648	A APPENDIX
649 650	_
651	A.1 CORRECTNESS PROOF OF THEOREM 2
652	<i>Proof.</i> The state transitions in FedDES-Async are defined as:
653	1766j. The state transitions in PedD Lo Filisfie ale defined as.
654	\mathcal{T} , C (4) C (4) \setminus C (4 + 1) C (4 + 1)
655	$\mathcal{T}_{\text{FedDES-Async}} : S_{\text{server}}(t), S_{\text{client}_i}(t) \longrightarrow S_{\text{server}}(t+1), S_{\text{client}_i}(t+1),$
656	where $S_{\text{server}}(t)$ represents the server's state at time t, and $S_{\text{client}_i}(t)$ represents the state of client c_i .
657	The correctness of FedDES-Async relies on the following invariant:
658	
659	$\forall t, C_{\text{client_ready}}(t) \implies \mathcal{A}_{\text{aggregate}}(W_{t+1}^{(i)}),$
660	which states that the server aggregates the client c_i 's update immediately upon receiving it.
661 662	
663	1. Initial Condition: At time $t = 0$, the server distributes the global model to clients, and each client begins local training. The server then enters a state of waiting for updates from any client.
664	2. State Transition: As soon as client c_i completes its local training and sends its update to the
665	server, the condition $C_{\text{client}_{\text{ready}}}(t)$ is satisfied. The server aggregates the update immediately:
666 667	$\mathcal{A}_{a ext{ageregate}}(W_{t+1}^{(i)}).$
668	$\mathcal{A}_{aggregate}(W_{t+1}).$
669	3. Invariant Preservation: The transition function ensures that the invariant is maintained at each
670	time step. Once a client c_i sends its update, the aggregation occurs without waiting for updates from
671	other clients. This behavior captures the asynchronous nature of the system.
672	Thus, FedDES-Async correctly models asynchronous FL by ensuring that updates are processed as
673	soon as they are received.
674	
675	A.2 CORRECTNESS PROOF OF THEOREM 3
676	
677	<i>Proof.</i> The state transitions for FedDES-Compass are defined as:
678	
679	$\mathcal{T}_{\text{FedDES-Compass}}: S_{\text{server}}(t), S_{\text{client}_i}(t) \longrightarrow S_{\text{server}}(t+1), S_{\text{client}_i}(t+1),$
680 681	where $S_{\text{server}}(t)$ is the server's state at time t, and $S_{\text{client}_i}(t)$ is the state of client c_i .
682	The correctness of FedDES-Compass relies on the following invariant:
683	The concerness of readels-compass tenes on the following invariant.
684	$(\mathbf{I}\mathbf{I}\mathbf{I}^{(i)} + \mathbf{i}\mathbf{c} + \mathbf{c}))$
685	$\forall t, C_{\text{group_ready}}(t) \implies \mathcal{A}_{\text{group_aggregate}}(\{W_{t+1}^{(i)} \mid i \in \text{group}\}),$
686	which ensures that the server aggregates client updates within each group when the group is ready.
687	1. Initial Condition: The server broadcasts the global model to all clients at time $t = 0$. Clients
688	are dynamically grouped based on their computational capacities, and each group operates semi-
689	asynchronously with respect to others.
690	2. State Transition: When clients within a group complete their local training and send updates, the
691	condition $C_{\text{group}_ready}(t)$ is satisfied, triggering the group aggregation:
692	$(\operatorname{crr}(i) + \cdots + i)$
693 604	$\mathcal{A}_{ ext{group_aggregate}}(\{W^{(i)}_{t+1} \mid i \in ext{group}\}).$
694 695	2 Invariant Preservation: FedDES Compass ansuras that group undates are super-
695 696	3. Invariant Preservation: FedDES-Compass ensures that group updates are synchronized, meaning that the server aggregates the updates from all clients within a group before proceeding. However,
697	groups themselves operate asynchronously, allowing for efficiency gains without sacrificing within-
698	group consistency.
699	Thus, FedDES-Compass correctly models semi-asynchronous FL by maintaining synchronization
700	within groups while allowing asynchrony across groups. \Box

701