi-level quantiza-
tion, and sparsity, making them approximately 4 and 4.6 bits on average for LLaMA. In contrast,
SqueezeLLM aims to preserve 3 and 4-bit as closely as possible, minimizing any extra model size
overhead. Therefore, we present our best-effort comparison of SpQR and SqueezeLLM by compar-
ing 3-bit SpQR models, which average around 4 bits, and our 4-bit models, both of which possess
similar model sizes.

Latency Profiling. We measure the latency and peak memory usage for generating 128 and 1024
tokens on an A6000 machine using the Torch CUDA profiler. As an official implementation of
GPTQ (in particular, the grouped version) is not available, we implement an optimized kernel for
single-batch inference based on the most active open-source codebase (GPTQ-For-LLaMA).

To compare latency with SpQR, we rely on their reported speedup numbers to make our best-effort
comparison as their kernel implementation is not publicly available. Regarding AWQ, we utilize
the GPTQ kernel without activation ordering since they exhibit identical behavior during inference.
Although AWQ has released their own kernel implementation, their 3-bit kernels are not publicly
available. Furthermore, they have incorporated optimizations that are unrelated to quantization,
such as LayerNorm and positional embedding, which are universally applicable to all quantization
methods. To ensure a fair comparison with other methodologies, we refrained from using their
released kernels.

A.4 DATA SKEW IN PER-CHANNEL SPARSITY PATTERN

Figure A.2: Histograms of the number of non-zero entries per output channel in 7 different linear
layers in the first LLaMA-7B block. The histograms reveal the presence of a few channels that
contain significantly more non-zero entries than others, highlighting the skew in the sparsity patterns
across different channels within the linear layers.

15

Under review as a conference paper at ICLR 2024

Table A.1: Hardware profiling of latency and memory usage for LLaMA 7B, 13B, 30B, and 65B
quantized into 3-bit when generating 128 tokens on an A6000 GPU. The first row shows the per-
formance of SqueezeLLM without sparsity. The second row shows the performance of SqueezeLLM
with a sparsity level of 0.45% using a standard kernel for processing a CSR matrix. The third row
shows the performance of SqueezeLLM with a sparsity level of 0.45% using a balanced sparse kernel
that allocates 10 nonzeros per thread, thereby more efficiently handling skewed sparse matrices.

Sparse Kernel Method Latency (Seconds) Peak Memory (GB)
7B 13B 30B 65B 7B 13B 30B 65B

SqueezeLLM (0%) 1.5 2.4 4.0 7.6 2.9 5.4 12.5 24.5

Standard SqueezeLLM (0.45%) 3.9 6.2 12.5 14.4 3.2 5.8 13.7 28.0

Balanced SqueezeLLM (0.45%) 1.7 2.6 4.4 8.8 3.1 5.8 14.7 28.0

Fig. A.2 provides the distribution of nonzero entries per output channel across different linear layers
in the first LLaMA-7B block. This plot shows that the nonzero distribution is heavily skewed, with
a few channels containing a much larger proportion of nonzero values. This skewed distribution
makes it challenging to efficiently perform computations using the sparse matrix, as it is difficult to
distribute the nonzero elements evenly across parallel processing units. This motivates our modified
kernel for handling channels with a large number of outliers in order to reduce the runtime overhead
of the sparse matrices. As outlined in Tab. A.1, we observed over 100% added runtime overhead
when employing a standard CSR-based kernel. However, if we allocate each thread to process a
fixed number of nonzeros (rather than having each thread process an entire row) we were able to
drastically reduce the runtime overhead to 10-20% with both sensitive values and outliers.

A.5 ABLATION STUDIES

A.5.1 SENSITIVITY-BASED QUANTIZATION.

Table A.2: Ablation study comparing sensitivity-agnostic and sensitivity-based non-uniform quan-
tization on the LLaMA-7B model with 3-bit quantization, measured by perplexity on the C4 bench-
mark. The baseline model in FP16 achieves a perplexity of 7.08.

Method Sensitivity-Agnostic (↓) Sensitivity-Based (↓)

SqueezeLLM 18.08 7.75
SqueezeLLM (0.05%) 8.10 7.67
SqueezeLLM (0.45%) 7.61 7.56

In our ablation study, we investigate the impact of sensitivity-aware weighted clustering on the
performance of non-uniform quantization. In Tab. A.2, we compared the performance of sensitivity-
aware and sensitivity-agnostic approaches in the context of 3-bit quantization of the LLaMA-7B
model. For sensitivity-agnostic quantization, we apply non-weighted k-means clustering at sparsity
levels of 0%, 0.05%, and 0.45%. The results demonstrate that while non-uniform quantization alone
can reduce the perplexity from 28.26 (of RTN uniform quantization) to 18.08 without considering
sensitivity, incorporating sensitivity-aware clustering is critical in reducing the perplexity to 7.75.
This improvement is consistent across all sparsity levels.

A.5.2 IMPACT OF SPARSITY LEVELS ON SQUEEZELLM

In Fig. A.3 (Left), we present the perplexity results of the 3-bit quantized LLaMA-7B model on the
C4 benchmarks, with varying percentages of sensitive values extracted as the sparse matrix, ranging
from 0% to 0.2%. The plot demonstrates that the perplexity gain diminishes as the sparsity level of
the sensitive values exceeds 0.05%. Therefore, we maintain a fixed sparsity level of 0.05% for the
sensitive values throughout all experiments.

Furthermore, in Figure A.3 (Right), we compare the performance when the sensitive values are
not removed as the sparse matrix (only outlier values are removed) to the case where 0.05% of
the sensitive values are removed. In both scenarios, we control the sparsity level by increasing the
percentage of outlier values included in the sparse matrix to obtain the trade-off curves. The results

16

Under review as a conference paper at ICLR 2024

0.02%

0.05%
0.1%

0.2%

0%

Figure A.3: (Left) Model size (normalized by the size of the FP16 model) and perplexity trade-off
with different percentages of sensitive values included in the sparse matrix. Here, no outlier values
are included in the sparse matrix. (Right) Comparison of the performance when the sensitive values
are not removed as the sparse matrix (only outlier values are removed) to the case where 0.05%
of the sensitive values are removed. In both cases, the trade-offs are obtained by controlling the
percentage of outlier values included in the sparse matrix.

indicate that the sparsity configuration with both sensitive values and outlier values consistently
outperforms the configuration with only outlier values.

A.5.3 IMPACT OF GROUPING ON SQUEEZELLM

0.190 0.192 0.194 0.196 0.198 0.200 0.202
Model Size

7.60

7.61

7.62

7.63

7.64

7.65

7.66

7.67

Pe
rp

le
xi

ty
 o

n
C4

LLaMA-7B 3bit
Grouping
Dense-and-Sparse + Grouping
Dense-and-Sparse

Figure A.4: Model size (normalized by the size of the FP16 model) and perplexity trade-offs of
grouping and the Dense-and-Sparse decomposition on 3-bit quantization of the LLaMA-7B model.
Here, we compare SqueezeLLM with (i) grouping using group sizes of 1024 and 512 (green), (ii)
a hybrid approach that combines a group size of 1024 with a sparsity level of 0.05% (blue), and
(iii) the Dense-and-Sparse decomposition approach with varying sparsity levels (violet). The pure
Dense-and-Sparse decomposition achieves better size-perplexity trade-offs than both grouping and
the hybrid approach.

In Fig. A.5, we explore the effectiveness of incorporating grouping into SqueezeLLM as an alterna-
tive approach to improve quantization performance. We compare three configurations: SqueezeLLM
with (i) grouping using group sizes of 1024 and 512 (green), (ii) a hybrid approach that combines
a group size of 1024 with a sparsity level of 0.05% (blue), and (iii) the Dense-and-Sparse decom-
position approach with varying sparsity levels (violet), where 0.05% of sensitive values are kept
and the percentage of outlier values is adjusted. The results clearly demonstrate that both group-
ing and the hybrid approach result in suboptimal trade-offs compared to the pure Dense-and-Sparse
decomposition approach.

This can be attributed to two factors. First, the Dense-and-Sparse decomposition is a direct solution
to the outlier issue. In contrast, while grouping can mitigate the impact of outliers to some extent by
isolating them within individual groups, it does not provide a direct solution to this issue. In addition,

17

Under review as a conference paper at ICLR 2024

grouping can introduce significant overhead in terms of storage requirements when combined with
non-uniform quantization, since it needs to store one LUT per group. This can be a considerable
overhead compared to the uniform quantization approach where only a scaling and zero point value
per group need to be stored.

A.5.4 COMPARISON OF THE OBD FRAMEWORK VERSUS THE OBS FRAMEWORK FOR
NON-UNIFORM QUANTIZATION

0.190 0.192 0.194 0.196 0.198 0.200 0.202
Model Size

7.6

7.7

7.8

7.9

8.0

8.1

Pe
rp

le
xi

ty
 o

n
C4

LLaMA-7B 3bit
OBS
OBD (Ours)

Figure A.5: Model size (normalized by the size of the FP16 model) and perplexity trade-offs for 3-
bit quantization of the LLaMA-7B model using the Optimal Brain Surgeon (OBS) framework versus
the Optimal Brain Damage (OBD) framework for determining the non-uniform quantization con-
figuration. The trade-off is obtained by adjusting the sparsity level of the outliers being extracted.
Across all sparsity levels, the OBD framework, which is the foundation for SqueezeLLM, consis-
tently outperforms the OBS framework as an alternative approach.

While our method adopts the Optimal Brain Damage (OBD) framework to minimize the perturba-
tion of the final output of the model during quantization, it is worth noting that the Optimal Brain
Surgeon (OBS) framework can also be considered as an alternative. Most existing solutions for LLM
quantization including GPTQ Frantar et al. (2022), AWQ Lin et al. (2023), and SpQR Dettmers et al.
(2023) have utilized the OBS framework, which aims to minimize the perturbation of output activa-
tions in individual layers. In this ablation study, we demonstrate that the OBD framework is superior
to the OBS framework.

Under the OBD framework, the optimization objective for determining the non-uniform quantization
configuration can be reformulated as argminQ∥WX −WQX∥22, where X denotes a batch of input
activations. This object can be approximated as a weighted k-means clustering problem, where each
weight is weighted by the square of the corresponding input activation size. This indeed results in
the activation-based sensitivity/importance metric as in the AWQ framework Lin et al. (2023).

In Fig. A.5.4, we compare the perplexity on the C4 dataset for 3-bit quantization of the LLaMA-7B
model using the OBS framework versus the OBD framework. Across all sparsity levels obtained
by adjusting the number of outliers being extracted, SqueezeLLM based on the OBD framework
outperforms the alternative of using the OBS framework by a large margin of up to around 0.3
perplexity points.

A.6 ADDITIONAL HARDWARE PROFILING RESULTS

In Tab. A.3, we provide additional hardware profiling results using a sequence length of 1024. All
the experimental setups and details are identical to Sec. 5.4 and Tab. 3.

18

Under review as a conference paper at ICLR 2024

Table A.3: Latency (s) and peak memory usage (GB) of 3-bit LLaMA when generating 1024 tokens
on an A6000 GPU. The table compares the FP16 baseline, non-grouped and grouped GPTQ with
activation ordering, and SqueezeLLM with different sparsity levels. For comparison, we include
bitwidth and perplexity on the C4 benchmark.

Method Bit 7B 13B 30B 65B
width PPL (C4) Lat (s) Mem (G) PPL (C4) Lat (s) Mem (G) PPL (C4) Lat (s) Mem (G) PPL (C4) Lat (s) Mem (G)

Baseline 16 7.08 26.5 13.1 6.61 47.0 25.2 5.98 OOM OOM 5.62 OOM OOM

GPTQ 3 7.55 12.6 3.3 6.22 19.1 6.0 5.76 36.8 13.8 5.58 60.2 26.2
SqueezeLLM 3.02 6.32 13.6 3.4 5.60 21.2 6.1 4.66 37.8 16.1 4.05 66.9 29.9

GPTQ (g128) 3.25 6.27 110.7 3.4 5.47 176.1 6.2 4.83 500.8 14.3 4.55 955.2 27.3
SqueezeLLM (0.45%) 3.24 6.13 14.6 3.6 5.45 22.2 6.5 4.44 42.5 17.4 3.88 82.35 32.4

Table A.4: Perplexity comparison of LLaMA-30B and 65B models quantized into 4 and 3 bits using
different methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2. We compare the
performance of GPTQ, AWQ, and SqueezeLLM (SQLLM) in groups based on similar model sizes.
In the first group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the subsequent
groups, we compare SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes.

LLaMA-30B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 5.98 4.10 16 5.98 4.10

RTN 3 (5.33) 28.53 14.89 4 (4.00) 6.33 4.54
GPTQ 3 (5.33) 7.31 5.76 4 (4.00) 6.20 4.43
SpQR - - - 3.89 (4.11) 6.08 4.25

SQLLM 3.02 (5.31) 6.37 4.66 4.03 (3.97) 6.06 4.22

GPTQ (g128) 3.25 (4.92) 6.47 4.83 4.25 (3.77) 6.07 4.24
AWQ (g128) 3.25 (4.92) 6.38 4.63 4.25 (3.77) 6.05 4.21

SQLLM (0.45%) 3.25 (4.92) 6.23 4.44 4.25 (3.77) 6.04 4.18

LLaMA-65B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 5.62 3.53 16 5.62 3.53

RTN 3 (5.33) 12.77 10.59 4 (4.00) 5.86 3.92
GPTQ 3 (5.33) 6.70 5.58 4 (4.00) 5.81 4.11
SpQR 3 (5.33) - 4.2† 3.90 (4.10) 5.70 3.68

SQLLM 3.02 (5.30) 5.99 4.05 4.04 (3.96) 5.69 3.76

GPTQ (g128) 3.25 (4.92) 6.01 4.55 4.25 (3.77) 5.69 3.76
AWQ (g128) 3.25 (4.92) 5.94 4.00 4.25 (3.77) 5.68 3.67

SQLLM (0.45%) 3.24 (4.94) 5.84 3.88 4.26 (3.76) 5.67 3.63

Table A.5: Perplexity comparison of LLaMA2 models quantized into 4 and 3 bits using different
methods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2. We compare the perfor-
mance of GPTQ, AWQ, and SqueezeLLM (SQLLM) in groups based on similar model sizes. In
the first group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the subsequent
groups, we compare SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes. Note that all GPTQ results are with activation reordering.

LLaMA2-7B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 6.97 5.47 16 6.97 5.47

RTN 3 (5.33) 404.45 542.86 4 (4.00) 7.72 6.12
GPTQ 3 (5.33) 10.45 8.97 4 (4.00) 7.42 5.90

SQLLM 3.02 (5.29) 7.72 6.18 4.05 (3.95) 7.12 5.62

GPTQ (g128) 3.24 (4.93) 7.97 6.25 4.24 (3.77) 7.23 5.72
AWQ (g128) 3.24 (4.93) 7.84 6.24 4.24 (3.77) 7.13 5.72

SQLLM (0.45%) 3.24 (4.93) 7.51 5.96 4.27 (3.75) 7.08 5.57

LLaMA2-13B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 6.47 4.88 16 6.47 4.88

RTN 3 (5.33) 12.50 10.68 4 (4.00) 6.83 5.20
GPTQ 3 (5.33) 8.27 6.17 4 (4.00) 6.74 5.08

SQLLM 3.02 (5.30) 6.97 5.36 4.04 (3.96) 6.57 4.99

GPTQ (g128) 3.25 (4.92) 7.06 5.31 4.25 (3.77) 6.57 4.96
AWQ (g128) 3.25 (4.92) 6.94 5.32 4.25 (3.77) 6.56 4.97

SQLLM (0.45%) 3.24 (4.94) 6.82 5.23 4.26 (3.76) 6.54 4.96

A.7 ADDITIONAL EXPERIMENT RESULTS

A.7.1 PERPLEXITY EVALUATION

In Tab. A.4, we provide the full experimental results on LLaMA Touvron et al. (2023a). Further-
more, in Tab. A.5 and A.6, we provide additional experimental results on LLaMA2 Touvron et al.
(2023b) and OPT Zhang et al. (2022) models.

†SpQR does not report their near-3-bit performance. However, in the case of 65B model, its 3-bit perplexity on Wikitext-2 can be inferred
from the trade-off curve in Figure 8 of their paper. This comparison indicates that the gap between SpQR and SqueezeLLM can be larger in
the lower-bitwidth regimes.

19

Under review as a conference paper at ICLR 2024

Table A.6: Perplexity comparison of OPT models quantized into 4 and 3 bits using different meth-
ods including RTN, GPTQ, AWQ and SpQR on C4 and WikiText-2. We compare the performance
of GPTQ, AWQ, and SqueezeLLM (SQLLM) in groups based on similar model sizes. In the first
group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the subsequent groups,
we compare SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different group
sizes. Note that all GPTQ results are with activation reordering. “div” means that the perplexity is
diverged.

OPT-1.3B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 14.72 14.62 16 14.72 14.62

RTN 3 (5.43) div. div. 4 (4) 24.68 48.19
SQLLM 3.04 (5.26) 16.42 16.30 4.09 (3.91) 15.01 14.94

AWQ (g128) 3.25 (4.93) 16.28 16.32 4.25 (3.77) 15.04 14.95
SQLLM (0.5%) 3.25 (4.92) 15.84 15.76 4.30 (3.72) 14.94 14.83

OPT-2.7B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 13.17 12.47 16 13.17 12.47

RTN 3 (5.33) div. div. 4 (4) 17.52 16.92
SQLLM 3.04 (5.26) 14.45 13.85 4.07 (3.93) 13.38 12.80

AWQ (g128) 3.25 (4.93) 16.28 16.32 4.25 (3.77) 13.39 12.73
SQLLM (0.5%) 3.25 (4.92) 13.88 13.43 4.29 (3.73) 13.30 12.60

OPT-6.7B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 11.74 10.86 16 11.74 10.86

RTN 3 (5.33) div. div. 4 (4) 13.38 12.10
SpQR - - - 3.94 (4.06) 11.98 11.04

SQLLM 3.02 (5.29) 12.44 11.70 4.05 (3.96) 11.85 11.03

SpQR - - - 4.27 (3.74) 11.88 10.91
AWQ (g128) 3.25 (4.92) 12.30 11.41 4.25 (3.77) 11.86 10.93

SQLLM (0.5%) 3.26 (4.90) 12.18 11.31 4.28 (3.73) 11.83 10.92

OPT-13B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 11.20 10.12 16 11.20 10.12

RTN 3 (5.33) div. div. 4 (4) 12.35 11.32
SpQR - - - 3.93 (4.07) 11.34 10.28

SQLLM 3.02 (5.29) 12.69 11.76 4.05 (3.96) 11.29 10.24

SpQR - - - 4.27 (3.74) 11.27 10.22
AWQ (g128) 3.25 (4.92) 12.61 10.67 4.25 (3.77) 11.28 10.22

SQLLM (0.5%) 3.26 (4.90) 11.57 10.54 4.28 (3.73) 11.26 10.22

OPT-30B 3-bit 4-bit

Method Avg. Bits PPL (↓) Avg. Bits PPL (↓)
(comp. rate) C4 Wiki (comp. rate) C4 Wiki

Baseline 16 10.69 9.56 16 10.69 9.56

RTN 3 (5.33) div. div. 4 (4) 11.90 10.98
SpQR - - - 3.94 (4.06) 10.78 9.54

SQLLM 3.01 (5.31) 11.10 10.17 4.03 (3.97) 10.75 9.65

SpQR - - - 4.26 (3.76) 10.73 9.50
AWQ (g128) 3.25 (4.92) 10.96 9.85 4.25 (3.77) 10.75 9.59

SQLLM (0.5%) 3.26 (4.90) 10.93 9.77 4.28 (3.73) 10.72 9.61

Table A.7: Comparison of PTQ methods on zero-shot MMLU accuracy applied to Vicuna v1.3.

Method Avg. Bit 7B (↑) 13B (↑) 33B (↑)

Baseline 16 40.2% 43.3% 50.4%

AWQ (g128) 4.25 39.6% 42.2% 49.5%
SqueezeLLM 4.05 39.3% 44.1% 48.0%

SqueezeLLM (0.45%) 4.26 39.5% 43.8% 49.9%

AWQ (g128) 3.25 37.4% 40.7% 46.4%
SqueezeLLM 3.02 35.1% 40.5% 46.2%

SqueezeLLM (0.45%) 3.24 37.6% 40.8% 47.7%

A.7.2 MMLU EVALUATION

In Tab. A.7, we provide additional experimental results for Vicuna v1.3 on MMLU.

A.8 LIMITATIONS

While our empirical results primarily focus on generation tasks, the proposed ideas in this work
are not inherently limited to decoder architectures. However, we have not yet conducted thorough
assessments of our framework’s effectiveness on encoder-only or encoder-decoder architectures, as
well as other neural network architectures. Additionally, it is important to note that our hardware
performance modeling approach relies on a simulation-based method using a roofline model, which
entails making simplified assumptions about the hardware’s inference pipeline.

20

Under review as a conference paper at ICLR 2024

REFERENCES

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. BinaryBERT: Pushing the limit of BERT quantization. arXiv preprint arXiv:2012.15701,
2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
challenges of efficient Transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
ZeroQ: A novel zero shot quantization framework. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13169–13178, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PALM:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Insoo Chung, Byeongwook Kim, Yoonjung Choi, Se Jung Kwon, Yongkweon Jeon, Baeseong Park,
Sangha Kim, and Dongsoo Lee. Extremely low bit transformer quantization for on-device neural
machine translation. arXiv preprint arXiv:2009.07453, 2020.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. In Advances in Neural Information Processing Systems.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized repre-
sentation for near-lossless LLM weight compression. arXiv preprint arXiv:2306.03078, 2023.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
HAWQ-V2: Hessian Aware trace-Weighted Quantization of neural networks. NeurIPS’19 work-
shop on Beyond First-Order Optimization Methods in Machine Learning., 2019.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. GLAM: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–
5569. PMLR, 2022.

Georgii Evtushenko. Sparse Matrix-Vector Multiplication with CUDA.
https://medium.com/analytics-vidhya/sparse-matrix-vector-multiplication-with-cuda-
42d191878e8f, 2019.

Goran Flegar and Enrique S Quintana-Ortı́. Balanced csr sparse matrix-vector product on graphics
processors. In Euro-Par 2017: Parallel Processing: 23rd International Conference on Paral-
lel and Distributed Computing, Santiago de Compostela, Spain, August 28–September 1, 2017,
Proceedings 23, pp. 697–709. Springer, 2017.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

Under review as a conference paper at ICLR 2024

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021a.

Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W Mahoney, and Kurt Keutzer. AI and Memory
Wall. https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8, 2021b.

GPTQ-For-LLaMA. https://github.com/qwopqwop200/gptq-for-llama.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pp. 164–171, 1993.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yafeng Huang, Huanrui Yang, Zhen Dong, Denis Gudovskiy, Tomoyuki Okuno, Yohei Nakata, Yuan
Du, Shanghang Zhang, and Kurt Keutzer. Output sensitivity-aware detr quantization. 2023.

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr. BiQ: Post-training non-uniform
quantization based on minimizing the reconstruction error. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12329–12338, 2022.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-BERT: Integer-
only bert quantization. arXiv preprint arXiv:2101.01321, 2021.

Sehoon Kim, Coleman Hooper, Thanakul Wattanawong, Minwoo Kang, Ruohan Yan, Hasan Genc,
Grace Dinh, Qijing Huang, Kurt Keutzer, Michael W Mahoney, Sophia Shao, and Amir Gholami.
Full stack optimization of transformer inference: a survey. arXiv preprint arXiv:2302.14017,
2023.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier
dimensions that disrupt transformers. arXiv preprint arXiv:2105.06990, 2021.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Xiuyu Li, Long Lian, Yijiang Liu, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and
Kurt Keutzer. Q-diffusion: Quantizing diffusion models. arXiv preprint arXiv:2302.04304, 2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. 2023.

Yijiang Liu, Huanrui Yang, Zhen Dong, Kurt Keutzer, Li Du, and Shanghang Zhang. NoisyQuant:
Noisy bias-enhanced post-training activation quantization for vision transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20321–20330,
2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Sangyun Oh, Hyeonuk Sim, Jounghyun Kim, and Jongeun Lee. Non-uniform step size quantiza-
tion for accurate post-training quantization. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XI, pp. 658–673. Springer,
2022.

David A Patterson. Latency lags bandwith. Communications of the ACM, 47(10):71–75, 2004.

11

Under review as a conference paper at ICLR 2024

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W Mahoney,
and Kurt Keutzer. Q-BERT: Hessian based ultra low precision quantization of bert. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 8815–8821, 2020.

Gil Shomron, Freddy Gabbay, Samer Kurzum, and Uri Weiser. Post-training sparsity-aware quanti-
zation. Advances in Neural Information Processing Systems, 34:17737–17748, 2021.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models. arXiv preprint arXiv:2209.13325, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xian-
glong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
ZeroQuant: Efficient and affordable post-training quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861, 2022.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. RPTQ: Reorder-based post-training quantization for
large language models. arXiv preprint arXiv:2304.01089, 2023.

Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. GOBO: Quantizing
attention-based nlp models for low latency and energy efficient inference. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 811–824. IEEE, 2020.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

12

Under review as a conference paper at ICLR 2024

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu. TernaryBERT:
Distillation-aware ultra-low bit bert. arXiv preprint arXiv:2009.12812, 2020.

Yifan Zhang, Zhen Dong, Huanrui Yang, Ming Lu, Cheng-Ching Tseng, Yandong Guo, Kurt
Keutzer, Li Du, and Shanghang Zhang. Qd-bev: Quantization-aware view-guided distillation
for multi-view 3d object detection. 2023.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network
quantization without retraining using outlier channel splitting. In International conference on
machine learning, pp. 7543–7552. PMLR, 2019.

13

	Introduction
	Related Work
	Memory Wall
	Methodology
	Sensitivity-Based Non-uniform Quantization
	Dense-and-Sparse Quantization
	Dense-and-Sparse Kernel Implementation

	Evaluations
	Experiment Setup
	Main Results
	Quantization of Instruction Following Models
	Hardware Deployment and Profiling

	Conclusion
	Appendix
	Related Works on Quantization of Transformer-based Models
	LLaMA Runtime for Different Weight Bit Precision
	Experiment Setup (Details)
	Data Skew in Per-channel Sparsity Pattern
	Ablation Studies
	Sensitivity-Based Quantization.
	Impact of Sparsity Levels on SqueezeLLM
	Impact of Grouping on SqueezeLLM
	Comparison of the OBD Framework versus the OBS Framework for Non-uniform Quantization

	Additional Hardware Profiling Results
	Additional Experiment Results
	Perplexity Evaluation
	MMLU Evaluation

	Limitations

