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A APPENDIX

A.1 RELATED WORKS ON QUANTIZATION OF TRANSFORMER-BASED MODELS

Quantization methods can be broadly categorized based whether retraining is required or not |Gho-|
lami et al| (2021d). Quantization-Aware Training (QAT) requires retraining the model to adapt its

weights to help recover accuracy after quantization|Zafrir et al.| (2019));[Shen et al.| (2020); [Kim et al.
(2021));[Zhang et al.| (2023} [2020); Bai et al.| (2020), whereas Post-Training Quantization (PTQ) does

not involve retraining|Zhao et al.| 2019); [Cat et al| (2020); [Shomron et al| (202T)); |Oh et al] (2022);
(2023). While QAT often results in better accuracy, it is often infeasible for LLMs due to

the expensive retraining cost and/or lack of access to the training data and infrastructure. As such,
most works on LLM quantization have focused on PTQ [Yao et al|(2022); [Dettmers et al.; [Frantar|

et al| (2022); [Yuan et al.| (2023)); [Lin et al| (2023)). Our work also focuses on the PTQ approach.

Quantization methods can be also classified as uniform or non-uniform (20214).
Uniform quantization [Frantar et al|(2022); [Lin et al.| (2023); Dettmers et al.| (2023)); Zafrir et al.
(2019));|Shen et al.[(2020); Kim et al.|(2021)); Huang et al.|(2023)); Liu et al.| (2023)), which uniformly
divides weight ranges into bins, has gained popularity since it allows faster computation by using
quantized precision arithmetic. However, recent hardware trends indicate that faster computation
does not necessarily translate to improved end-to-end latency or throughput|Gholami et al.| (2021b)),
particularly in memory-bound tasks like generative LLM inference (Sec. [3). Furthermore, uniform
quantization can be sub-optimal when the weight distribution is non-uniform, as in LLMs (Fig.[2).

Hence, we focus on non-uniform quantization, which non-uniformly allocates quantization bins
without constraints for a more accurate representation of weights and smaller quantization errors.
While it does not support integer arithmetic for computational acceleration, this drawback is not sig-
nificant for memory-bound problems as in our focus, where the primary bottleneck lies in memory
bandwidth rather than computation. Among non-uniform quantization methods (2022);
Chung et al.| (2020), the most similar work to ours is GOBO [Zadeh et al.| (2020), which introduces a
k-means clustering-based look-up table approach. Our work introduces two novel methods as com-
pared to GOBO: (i) sensitivity-aware and (ii) Dense-and-Sparse quantization methodologies, which
yield substantial improvements within the k-means-based non-uniform quantization framework.

A.2 LLAMA RUNTIME FOR DIFFERENT WEIGHT BIT PRECISION
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Figure A.1: Normalized runtime for LLaMA-7B when reducing the bit precision for the weights
with sequence lengths of 128 (left) and 2048 (right). Results were obtained using a roofline-based
performance model for an A5000 GPU. Reducing only the precision of the weights (and not the
activations) is sufficient to obtain significant latency reductions.

A.3 EXPERIMENT SETUP (DETAILS)

Models and Datasets. We have conducted comprehensive evaluations of SqueezeLLLM using vari-
ous models on different tasks. First, in the language modeling evaluation, we apply SqueezeLLM to
the LLaMA [Touvron et al.| (2023a), LLaMA2 [Touvron et al.| (2023b) and OPT (2022)
models and measure the perplexity of the quantized models on the C4 Raffel et al.|(2020) and Wiki-
Text2 [Merity et al.| (2016) datasets with a chunk size of 2048. We also evaluate the domain-specific
knowledge and problem-solving ability through zero-shot MMLU [Hendrycks et al.| (2021) using the
instruction-tuned Vicuna (v1.1 and v1.3) models. We used the Language Model Evaluation Harness
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to run zero-shot evaluation across all tasks |Gao et al.[(2021). Finally, we evaluate the instruction fol-
lowing ability following the methodology presented in |Chiang et al.| (2023). To do so, we generate
answers for 80 sample questions and compared them to the answers generated by the FP16 counter-
part using the GPT-4 score. To minimize the ordering effect, we provide the answers to GPT-4 in
both orders, resulting in a total of 160 queries.

Baseline Methods. We compare SqueezeLLM against PTQ methods for LLMs including RTN as
well as state-of-the-art methods including GPTQ |Frantar et al.|(2022), AWQ [Lin et al.| (2023) and
SpQR Dettmers et al.| (2023). To ensure a fair comparison, we use GPTQ with activation ordering
throughout all experiments unless specified, which addresses the significant performance drop that
would otherwise occur. For AWQ, we use official quantized models or reproduce using their official
code if they are not available except for LLaMA 65B with group size 256 which ran into OOM
even on A100-80G. Evaluations are then conducted based on our perplexity method. For SpQR,
we rely on the paper’s reported numbers since their perplexity evaluation methodology is identical
to ours. SpQR aims to enhance 3-bit and 4-bit models by introducing grouping, bi-level quantiza-
tion, and sparsity, making them approximately 4 and 4.6 bits on average for LLaMA. In contrast,
SqueezeLLM aims to preserve 3 and 4-bit as closely as possible, minimizing any extra model size
overhead. Therefore, we present our best-effort comparison of SpQR and SqueezeLLM by compar-
ing 3-bit SpQR models, which average around 4 bits, and our 4-bit models, both of which possess
similar model sizes.

Latency Profiling. We measure the latency and peak memory usage for generating 128 and 1024
tokens on an A6000 machine using the Torch CUDA profiler. As an official implementation of
GPTQ (in particular, the grouped version) is not available, we implement an optimized kernel for
single-batch inference based on the most active open-source codebase (|GPTQ-For-LLaMA)).

To compare latency with SpQR, we rely on their reported speedup numbers to make our best-effort
comparison as their kernel implementation is not publicly available. Regarding AWQ, we utilize
the GPTQ kernel without activation ordering since they exhibit identical behavior during inference.
Although AWQ has released their own kernel implementation, their 3-bit kernels are not publicly
available. Furthermore, they have incorporated optimizations that are unrelated to quantization,
such as LayerNorm and positional embedding, which are universally applicable to all quantization
methods. To ensure a fair comparison with other methodologies, we refrained from using their
released kernels.

A.4 DATA SKEW IN PER-CHANNEL SPARSITY PATTERN
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Figure A.2: Histograms of the number of non-zero entries per output channel in 7 different linear
layers in the first LLaMA-7B block. The histograms reveal the presence of a few channels that
contain significantly more non-zero entries than others, highlighting the skew in the sparsity patterns
across different channels within the linear layers.
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Table A.1: Hardware profiling of latency and memory usage for LLaMA 7B, 13B, 30B, and 65B
quantized into 3-bit when generating 128 tokens on an A6000 GPU. The first row shows the per-
formance of SqueezeLLM without sparsity. The second row shows the performance of Squeeze LLM
with a sparsity level of 0.45% using a standard kernel for processing a CSR matrix. The third row
shows the performance of Squeeze LLM with a sparsity level of 0.45% using a balanced sparse kernel
that allocates 10 nonzeros per thread, thereby more efficiently handling skewed sparse matrices.

Sparse Kernel Method 7B Lag;cy (Sgco(;ldS) 658 | 7B Peallggd emO;gB(GB) 65B

| SqueezeLLM (0%) | 15 24 40 76 | 29 54 125 245
Standard | SqueezeLLM (045%) | 39 62 125 144 | 32 58 137 280
Balanced | SqueezeLLM (045%) | 17 26 44 88 | 31 58 147 280

Fig.[A.2]provides the distribution of nonzero entries per output channel across different linear layers
in the first LLaMA-7B block. This plot shows that the nonzero distribution is heavily skewed, with
a few channels containing a much larger proportion of nonzero values. This skewed distribution
makes it challenging to efficiently perform computations using the sparse matrix, as it is difficult to
distribute the nonzero elements evenly across parallel processing units. This motivates our modified
kernel for handling channels with a large number of outliers in order to reduce the runtime overhead
of the sparse matrices. As outlined in Tab. [A.T] we observed over 100% added runtime overhead
when employing a standard CSR-based kernel. However, if we allocate each thread to process a
fixed number of nonzeros (rather than having each thread process an entire row) we were able to
drastically reduce the runtime overhead to 10-20% with both sensitive values and outliers.

A.5 ABLATION STUDIES

A.5.1 SENSITIVITY-BASED QUANTIZATION.

Table A.2: Ablation study comparing sensitivity-agnostic and sensitivity-based non-uniform quan-
tization on the LLaMA-7B model with 3-bit quantization, measured by perplexity on the C4 bench-
mark. The baseline model in FP16 achieves a perplexity of 7.08.

Method \ Sensitivity-Agnostic (].) Sensitivity-Based ()
SqueezeLLM 18.08 7.75
SqueezeLLM (0.05%) 8.10 7.67
SqueezeLLM (0.45%) 7.61 7.56

In our ablation study, we investigate the impact of sensitivity-aware weighted clustering on the
performance of non-uniform quantization. In Tab.[A.2] we compared the performance of sensitivity-
aware and sensitivity-agnostic approaches in the context of 3-bit quantization of the LLaMA-7B
model. For sensitivity-agnostic quantization, we apply non-weighted k-means clustering at sparsity
levels of 0%, 0.05%, and 0.45%. The results demonstrate that while non-uniform quantization alone
can reduce the perplexity from 28.26 (of RTN uniform quantization) to 18.08 without considering
sensitivity, incorporating sensitivity-aware clustering is critical in reducing the perplexity to 7.75.
This improvement is consistent across all sparsity levels.

A.5.2 IMPACT OF SPARSITY LEVELS ON SQUEEZELLM

In Fig. [A.3|(Left), we present the perplexity results of the 3-bit quantized LLaMA-7B model on the
C4 benchmarks, with varying percentages of sensitive values extracted as the sparse matrix, ranging
from 0% to 0.2%. The plot demonstrates that the perplexity gain diminishes as the sparsity level of
the sensitive values exceeds 0.05%. Therefore, we maintain a fixed sparsity level of 0.05% for the
sensitive values throughout all experiments.

Furthermore, in Figure (Right), we compare the performance when the sensitive values are
not removed as the sparse matrix (only outlier values are removed) to the case where 0.05% of
the sensitive values are removed. In both scenarios, we control the sparsity level by increasing the
percentage of outlier values included in the sparse matrix to obtain the trade-off curves. The results
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Figure A.3: (Left) Model size (normalized by the size of the FP16 model) and perplexity trade-off
with different percentages of sensitive values included in the sparse matrix. Here, no outlier values
are included in the sparse matrix. (Right) Comparison of the performance when the sensitive values
are not removed as the sparse matrix (only outlier values are removed) to the case where 0.05%
of the sensitive values are removed. In both cases, the trade-offs are obtained by controlling the
percentage of outlier values included in the sparse matrix.

indicate that the sparsity configuration with both sensitive values and outlier values consistently
outperforms the configuration with only outlier values.

A.5.3 IMPACT OF GROUPING ON SQUEEZELLM
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Figure A.4: Model size (normalized by the size of the FP16 model) and perplexity trade-offs of
grouping and the Dense-and-Sparse decomposition on 3-bit quantization of the LLaMA-7B model.
Here, we compare SqueezeLLM with (i) grouping using group sizes of 1024 and 512 (green), (ii)
a hybrid approach that combines a group size of 1024 with a sparsity level of 0.05% (blue), and
(iii) the Dense-and-Sparse decomposition approach with varying sparsity levels (violet). The pure
Dense-and-Sparse decomposition achieves better size-perplexity trade-offs than both grouping and
the hybrid approach.

In Fig.[A.3] we explore the effectiveness of incorporating grouping into SqueezeLLM as an alterna-
tive approach to improve quantization performance. We compare three configurations: SqueezeLLM
with (i) grouping using group sizes of 1024 and 512 (green), (ii) a hybrid approach that combines
a group size of 1024 with a sparsity level of 0.05% (blue), and (iii) the Dense-and-Sparse decom-
position approach with varying sparsity levels (violet), where 0.05% of sensitive values are kept
and the percentage of outlier values is adjusted. The results clearly demonstrate that both group-
ing and the hybrid approach result in suboptimal trade-offs compared to the pure Dense-and-Sparse
decomposition approach.

This can be attributed to two factors. First, the Dense-and-Sparse decomposition is a direct solution
to the outlier issue. In contrast, while grouping can mitigate the impact of outliers to some extent by
isolating them within individual groups, it does not provide a direct solution to this issue. In addition,
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grouping can introduce significant overhead in terms of storage requirements when combined with
non-uniform quantization, since it needs to store one LUT per group. This can be a considerable
overhead compared to the uniform quantization approach where only a scaling and zero point value
per group need to be stored.

A.5.4 COMPARISON OF THE OBD FRAMEWORK VERSUS THE OBS FRAMEWORK FOR
NON-UNIFORM QUANTIZATION
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Figure A.5: Model size (normalized by the size of the FP16 model) and perplexity trade-offs for 3-
bit quantization of the LLaMA-7B model using the Optimal Brain Surgeon (OBS) framework versus
the Optimal Brain Damage (OBD) framework for determining the non-uniform quantization con-
figuration. The trade-off is obtained by adjusting the sparsity level of the outliers being extracted.
Across all sparsity levels, the OBD framework, which is the foundation for SqueezeLLM, consis-
tently outperforms the OBS framework as an alternative approach.

While our method adopts the Optimal Brain Damage (OBD) framework to minimize the perturba-
tion of the final output of the model during quantization, it is worth noting that the Optimal Brain
Surgeon (OBS) framework can also be considered as an alternative. Most existing solutions for LLM
quantization including GPTQ |Frantar et al.|(2022), AWQ |Lin et al.[(2023), and SpQR |Dettmers et al.
(2023) have utilized the OBS framework, which aims to minimize the perturbation of output activa-
tions in individual layers. In this ablation study, we demonstrate that the OBD framework is superior
to the OBS framework.

Under the OBD framework, the optimization objective for determining the non-uniform quantization
configuration can be reformulated as arg ming, | WX — W X |3, where X denotes a batch of input
activations. This object can be approximated as a weighted k-means clustering problem, where each
weight is weighted by the square of the corresponding input activation size. This indeed results in
the activation-based sensitivity/importance metric as in the AWQ framework |Lin et al.[(2023)).

In Fig.[A.5.4] we compare the perplexity on the C4 dataset for 3-bit quantization of the LLaMA-7B
model using the OBS framework versus the OBD framework. Across all sparsity levels obtained
by adjusting the number of outliers being extracted, SqueezeLLM based on the OBD framework
outperforms the alternative of using the OBS framework by a large margin of up to around 0.3
perplexity points.

A.6 ADDITIONAL HARDWARE PROFILING RESULTS

In Tab. [A.3] we provide additional hardware profiling results using a sequence length of 1024. All
the experimental setups and details are identical to Sec.[5.4]and Tab.
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Table A.3: Latency (s) and peak memory usage (GB) of 3-bit LLaMA when generating 1024 tokens
on an A6000 GPU. The table compares the FP16 baseline, non-grouped and grouped GPTQ with
activation ordering, and SqueezeLLM with different sparsity levels. For comparison, we include
bitwidth and perplexity on the C4 benchmark.

Method Bit 7B 13B 30B 65B
etho width | PPL (C4) Lat(s) Mem (G) | PPL (C4) Lat(s) Mem (G) | PPL (C4) Lat(s) Mem (G) | PPL (C4) Lat(s) Mem (G)
Baseline | 16 | 7.08 265 131 | 66l 47.0 252 | 598 OOM OOM | 562 OOM OOM
GPTQ 3 755 12.6 33 6.22 19.1 6.0 5.76 36.8 13.8 5.58 60.2 262
SqueezeLLM 3.02 6.32 13.6 34 5.60 212 6.1 4.66 37.8 16.1 4.05 66.9 299
GPTQ (g128) 3.25 627 1107 34 547 1761 6.2 483 5008 143 455 9552 273
SqueezeLLM (0.45%) | 3.24 6.13 14.6 3.6 545 222 6.5 4.44 425 17.4 388 8235 324

Table A.4: Perplexity comparison of LLaMA-30B and 65B models quantized into 4 and 3 bits using
different methods including RTN, GPTQ, AWQ and SpQOR on C4 and WikiText-2. We compare the
performance of GPTQ, AWQ, and SqueezeLLM (SQLLM) in groups based on similar model sizes.
In the first group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the subsequent
groups, we compare SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes.

LLaMA-30B | 3-bit \ 4-bit LLaMA-65B | 3-bit | 4-bit
Avg. Bits | PPL(]) | Avg Bits | PPL({) Avg. Bits | PPL(}) | Avg Bits | PPL())
Method (comp. rate) | C4  Wiki | (comp. rate) | C4  Wiki Method (comp. rate) | C4  Wiki | (comp. rate) | C4  Wiki
Baseline | 16 | 598 410| 16  |598 4.10 Baseline | 16 | 562 353| 16  |562 3.53
RTN 3(533) |28.53 14.89| 4(4.00) |633 4.54 RTN 3(533) | 1277 1059 | 4(4.00) |586 3.92
GPTQ 3(533) | 731 576 | 4(400) |620 4.43 GPTQ 3(533) | 670 558 | 4(4.00) |581 411
SpQR - - - | 3894.11) | 608 425 SpQR 3(5.33) - 42T | 390.10) | 570 3.68
SQLLM 3.02(531) | 637 466 | 4.03(3.97) | 6.06 4.22 SQLLM 3.02(5.30) | 599 4.05 | 404(3.96) | 5.69 376
GPTQ (g128) | 3.25(4.92) | 647 483 | 425(3.77) | 607 424  GPTQ(z128) | 3.25(4.92) | 601 455 | 425(3.77) | 5.69 3.76
AWQ (g128) | 325(4.92) | 6.38 4.63 | 425(3.77) | 605 421  AWQ(gl28) | 3.25(4.92) | 594 400 | 4.25(3.77) | 5.68 3.67
SQLLM (0.45%) | 3.25(4.92) | 623 4.44 | 425(3.77) | 6.04 418 SQLLM (0.45%) | 3.24 (4.94) | 584 3.88 | 426 (3.76) | 5.67 3.63

Table A.5: Perplexity comparison of LLaMA2 models quantized into 4 and 3 bits using different
methods including RTN, GPTQ, AWQ and SpQOR on C4 and WikiText-2. We compare the perfor-
mance of GPTQ, AWQ, and SqueezeLLM (SQLLM) in groups based on similar model sizes. In
the first group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the subsequent
groups, we compare SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different
group sizes. Note that all GPTQ results are with activation reordering.

LLaMA2-7B \ 3-bit \ 4-bit LLaMA2-13B \ 3-bit \ 4-bit
Method Avg. Bits PPL (l)_ ) Avg. Bits PPL (i_) ) Method Avg. Bits PPL (L? ) Avg. Bits PPL (L') )
(comp. rate) Cc4 Wiki | (comp. rate) | C4 Wiki (comp. rate) | C4  Wiki | (comp. rate) | C4 Wiki
Baseline \ 16 \ 6.97 547 \ 16 \ 6.97 547 Baseline \ 16 \ 6.47 488 \ 16 \ 6.47 488
RTN 3(5.33) |404.45 542.86| 4(4.000 |7.72 6.12 RTN 3(5.33) 12.50 10.68| 4(4.00) |6.83 520
GPTQ 3(5.33) 1045  8.97 4(4.00) |742 590 GPTQ 3(5.33) 827 6.17 4(4.00) [6.74 5.08
SQLLM 3.02(529) | 7.72 6.18 | 4.05(3.95) | 7.12 5.62 SQLLM 3.02(5.30) | 6.97 5.36 | 4.04(3.96) | 6.57 4.99
GPTQ (g128) | 3.24(4.93) | 797 625 | 424(3.77) |7.23 572 GPTQ (g128) | 3.25(4.92) | 7.06 531 | 4.25(3.77) | 6.57 4.96
AWQ (g128) 3.24(493) | 7.84 624 | 424(3.77) | 7.13 572 AWQ (g128) 3.25(4.92) | 6.94 532 | 425(3.77) |6.56 4.97
SQLLM (0.45%) | 3.24(4.93) | 7.51 5.96 | 4.27(3.75) |7.08 5.57 SQLLM (0.45%) | 3.24(4.94) | 6.82 523 | 426(3.76) | 6.54 4.96

A.7 ADDITIONAL EXPERIMENT RESULTS

A.7.1 PERPLEXITY EVALUATION

In Tab. [A4] we provide the full experimental results on LLaMA [Touvron et al/ (2023a). Further-
more, in Tab. [A:3]and [A.6] we provide additional experimental results on LLaMA?2 [Touvron et al.
(2023b) and OPT Zhang et al|(2022) models. |

TSpQR does not report their near-3-bit performance. However, in the case of 65B model, its 3-bit perplexity on Wikitext-2 can be inferred
from the trade-off curve in Figure 8 of their paper. This comparison indicates that the gap between SpQR and SqueezeLLM can be larger in
the lower-bitwidth regimes.
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Table A.6: Perplexity comparison of OPT models quantized into 4 and 3 bits using different meth-
ods including RTN, GPTQ, AWQ and SpQOR on C4 and WikiText-2. We compare the performance
of GPTQ, AWQ, and SqueezeLLM (SQLLM) in groups based on similar model sizes. In the first
group, we compare dense-only SqueezeLLM with non-grouped GPTQ. In the subsequent groups,
we compare SqueezeLLM with different levels of sparsity to GPTQ and AWQ with different group
sizes. Note that all GPTQ results are with activation reordering. “div”’ means that the perplexity is

diverged.
OPT-13B | 3-bit | 4-bit OPT-27B | 3-bit | 4-bit
Avg. Bits PPL(l) | Avg Bits | PPL(J) Avg. Bits | PPL(l) | Avg Bits | PPL(])
Method | omp. rate) | C4  Wiki | (comp. rate) | C4  Wiki Method | comp. rate) | C4  Wiki | (comp. rate) | C4 Wik
Baseline | 16 [1472 1462| 16  |1472 1462 Baseline | 16  |13.17 1247| 16 |13.17 1247
RTN 3(5.43) div.  div. 4(4) 24.68 48.19 RTN 3(5.33) div.  div. 4(4) 17.52 16.92
SQLLM 3.04 (5.26) |16.42 16.30 | 4.09 (3.91) |15.01 14.94 SQLLM 3.04 (5.26) | 14.45 13.85| 4.07 (3.93) | 13.38 12.80
AWQ (g128) 3.25(4.93) [16.28 16.32| 4.25(3.77) | 15.04 14.95 AWQ (g128) 3.25(4.93) | 16.28 16.32| 4.25(3.77) | 13.39 12.73
SQLLM (0.5%) | 3.25(4.92) | 15.84 15.76 | 430 (3.72) | 14.94 14.83  SQLLM (0.5%) | 3.25(4.92) | 13.88 13.43| 4.29 (3.73) | 13.30 12.60
OPT-6.7B | 3-bit \ 4-bit OPT-13B | 3-bit \ 4-bit
Method Avg. Bits PPL (l} ) Avg. Bits PPL (L). ) Method Avg. Bits PPL (L? ) Avg. Bits PPL (L? )
(comp. rate) | C4  Wiki | (comp. rate) | C4  Wiki (comp. rate) | C4  Wiki | (comp. rate) | C4  Wiki
Baseline | 16 |11.74 1086| 16  |1L.74 10.86 Baseline | 16  |1120 10.12| 16  |11.20 10.12
RTN 3(533) | div. div. 4(4) 13.38 12.10 RTN 3(533) | div. div. 44) 1235 11.32
SpQR - - - | 3.944.06) |11.98 11.04 SpQR - - - | 3.934.07) |11.34 1028
SQLLM 3.02(5.29) |12.44 11.70 | 4.05(3.96) |11.85 11.03 SQLLM 3.02(5.29) | 12.69 11.76 | 4.05 (3.96) | 11.29 10.24
SpQR - - - | 427(3.74) | 11.88 1091 SpQR - - - | 4273.74) | 1127 1022
AWQ (g128) | 3.25(4.92) | 12.30 11.41| 425(3.77) | 11.86 10.93 AWQ (g128) | 3.25(4.92) | 12.61 10.67 | 4.25(3.77) | 11.28 10.22
SQLLM (0.5%) | 3.26 (4.90) | 12.18 11.31 | 4.28 (3.73) | 11.83 10.92 SQLLM (0.5%) | 3.26 (4.90) | 11.57 10.54 | 4.28 (3.73) | 11.26 10.22
OPT-30B | 3-bit | 4-bit
Avg. Bits | PPL(]) Avg. Bits | PPL ()
Method | (. rate) | C4  Wiki | (comp. rate) | C4  Wiki
Baseline | 16 |10.69 956 | 16  |10.69 9.56
RTN 3(5.33) div.  div. 4(4) 11.90 10.98
SpQR - - - 3.94 (4.06) | 10.78 9.54
SQLLM 3.01 (5.31) | 11.10 10.17 | 4.03 3.97) | 10.75 9.65
SpQR - - - 4.26 (3.76) | 10.73  9.50
AWQ (g128) 3.25(4.92) | 1096 9.85 | 4.25(3.77) | 10.75 9.59
SQLLM (0.5%) | 3.26 (4.90) | 10.93 9.77 | 4.28 (3.73) [ 10.72 9.61

Table A.7: Comparison of PTQ methods on zero-shot MMLU accuracy applied to Vicuna v1.3.

Method | Avg. Bit | 7B (1) 13B (1) 33B (1)
Baseline | 16 | 40.2% 43.3% 50.4%

AWQ (g128) 4.25 39.6% 42.2% 49.5%
SqueezeLLM 4.05 39.3% 44.1% 48.0%
SqueezeLLM (0.45%) 4.26 39.5% 43.8% 49.9%
AWQ (g128) 3.25 37.4% 40.7% 46.4%
SqueezeLLM 3.02 35.1% 40.5% 46.2%
SqueezeLLM (0.45%) 3.24 37.6% 40.8% 47.7%

A.7.2 MMLU EVALUATION

In Tab. we provide additional experimental results for Vicuna v1.3 on MMLU.

A.8 LIMITATIONS

While our empirical results primarily focus on generation tasks, the proposed ideas in this work
are not inherently limited to decoder architectures. However, we have not yet conducted thorough
assessments of our framework’s effectiveness on encoder-only or encoder-decoder architectures, as
well as other neural network architectures. Additionally, it is important to note that our hardware
performance modeling approach relies on a simulation-based method using a roofline model, which

entails making simplified assumptions about the hardware’s inference pipeline.
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