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Supplementary material

The appendix is organized into five sections as follows:

1. Appendix A builds on the background and preliminaries discussed in the main text. We
include additional related work, an extended discussion on diffusion processes and Volterra
equations.

2. Appendix B expands upon the assumptions/setting around (1) and it discusses some moti-
vating applications such as in- and out- of distribution expected risk and random features.
Moreover, we discuss the equivalence of homogenized SGD and SGD, see Theorem 1.

3. Appendix C gives results for the streaming SGD setting. In particular, we establish a Volterra
equation.

4. Appendix D introduces a general Volterra class of equations, called the Volterra SLD class,
that encompasses homogenized SGD and its Volterra dynamics in the multi-pass setting
(Section 3) and streaming (Section C). This general Volterra class allows for more types of
additive noise. We prove in this section that the Volterra SLD class concentrates around its
mean; thereby deriving the proof of Theorem 2.

5. We prove in Appendix E the limiting risk values for the Volterra SLD class (Theorem 12
(constant learning rate) and Theorem 13 (time dependent learning rate)). These two theorems
immediately imply the limiting risk values for homogenized SGD in the multi-pass and
streaming settings, see Theorems 3 and 10 respectively.

6. Appendix F discusses the exact asymptotic convergence rates for SGD and full batch
momentum algorithms on high-dimensional `2-regularized least squares problems. The
results in this section (e.g., Theorems 4 and 5) were shown in a series of papers [58–60] that
explored exact trajectories of loss function.

7. Appendix G contains details on the simulations.

Potential societal impacts. The results presented in this paper concern the analysis of existing
methods on a simple `2-regularized least squares problems. The results are theoretical and we do
not anticipate any direct ethical and societal issues. We believe the results will be used by machine
learning practitioners and we encourage them to use it to build a more just, prosperous world.

A Extended preliminaries and background.

We include some additional preliminary background information.

Related work. We highlight recent progress of advances in analyzing the excess risk of SGD. As
these areas are highly active, we present below a non-exhaustive list of the current progress, and
particularly focus on the least-squares setting.

In the literature, convergence guarantees and risk bounds are available for analyzing SGD and its
variants [71, 56, 53, 16, 79]. A popular paradigm for analyzing risk bounds of SGD is the one-pass
or streaming setting where one supposes that the gradient estimators are independent with a common
distribution [24, 30]. Such a setting was considered in a series of works [30, 18] which explored
‘one-pass’ SGD on a least-squares under a design condition on the data matrix. Extending this idea,
[87] provide upper and lower excess risk bounds for constant stepsize SGD on the `2-regularized
least-squares problem which extends the work of [8, 78]. These bounds are characterized by the full
eigenspectrum of the population covariance matrix. Beyond the confines of the streaming setting,
much less is known about the risk bounds for multi-pass SGD [45, 64, 39, 88]. Like in this work,
[45, 64, 88] consider the simplified setting of analyzing the behavior of multi-pass SGD on a (high-
dimensional) `2-regularized least-squares problem. In contrast to our exact dynamics of the excess
risk, previous works provide only bounds. To the best of knowledge, the only other paper which
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rigorously computed exact dynamics in the high-dimensional setting was [59]. They were the first to
show dynamics on the training loss of a least-squares problem, assuming a left orthogonal invariance
condition. In this paper, we remove the left orthogonal invariance condition and extend dynamics to
generalization performance. Other approaches to analyzing generalization performance of multi-pass
SGD include uniform stability (see c.f. [25]). Excess risk and uniform stability are related through a
(loose) triangle inequality; we preferred to focus on the excess risk in this paper and leave discussions
of uniform stability for future directions.

The exact features of SGD that are responsible for the success of SGD on high-dimensional problems
are the subject of extensive research. These features are often labelled under the umbrella term the
implicit regularization effects of SGD. The implicit regularization mechanism has been primarily
hypothesized to exist in highly nonconvex settings. In such a setting, empirical observations have led
to the conclusion that the noise generated by small batch [32, 27] and/or large learning rate [40] SGD
leads to better generalization performance. A proposed mechanism for this improvement is that the
stochasticity inherent in SGD allows the optimizer to escape traps (c.f. [13] or [85]) which poorly
generalize and are stationarity points for gradient flow. A related point of view on the proposed
escape mechanism is that SGD demonstrates a preference for flat minima, long considered to be a
preferable solution for generalization properties [26, 80]. Using a continuous time model, in a certain
noise regime, [80] shows that SGD prefers flat minima which is different from the flat minimia flat
minimum selection of continuous time SGD with homogeneous noise. For the least-squares problem,
multi-pass SGD converges to the minimial norm solution [23, 57, 84] which is widely cited as the
implicit bias of SGD [33, 17]. Moreover other works have shown for the least-squares problem with
`2-regularization results similar to Lemma 1, saying that the generalization performance of SGD
always performs worse than gradient descent [88].

Diffusion approximations and SGD. In this work, we analyze a new mathematical tool, homoge-
nized SGD, introduced simultaneously in [58, 52] (a similar related SDE was also analyzed in [63]).
This SDE is the high-dimensional equivalence of SGD. The technique of using SDEs to analyze SGD
is not new (see, for example, stochastic modified equation (SME) [42, 48] and Langevin dynamics
[15] and other SDE formulations and interpretations [31, 36, 46, 7]). Diffusion approximations to
SGD have a long history. In the stochastic approximation literature, it appears as a natural counterpart
to ODE methods (c.f. [36], [47]). However, these are methods that require the vanishing learning rate
(such as �k = 1/k) and moreover, in the setup we have suggested here, the resulting SDE (which
only arises in an asymptotic comparison, as is standard with stochastic approximation theory) has a
vanishing diffusion term for such an aggressive learning-rate decay — the asymptotic trajectory of
SGD is also approximated by the ODE gradient flow with time change �(n) ⇡ log n.

A more natural point of comparison is the stochastic modified equation of [48, 42, 41] which has
been rigorously compared to the behavior of SGD [43]. To make a comparison with [43, 28], we fix
the learning rate � and we rescale time to be on the order of epochs. With these changes, the SME
solves,

dMt
def
= ��rf(Mt) dt+�

p
n⌃(Mt) dBt, where

8
>><

>>:

⌃(x)
def
= E

�
rgI(x)⌦rgI(x)

�
,

gI(x)
def
= fI(x)� E fI(x),

I
def
= Uniform{1, 2, . . . , n}.

(13)

The diffusion matrix ⌃ of the SME is chosen to exactly match the covariance of the increments of
SGD (4). When applied to the `2-regularized problem (1), this matrix becomes (with ai the i-th row
of A)

⌃(x) =
1

n

nX

i=1

(ai · x� bi)
2
a
T
i ai �

1

n2
A

T (Ax� b)(Ax� b)TA.

HSGD and the SME can be compared by replacing second term by 0 and the first term by

n⌃(x) ⇡ 1

n

✓ nX

i=1

(ai · x� bi)
2

◆
⇥
✓ nX

i=1

a
T
i ai

◆
=

2

n
L(x)r2L(x),

which is the diffusion coefficient in HSGD.

The SME has been used for a variety of purposes, such as optimal learning rate scheduling [41],
analysis of momentum terms [42], and prediction of test risk behavior [75]; however, analysis of

18



the SME is itself difficult, as the diffusion coefficient involves interactions between the functions
fi, and, to our knowledge, while the theory developed in [43] provides dimension-independent
comparisons, the resulting SME has not been analyzed in any high-dimensional setting. Furthermore,
the mathematical comparison which is proven in [43], on the time scale in (13), gives a comparison for
time of order O(1/n) and with an error which is bounded by O(�). As such, in a high-dimensional
setting, the comparison that exists between SME and SGD only provides a non-vanishing error over a
vanishing window of time.

Because the SME naturally matches the drift and diffusion matrix of SGD, the above remarks might
lead to a conjecture that in fact no comparison is possible between SGD and SDEs; indeed, in a
fixed-dimensional analysis, Yaida [83] showed that there is no small learning-rate limit of SGD that
produces nontrivial stochastic behavior. In contrast, we will show that in a high-dimensional limit,
this is precisely what occurs (although when univariate statistics of this high-dimensional SDE are
taken, almost deterministic behavior is seen).

Background on Volterra equations. Volterra dynamics appear frequently in filtering, population
dynamics, and the renewal problem, to name a few, and consequently their properties, particularly
convergence and limiting behavior, are well-studied in the literature [22, 67]. Convolution-type
volterra equation, that is, equations of the form

 (t) = F (t) +

Z t

0
K(t� s) (s) ds, t � s, (14)

where the forcing term F : R�0 ! bR and the kernel is K : R�0 ! R with R�0 = {t � 0}, in
particular, can be “solved" using Laplace transforms (must be able to invert the Laplace transform).
For general Volterra equations, one replaces (14) is replaced with a general function on two variables,
K : R�0 ⇥ R�0 ! R.

The solution of  can be found by repeatedly convolving the forcing term F (t) with the kernel K
(provided supt�0 sups�0 K(t, s;r2L) is bounded [22]), that is,

 (t) = F (t) + (K ? F )(t) + (K ?K ? F )(t) + · · · where

8
<

:
(K ? h)(t)

def
=

Z t

0
K(t, s)h(s) ds,

8 h 2 C([0,1)).
(15)

Moreover, numerical approximations to (15) can be found by taking a large but finite number of
convolutions in the expression above. The boundedness of this solution corresponds precisely to
learning rate choices for which SGD is convergent.

B Quasi-random assumptions on the data matrix, targets, and initialization

The data matrix A 2 Rn⇥d, target b 2 Rn, and initialization x0 2 Rd may be deterministic or
random; we formulate our theorems for deterministic matrix A and vectors b and x0 satisfying
various assumptions, and in the applications of these theorems to statistical settings, we shall show
that random A and b satisfy those assumptions. These assumptions are motivated by ERM and, in
particular, when the augmented matrix [A | b] has rows that are independent and sampled from some
common distribution. We call these assumptions quasi-random.

As the problem (1) is homogeneous, we adopt the following normalization convention without loss
of generality.
Assumption 3 (Data-target normalization). There is a constant C > 0 independent of d and n such
that the spectral norm of A is bounded by C and the target vector b 2 Rn is normalized so that
kbk2  C.

More importantly, we also assume that the data and targets resemble typical unstructured high-
dimensional random matrices. One of the principal qualitative properties of high-dimensional random
matrices is the delocalization of their eigenvectors, which refers to the statistical similarity of the
eigenvectors to uniform random elements from the Euclidean sphere. The precise mathematical
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description of this assumption is most easily given in terms of resolvent bounds. The resolvent
R(z;M) of a matrix M 2 Rd⇥d is

R(z;M) = (zId �M)�1 for z 2 C.

In terms of the resolvent, we suppose the following:
Assumption 4. Suppose ⌦ is the contour enclosing [0, 1 + kAk2] at distance 1/2. Suppose there is
a ✓ 2 (0, 1

2 ) for which

1. max
z2⌦

max
1in

|eTi R(z;AA
T )b|  n✓�1/2.

2. max
z2⌦

max
1i 6=jn

|eTi R(z;AA
T )eTj |  n✓�1/2.

3. max
z2⌦

max
1in

|eTi R(z;AA
T )ei � 1

n trR(z;AA
T )|  n✓�1/2.

Only the resolvent of AA
T appears in these assumptions, and so in effect we are only assuming

statistical properties on the left singular-vectors of A. This assumption reflects the common formu-
lation of ERM in which the rows of A are independent, and so the left singular-vectors of A are
expected to be delocalized (under some mildness assumptions on the distributions of the rows). The
first condition, which involves the interaction between AA

T and b, can be understood as requiring
that b is not too strongly aligned with the left singular-vectors of A. The other two conditions can be
viewed as corollaries of delocalization of the left singular-vectors.

As for the initialization x0, we need to suppose that it, like b, does not interact too strongly with the
left singular-vectors of AT

A. In the spirit of Assumption 4, it suffices to assume the following:
Assumption 5. Let ⌦ be the same contour as in Assumption 4 and let ✓ 2 (0, 1

2 ). Then

max
z2⌦

max
1id

|eTi R(z;AT
A)x0|  n✓�1/2.

Note that, as a simple but common case, this assumption is surely satisfied for x0 = 0. In principle,
this assumption is general enough to allow for x0 that are correlated with A in a nontrivial way, but
we do not have an application for such an initialization. For a large class of nonzero initializations
independent from (A, b), this assumption is satisfied, as a corollary of Assumption 4:
Lemma 2. Suppose that Assumption 4 holds with some ✓0 2 (0, 1

2 ) and that x0 is chosen randomly,
independent of (A, b), and with independent coordinates in such a way that for some C independent
of d or n

kEx0k1  C/n and max
i

k(x0 � Ex0)ik2 2
 Cn2✓0�1.

For any ✓ > ✓0, Assumption 5 holds with any ✓ > ✓0 on an event of probability tending to 1 as
n ! 1.

Note that this assumption allows for deterministic x0 having maximum norm O(1/n), as well as iid
centered subgaussian vectors of Euclidean norm O(1).

To execute the mathematical comparison between SGD and HSGD, we require an additional assump-
tion on the quadratic in the same spirit as Assumption 3.
Assumption 6 (Quadratic statistics). Suppose R : Rd ! R is quadratic, i.e. there is a symmetric
matrix T 2 Rd⇥d, a vector u 2 Rd, and a constant c 2 R so that

R(xt) =
1
2x

T
t Txt + u

T
xt + c. (16)

We also assume that R satisfies Assumption 1. Moreover, we assume the following (for the same ⌦
and ✓) as in Assumption 4:

max
z,y2⌦

max
1in

|eTi A bTA
T
ei� 1

n tr(A bTA
T )|  kT kopn

�✏ where

(
bT = R(z)TR(y) +R(y)TR(z),

R(z) = R(z;AT
A)

(17)
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This assumption ensures that quadratic R has a Hessian that is not too correlated with any of the left
singular vectors of A. Establishing Assumption 6 can be nontrivial in the cases when the quadratic
has complicated dependence on A. In simple cases, (especially for the case of the empirical risk and
the norm) it follows automatically from Assumption 4.

Lemma 3. Suppose that R satisfies (16) with T given by a polynomial p in A
T
A (especially I

and the monomial AT
A) having bounded coefficients, and suppose u and c are norm bounded

independently of n or d. Then supposing Assumptions 3 and 4 for some ✓0 2 (0, 1
2 ), for all n

sufficiently large and for any ✓ > ✓0, Assumption 6 holds.

For proofs of Lemma 2 and 3, see Section 2 in [61].

B.1 Motivating applications

Training loss and sample covariance matrices. One important (nonstatistical) quadratic statistic,
which allows analysis of the optimization aspects of SGD in high dimensions, is the `2-regularized
loss function f in (1). Then provided that A, b satisfy Assumptions 3 and 4, x0 is iid subgaussian,
Lemmas 2 and 3 and Theorems 1 and 2 show that f(xk) concentrates around the solution of a Volterra
integral equation. A natural setup under which Assumptions 3 and 4 are satisfied is the following:

Assumption 7. Suppose M > 0 is a constant. Suppose that ⌃ is a positive semi-definite d⇥d matrix
with tr⌃ = 1 and k⌃kop  M/

p
d < 1. Suppose that A is a random matrix A = Z

p
⌃ where

Z is an n ⇥ d matrix of independent, mean 0, variance 1 entries with subgaussian norm at most
M < 1, and suppose n  Md. Finally suppose that b = A� + ⇠ for �, ⇠ iid centered subgaussian
satisfying k�k2 = R and k⇠k2 = n

d
eR.

These assumptions naturally lead to random matrices that satisfy Assumption 7 with good probability:

Lemma 4. If (A, b) satisfy Assumption 7, then (A, b) satisfies Assumptions 3 and 4 with probability
tending to 1� e�⌦(d).

Hence, under these assumptions, we conclude:

Theorem 6. Suppose (A, b) satisfy Assumption 7, � > 0 and x0 is iid centered subgaussian with
E kx0k2 = bR. Then for some ✏ > 0, for all T > 0, and for all D > 0 there is a C > 0 such that

Pr

✓
sup

0tT

�����

 
L(xsgd

btnc)
1
2kx

sgd
btnc � �k22

!
�
✓
 t

⌦t

◆�����
2

> d�✏
◆

 Cd�D,

where  t solves (10) and ⌦t solves (9) with R = 1
2k ·��k22.

We discuss generalization implications in the the next section.

Theorem 6 generalizes [59] in that it allows for varying training rates, adds a regularization parameter,
and allows for non-orthogonally-invariant designs A. We further note that under the assumptions of
Theorem 6, we can further approximate the behavior of GF to show that

 t = L(Xgf
�(t)) +

1

n

Z t

0
�2(s) tr

✓
(AT

A)2e�2(ATA+�Id)(�(t)��(s))

◆
 s ds

where L(Xgf
�(t)) =

R

2d
tr


(AT

A)

✓
A

T
A(AT

A+ �Id)�1
�
Id � e�(ATA+�Id)�(t)

�
� Id

◆2�

+
eR
2d

tr

✓
A(AT

A+ �Id)�1
⇥
Id � e�(ATA+�Id)�(t)

⇤
A

T � In
◆2�

+
bR
2d

tr
�
A

T
Ae�2(ATA+�Id)�(t)

�
.

(18)
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For the risk R(·) = 1/2k ·��k22, we have following expression

⌦t = R(Xgf
�(t)) +

1

n

Z t

0
�2(s) tr

✓
(AT

A)e�2(ATA+�Id)(�(t)��(s))

◆
 s ds

where R(Xgf
�(t)) =

R

2d
tr

✓
A

T
A(AT

A+ �Id)�1
�
Id � e�(ATA+�Id)�(t)

�
� Id

◆2�

+
eR
2d

tr

✓
(AT

A+ �Id)�1
⇥
Id � e�(ATA+�Id)�(t)

⇤
A

T

◆2�

+
bR
2d

tr
�
e�2(ATA+�Id)�(t)

�
.

(19)
Under the learning rate assumptions in Theorem 3, the limiting GF terms simplify

L(Xgf
1) =

R

2d
tr


(AT

A)

✓
A

T
A(AT

A+ �Id)�1 � Id
◆2�

+
eR
2d

tr

✓
A(AT

A+ �Id)�1
A

T � In
◆2�

R(Xgf
1) =

R

2d
tr

✓
A

T
A(AT

A+ �Id)�1 � Id
◆2�

+
eR
2d

tr

✓
(AT

A+ �Id)�1
A

T

◆2�
.

(20)

Excess risk in linear regression. In the standard linear regression setup, we suppose that A is
generated by taking n independent d-dimensional samples from a centered distribution Df which
we assume to be standardized (mean 0 and expected sample-norm-squared 1). We let the matrix
⌃f 2 Rd⇥d be the feature covariance of Df , that is

⌃f
def
= E[aaT ], where a ⇠ Df . (21)

Suppose there is a linear (“ground truth” or “signal”) function � : Rd ! R, which for simplicity
we suppose to have �(0) = 0. In this case, we identify � with a vector using the representation
a 7! �

T
a. We suppose that our data is drawn from a distribution D on Rd⇥R, with the property that

E[ b |a ] = �
T
a, where (a, b) ⇠ D,

and the data a ⇠ Df .

Hence we suppose that [A | b] is a Rn⇥d ⇥ Rn⇥1 matrix on independent samples from D. The vector
xt represents an estimate of �, and the population risk is

R(xt)
def
=

1

2
E[(b� x

T
t a)

2|xt] where (a, b) ⇠ D,

where (a, b) is an sample independent of xt. This can be evaluated in terms of the feature covariance
matrix ⌃f and the noise ⌘2 def

= E[ (b� �
T
a)2 ] to give

R(xt) =
1

2
⌘2 +

1

2
(� � xt)

T⌃f (� � xt). (22)

It is important to note that the sequence {xbtnc}t�0 is generated from the iterates of SGD applied to
the `2-regularized least-squares problem (1).

In the case that (a, b) is jointly Gaussian, it follows that we may represent

a = ⌃1/2
f z, b = �

T
a+ ⌘w, where (z, w) ⇠ N(0, Id � 1).

Therefore, it follows that the iterates xbntc are generated from the SGD algorithm applied to the
problem:

min
x

1

2
kAx� bk22 +

�

2
kxk22 where b = A� + b⌘w,

and the vector w is iid N(0, 1) random variables, independent of A. This is also known as the
generative model with noise.

Moreover, if D satisfies Assumption 7 (with ⌃ = ⌃f ) then the population risk R(xbtnc) is well
approximated by ⌦:

22



Theorem 7. Suppose (A, b) satisfy Assumption 7, � > 0 and x0 is iid centered subgaussian with
E kx0k2 = bR. For some ✏ > 0, for all T > 0, and for all D > 0 there is a C > 0 such that

Pr

✓
sup

0tT

�����

 
L(xsgd

btnc)

R(xsgd
btnc)

!
�
✓
 t

⌦t

◆�����
2

> d�✏
◆

 Cd�D,

where  t solves (10) and ⌦t solves (9) with R given by (22).

We remark that under Assumption 7 (and in-distribution) that ⌘2 =
eR
d . In the case of out-of-

distribition regression (see section below), we have that ⌘2 6= eR
d as the ⌘ represents the population

noise.

The loss function L evaluated at GF is the same as in (19) as is the limiting loss ⌦1. For the test risk
R in (22) evaluated at GF, we have the following expressions for

R(Xgf
�(t)) =

R

2d
tr

✓
⌃f

✓
C(t)AT

A� Id
◆2◆

+
eR
2d

tr

✓
⌃fA

T
AC

2(t)

◆

+
bR
2d

tr

✓
⌃f exp

�
� 2(AT

A+ �Id)�(t)
�◆

+
1

2
⌘2

and R(Xgf
1) =

R

2d
tr

✓
⌃f

�
A

T
A(AT

A+ �Id)�1 � Id
�2
◆

+
eR
2d

tr

✓
⌃fA

T
A
�
A

T
A+ �Id

��2
◆
+

1

2
⌘2

where C(t)
def
= (AT

A+ �Id)�1

✓
Id � exp

�
� (AT

A+ �Id)�(t)
�◆

.

(23)

Using Theorem 3, we conclude that in the case that �(t) ! 0 as t ! 1, the excess risk of SGD
tends to 0. More interestingly, in the interpolation regime, L(Xgf

1) = 0, i.e. the empirical risk tends
to 0. In this case, even without taking � ! 0, the excess risk of SGD tends to 0. If on the other hand
it does not tend to 0 (i.e., �(t) ! �), we arrive at the formula for excess risk of SGD over the ridge
estimator risk:

⌦1 �R(Xgf
1) = L(Xgf

1)⇥ �

2n

tr
�
(r2L)⌃f

�
r2L+ �Id

��1�

1� �
2n tr

�
(r2L)2

�
r2L+ �Id

��1�

=  1 ⇥ �

n
tr

✓
(r2L)�

r2L+�Id
�⌃f

◆
.

(24)

We note that the right-hand-side is proportional to  1 (c.f. Theorem 3), and hence this excess
risk due to SGD will be small if the limiting empirical risk  1 is small. This also shows that the
regularization term � interacts with the excess risk due to SGD: if the spectrum of r2R is heavy
in that it has slowly decaying eigenvalues, the reduction in excess risk due to the regularization
regularizer � can be large.

(Out-of-distribution) linear regression. As before, we suppose that the data matrix A is gener-
ated by taking n independent d-dimensional samples from a centered distribution Df with feature
covariance ⌃f (see (21)). We also suppose, as in the previous in-distribution example, that there is a
linear (“ground truth" or “signal") function � : Rd ! R which we identify with the vector � 2 Rd

and for which E[b|a] = �
T
a where (a, b) ⇠ D and the data a ⇠ Df . We will generate our target

b from the distribution (a, b) ⇠ D. We then let xt be the iterates generated by SGD applied to the
optimization problem

min
x2Rd

1

2
kAx� bk2 + �

2
kxk2, where (ai, bi) ⇠ D.

The main distinction from the previous example is that we measure our generalization error using a
different distribution than D. Explicitly, there exists another centered distribution cDf (standardized)
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with covariance features matrix b⌃f 2 Rd⇥d from which we generate a vector ba ⇠ bDf . Moreover,
we generate a test point (ba,bb) from a new distribution bD such that E [bb|ba] = �

T ba with the same �

as before and the distribution bD has ba-marginal bDf . We measure the population risk, R : Rd ! R as

R(xt)
def
=

1

2
E [(bb� x

T
t ba)2|xt] =

1

2
⌘2 +

1

2
(xt � �)T b⌃f (xt � �)

where ⌘2
def
= E [(bb� �

T ba)2].
(25)

In this setting, we can again derive the limiting excess risk, which has a similar formula for R(Xgf
�(t))

as in (23) by replacing ⌃f with b⌃f .

Random features. A central example where the quasi-random assumptions hold is the random
features setting, which was introduced in [66] for scaling kernel machines. Random features models
provide a rich but tractable class of models to gain further insights into the generalization phenomena
[51, 44, 3, 2, 77]. These models are particularly of interest because of their connection to neural
networks where the number of random features corresponds to model complexity [29, 55, 38] and
because of its use as a practical method for data analysis [66, 73].

We suppose that the data matrix X is generated by taking n independent n0-dimensional samples
from a centered distribution Df with feature covariance

⌃f
def
= E [XT

i Xi], where Xi 2 R1⇥n0 and Xi ⇠ Df .
We suppose for simplicity that X is a data matrix having dimension n⇥n0 whose iid rows are drawn
from a multivariate Gaussian with covariance ⌃f and nice covariance structure:
Assumption 8. The distribution Df is multivariate normal and the covariance matrix ⌃f of the
random features data satisfies for some C > 0

1
n0

tr(⌃f ) = 1 and k⌃fkop  C.

This allows X to be represented equivalently as X = Z⌃1/2/
p
n0 for a iid standard Gaussian

matrix Z. We suppose that W is an (n0 ⇥ d) iid feature matrix having standard Gaussian entries and
independent of Z so that Z⌃1/2

W /
p
n0 is a matrix whose rows are standardized.

We let � be an activation function satisfying:
Assumption 9. The activation function satisfies for C0, C1 � 0

|�0(x)|  C0e
C1|x|, for all x 2 R, and for standard normal Z, E�(Z) = 0.

We note that from the outset, the growth rate of the derivative of the activation function implies a
similar bound on the growth rate of the underlying activation function �. As before, we suppose the
data [X | b] is arranged in the matrix Rn ⇥ (Rn0 ⇥R) where each row is an independent sample from
D. We now transform the data X 2 Rn⇥n0 by putting

A = �(XW /
p
n0) 2 Rn⇥d,

where W 2 Rn0⇥d is a matrix independent of [X | b] of independent standard normals.3 The
activation function � : R ! R is applied element-wise.

We introduce the following notation

⌃�(W )
def
=E [�(XiW /

p
n0)

T�(XiW /
p
n0) |W ]

and b�(W )
def
= E [XT

i �(XiW /
p
n0)|W ].

(26)

The population risk, R : Rd ! R as a random variable in X and W , is

R(xt)
def
= E[(b� x

T
t �(XiW /

p
n0))

2|xt,W ]

= ⌘2 + E[(Xi� � �(XiW /
p
n0)xt)

2 |xt,W ]

= ⌘2 + �
T⌃f� + x

T
t ⌃�(W )xt � 2�T b�(W )xt,

where (Xi, b) ⇠ D and E[ b |Xi] = Xi�.

(27)

3In [51], the distribution of the columns are taken as independent uniform vectors on the sphere
p
dSd�1.

The activation function � is a 1-Lipschitz function from R ! R that is applied entrywise to the underlying
matrix.
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The `2-regularized least-squares problem is now

min
x

1

2
kAx� bk22 +

�

2
kxk22 where b = X� + ⌘w,

which is the random features regression. This should be compared to a two-layer neural network
model, in which the hidden layer has dimension n0. However, the hidden layer weights are simply
generated randomly in advance and are left untrained. The optimization is only performed on the
final layers’ weights (x).
Theorem 8. Suppose that n, d, n0 are proportionally related. Suppose that the data matrix X

satisfies Assumption 8, and the random features W are iid standard normal. Suppose b = X�+ ⌘w
with �,w independent isotropic subgaussian vectors with E k�k22 = 1/n0 and E kwk22 = 1 and
⌘ bounded independent of n. Suppose the activation function satisfies Assumption 9. Suppose the
initialization x0 is iid centered subgaussian with E kx0k22 = bR. Then for some ✏ > 0, for all T > 0,
and for all D > 0 there is a C > 0 such that

Pr

✓
sup

0tT

�����

 
L(xsgd

btnc)

R(xsgd
btnc)

!
�
✓
 t

⌦t

◆����� > d�✏
◆

 Cd�D,

where  t solves (10) and ⌦t solves (9) with R given by (27).

Finally, as in (24) we derive the excess risk of SGD (�(t) ! �) over ridge regression:

⌦1 �R(Xgf
1) = L(Xgf

1)⇥ �

2n

tr
�
(r2L)⌃�(W )

�
r2L+ �Id

��1�

1� �
2n tr

�
(r2L)2

�
r2L+ �Id

��1�

=  1 ⇥ �

2n
tr

✓
(r2L)�

r2L+ �Id
� (⌃�(W ))

◆
.

(28)

B.1.1 Discussion of Theorem 1 and motivating examples

In this section, we discuss the equivalence of SGD and homogenized SGD under quadratic statistics
R satisfying Assumption 1 and quasi-random assumptions on the data matrix A, initialization x0,
and target vector b (see Appendix B). As the proof of Theorem 1 is quite mathematically involved
and it does not add to the interpretation of the risk trajectories, we relegate this proof to [61, Theorem
1.3].

The proofs of Theorems 6, 7, and 8 follow immediately from Theorem 1 and Theorem 2. In each of
the cases, the extra assumptions on the initialization, signal, and data matrix simplify the GF terms in
(8) and (9).

C Volterra Equation for Streaming SGD

In this section we introduce constant learning rate (�(t) ⌘ �) streaming SGD. Let (ak, bk)1k=1 be iid
samples from a Rd ⇥ R-dimensional distribution D. Streaming SGD using data from D, which we
denote D-SGD, is the algorithm

sk+1 = sk � �ak(ak · sk � bk) for k 2 {0, 1, 2, . . . }. (29)

This naturally describes one-pass SGD, in which data points are used only once. If R is the expected
risk (i.e. population risk), and if R is given by 1

2E (a · x � b)2 with (a, b) ⇠ D, then D-SGD is
directly solving the population risk minimization. This is an idealized situation as one does not have
access to infinite data in practice.

Deterministic behavior of streaming risks and comparison to HSGD. D-SGD can encompass
multi-pass SGD by letting (ak, bk)nk=1 be the first n iid samples from D and considering bD-SGD for

bDn
def
=

1

n

nX

k=1

�(ak,bk). (30)
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Figure 5: Single runs of SGD vs. HSGD (Volterra) for a simple Gaussian linear regression
problem, with increasing number of samples n and d = 2000. Empirical risk (left) increases
monotonically with n to a limit while population risk (right) decreases monotonically in n. Streaming
corresponds to n = 1. Covariance of Gaussian samples is Id, with target given by b = a ·�+⌘Z for
⌘ = 0.2 and � a unit vector and Z ⇠ N(0, 1). For consistency across sample sizes, time is measured
in iterations.

This means that a sample from bDn (conditionally on the dataset) is distributed like (aI , bI), where I
is an uniformly random choice of index.

To enable a comparison of streaming SGD to multi-pass SGD, we suppose for some n the matrix
[A | b] is n⇥ (d+ 1) matrix whose rows are iid samples from D. We construct the empirical risk L
from these n samples as in (2). We then define the streaming loss

S(x)
def
= 1

2 E[(a · x� b)2] = 1
2n E kAx� bk2 = 1

n EL(x), where (a, b) ⇠ D.

The associated homogenized SGD representation, which we call homogenized D-SGD, is

dYt
def
= ��(rS(Yt)) dt+ �

p
2S(Yt)(r2S) dBt for t � 0. (31)

This naturally leads to Volterra dynamics in which r2L is replaced by r2S in Eqs. (8)-(10) whose
solution we denote with  s

t and ⌦s
t (see Appendix D).

We prove a weak equivalence between HSGD and homogenized D-SGD in the following theorem.
Theorem 9. Suppose X0 = Y0. After rescaling time,

lim
n!1

Xt/n = Yt uniformly on compact sets of time a.s.

Furthermore, GF converges, Xgf
�t/n ! Xs-gf

�t , and the Volterra equations converge,  t/n !  s
t and

⌦t/n ! ⌦s
t , uniformly on compact sets of time.

We expect this to hold in much greater generality as suggested by Figures 1 and 5. This is an
immediate consequence of the law of large numbers due to which 1

nL converges almost surely to S;
the applications in which we are typically interested would take time large as a function of n (the
numerical results are extremely strong, see Figures 5 and 1), and we leave a deeper mathematical
investigation of this point as an open question. We also note that for t very large with n, there is
likely another behavior that takes hold. For example, when t = n, observe that Xt/n will have used
approximately (1� 1/e)n samples, whereas Yn will have used n, and hence we expect a breakdown
in the connection. Other works also examined the expected risk of streaming including [9, 86] but
not as the limit of the dynamics of multi-pass SGD as we have done.

Features of generalization. While there are connections between streaming and multi-pass SGD,
certain behavior is only accessible in the multi-pass setting. For example, early stopping can be a
useful ingredient in avoiding overfitting when learning overparameterized models. However, late-time
overfitting is only observable with multi-pass SGD and does not occur for streaming SGD (see the
nonmonotonicity in population risk in Fig. 5).
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Similarly, comparing streaming and multi-pass SGD has been suggested as a method for analyzing
generalization. The bootstrap risk was introduced in [54] as an intepretable component in a decompo-
sition of the population risk. It is defined as the excess risk of SGD for ERM L with n iid samples
from D when compared to D-SGD, i.e.

⌦t/n � ⌦s
t| {z }

bootstrap risk

= R
�
Xgf
�t/n

�
�R

�
Xs-gf
�t

�

| {z }
model risk

+

Z t/n

0
K(t/n, u;r2R) u du�

Z t

0
Ks(t, u;r2R) s

u du

| {z }
SGD bootstrap risk

.

(32)
Thus the Volterra equations can be used to give an exact expression for the bootstrap risk. In particular,
we can predict the iteration at which the bootstrap risk becomes large as the streaming and multi-pass
risks bifurcate. This allows for quantitative prediction of the stopping time in Claim 1 of [54], a
central conjecture of their paper.

On taking time to infinity, we can further evaluate the SGD bootstrap risk.
Theorem 10. If �  min{2( 1n tr(AT

A))�1, 2(trr2S)�1}, then the limiting bootstrap risk is given
by

lim
t!1

⌦t/n � ⌦s
t = R

�
Xgf

1
�
�R

�
Xs-gf

1
�
+
� 1
2n

⇥ tr

⇢
(r2R)(r2L)

r2L+ �Id

�

Here  1 is the limiting training losses given by Theorem 3, i.e.

 1 = L
�
Xgf

1
�
⇥
✓
1� �

2n
tr

⇢
(r2L)2

r2L+ �Id

�◆�1

.

D The Volterra SLD class and Concentration of HSGD

First, we state the Volterra equation for streaming SGD that we referenced in the main text.

Volterra Dynamics (streaming). The following deterministic dynamical system is the
high-dimensional equivalent for L(Yt) and R(Yt), respectively,

 s
t = S

�
Xs-gf
�t

�
+

Z t

0
Ks(t, u;r2S) s

u du, for t � 0 (Empirical risk) (33)

⌦s
t = R

�
Xs-gf
�t

�
+

Z t

0
Ks(t, u;r2R) s

u du for t � 0 (Population risk) (34)

where the kernel K, for any d⇥ d matrix P , is

Ks(t, u;P ) = �2 tr

✓
(r2S)P exp

�
�2�(r2S)(t� u)

�◆
(35)

and GF for streaming, Xs-gf
t , is the solution of

dXs-gf
t

def
= �rS(Xs-gf

t ) dt and Xs-gf
0 = Y0.

We will enlarge the class of SLDs that we consider to what we will call as the Volterra SLD class
defined as

dXt
def
= ��(t)rf(Xt) dt+ �(t)

p
L(Xt)Mt +At dBt, (36)

where Mt and At are two deterministic positive definite functions which we assume to be normalized
to satisfy:
Assumption 10. The covariance processes M and A satisfy for some absolute constants c > 0 and
✏ > 0

sup
t�0

�
trMt + trAt

�
 c < 1 and sup

t�0

�
kMtkop + kAtkop

�
< d�✏.

The Mt represents noise in the data either because the data is randomly sampled or the data is
transformed by multiplicative transformation. In contrast At represents an additive noise at each step.
It is any noise which does not multiple the state x, for example, label noise.
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Volterra SLD class. The Volterra SLD class is so-named because the expected loss satisfies a
Volterra type integral equation. Define for t � s � 0 and positive semidefinite P ,

�(t) =

Z t

0

�(s) ds, and

8
>><

>>:

K(t, s;P ) = �2(s) tr

✓
MsP exp

�
�2(ATA+ �Id)(�(t)� �(s))

�◆

A(t, s;P ) = �2(s) tr

✓
AsP exp

�
�2(ATA+ �Id)(�(t)� �(s))

�◆

9
>>=

>>;
. (37)

We shall suppose throughout that Xgf
t is the canonical GF

dXgf
t = �rf(Xgf

t ) and Xgf
0 = X0.

The loss L(Xt) concentrates around the solution  t of the Volterra integral equation (see Theorem
11 for a precise formulation):

 t = L
�
Xgf

�(t)

�
+

Z t

0
A(t, s;AT

A) ds+

Z t

0
K(t, s;AT

A) s ds. (38)

We give a formal proof of the concentration result in Section D.1. For other quadratics R, the loss
R(Xt) concentrates around

⌦t = R
�
Xgf

�(t)

�
+

Z t

0
A(t, s;r2R) ds+

Z t

0
K(t, s;r2R) s ds. (39)

D.1 Volterra Concentration

In this section, we prove the concentration result. In this section, we prove that homogenized SGD
concentrates around its mean provided that the expected loss in is in the Volterra SLD class. The result,
in this section, Theorem 11, is more general than Theorem 2 which follows by setting Mt ⌘ 1

nr
2L

and At ⌘ 0.
Theorem 11. Under Assumption 10, the loss L(Xt) concentrates around  t the solution of the
Volterra equation

 t = L
�
Xgf

�(t)

�
+

Z t

0
A(t, s;AT

A) ds+

Z t

0
K(t, s;AT

A) s ds,

in that for any T,D > 0 there is a C(T,D, kAkop, kbk, ✏) > 0 sufficiently large that

Pr
⇥
sup

0tT
|L(Xt)� t| > Cd�✏/2

⇤
 Cd�D.

Furthermore, for another quadratic R(x) = 1/2xT
Tx+u

T
x+ c with T symmetric matrix having

kr2Rkop  C, krRk2  C, krR(0)k  1 are independent of the Brownian motion,

Pr


sup

0tT

�����R(Xt)+R
�
Xgf

�(t)

�
+

Z t

0
A(t, s;r2R) ds+

Z t

0
K(t, s;r2R) s ds

���� > Cd�✏/2
�
 Cd�D.

Proof. Step 1. Volterra equation for the expected loss.

Define Qt = exp((AT
A+ �Id)�(t)) and apply Itô’s rule to QtXt, derive

d(QtXt) = �(t)QtA
T
b dt+ �(t)Qt

p
L(Xt)Mt +At dBt.

Hence

QtXt = Q0X0 +

Z t

0
�(s)QsA

T
b ds+

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs.

Note that on setting Ms = As = 0, this gives GF Xgf
�(t), and hence we have representation

Xt = Xgf
�(t) +Q

�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs.
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Expanding the quadratic,

L(Xt) = L
�
Xgf

�(t)

�
+rL(Xgf

�(t))
T
Q

�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs

+
1

2

����AQ
�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs

����
2

.

(40)

It follows that with Ft the sigma-algebra generated by (X0,L, (Bs : 0  s  t)) if we compute the
F0-conditional expectation, the Brownian integral vanishes, and we are left with two contributions
from the second norm-squared process

E
⇥
L(Xt) | F0] = L

�
Xgf

�(t)

�
+

1

2

Z t

0
�2(s) tr

✓
A

T
AQ

�2
t Q

2
sAs

◆
ds

+
1

2

Z t

0
�2(s) tr

✓
A

T
AQ

�2
t Q

2
sMs

◆
E
⇥
L(Xs) | F0] ds.

(41)

This is the claimed Volterra equation (see e.g.,  t
def
= E [L(Xt) | F0] in (8); here At = 0.)

Step 2. High probability boundedness of L. We observe before beginning that many of the quantities
that appear in the expressions above are bounded. The GF Xgf

�(t) satisfies a uniform bound, solely in

terms of its initial conditions and, in particular, the boundedness of L(Xgf
�(t)) satisfies L(Xgf

�(t)) 
L(X0). The matrix Q

�1
t Qs is uniformly bounded in norm by 1 for all t � s. We have also assumed

that kAkop and kbk2 are bounded. By applying Itô’s formula to the norm ut =
1
2kXtk22, we have

from (36) that

dut = ��(t)XT
t (A

T (AXt�b)) dt+�(t)XT
t

p
L(Xt)Mt +At dBt+

�2(t)

2
tr
�
L(Xt)Mt+At

�
dt

From the norm boundedness of A and b, we can bound L(Xt)  2kAk2oput + 2kbk22  C(ut + 1).
Likewise, increasing C as need be, using the boundedness of �(t), trMt and trAt, we conclude

dhuti = �2(t) tr
�
XtX

T
t (L(Xt)Mt +At)

�
 C(ut + 1)2.

It follows that zt
def
= log(1 + ut)� Ct is supermartingale with hzti  C for some sufficiently large

C and all t  T . Hence with probability at least 1� e�2C(T )(log d)3/2 ,

zt  (log d)3/4

for all t  T . On this same event it follows for a sufficiently large cosntant C > 0

f(t) = L(Xt) + �ut and L(Xt)  C(ut + 1)  C2eCt+(log d)3/4

for all t  T .

Step 3. Concentration of the loss. We may now control the difference of the loss from its expectation.
Specifically, in comparing (40) and (41), we may express the difference�t

def
= L(Xt)�E[L(Xt) |F0]

as

�t = M
(1)
t +M

(2)
t +

1

2

Z t

0
�2(s) tr

✓
A

T
AQ

�2
t Q

2
sMs

◆
�s ds, where

M
(1)
t = rL(Xgf

�(t))
T
Q

�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs, and

M
(2)
t =

1

2

����AQ
�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs

����
2

� 1

2

Z t

0
�2(s) tr

✓
A

T
AQ

�2
t Q

2
s(L(Xs)Ms +As)

◆
ds.

(42)

We claim that both processes M (1)
t and M

(2)
t are small, whose proof we defer. Specifically, with

probability 1� C(T )e�(log d)3/2 we have

max
0tT

�
|M (1)

t |+ |M (2)
t |

 
 d�3✏/4.
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From the uniform boundedness in norm of AT
A, we then conclude from (42) for all t  T

|�t|  d�3✏/4 +

Z t

0
kAT

Akop|�s| ds.

Using Gronwall’s inequality,

|�t|  kAT
Ak�1

op
�
ekA

TAkopt � 1
�
d�3✏/4.

Thus we conclude by increasing the constants in the claimed bound that the desired inequality holds.

Step 4 (Deferred). Concentration of the martingales. We introduce two martingales, for each fixed
t 2 [0, T ],

M
(1,t)
u = rL(Xgf

�(t))
T
Q

�1
t

Z u

0
�(s)Qs

p
L(Xs)Ms +As dBs.

M
(2,t)
u =

1

2

����AQ
�1
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Z u
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�(s)Qs

p
L(Xs)Ms +As dBs

����
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� 1

2

Z u

0
�2(s) tr

✓
A

T
AQ

�2
t Q

2
s(L(Xs)Ms +As)

◆
ds.

We first show that if we fix any t  T , then for all d sufficiently large with respect to T and with
probability at least 1� 2e�(log d)3/2 ,

max
0ut

�
|M (1,t)

u |+ |M (2,t)
u |

 
 d�7✏/8.

We will then need to use a meshing argument to complete the argument. We show the details for the
first. Those for the second are similar.

We simply need to bound the quadratic variation of each. Note

hM (1,t)
u i =

Z u

0
�2(s) tr

�
Q

�1
t QsrL(Xgf

�(t))rL(Xgf
�(t))

T
Q

�1
t Qs(L(Xs)Ms +As)

�
du.

Here we use the norm boundedness of Mt +At, by 2d�✏. We further bound the other terms in norm
to produce

hM (1,t)
u i  2d�✏kAT

Ak2op
�
C2eCu+(log d)3/4

�
L(Xgf

�(t)).

We note that L(Xgf
�(t))  L(Xgf

0 ). Hence with probability at least 1�e�(log d)3/2 (for all d sufficiently
large with respect to T, kAkop, kbk2, ✏),

max
0ut

|M (1,t)
u |  d�7✏/8/2.

Step 5 (Deferred). Mesh argument. Finally, we use a union bound to gain the control from Step 4
over a mesh of [0, T ] of spacing d�100. From the union bound, we therefore have for all these mesh
points {tk}

max
k

max
0utk

�
|M (1,tk)

u |+ |M (2,tk)
u |

 
 d�7✏/8,

and this holds with probability 1� 2Td100e�(log d)3/2 . For t 2 [tk, tk+1], we just use that

krL(Xgf
�(t))

T
Q

�1
t �rL(Xgf

�(tk+1)
)TQ�1

tk+1
k  C(T,A, b)d�100,

and thus on the event that L(Xs) is bounded, we have for t 2 [tk, tk+1]

|M (1)
t �M

(1,tk+1)
t |  C(T,A, b)d�50

for all d sufficiently large with respect to T , kAkop, and kbk2.

Step 6. Other quadratics. Hence, if we take  t as a solution to the Volterra equation

 t = L
�
Xgf

�(t)

�
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Z t

0
�2(s) tr
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 s ds,
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then we have a high-quality approximation for the loss L(Xt), and moreover, applying Itô’s equation,
we may always represent another quadratic R : Rd ! R of the SLD by (analogously to (40))

R(Xt) = R
�
Xgf

�(t)

�
+rR(Xgf

�(t))
T
Q

�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs

+
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2

✓
Q

�1
t

Z t
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�(s)Qs

p
L(Xs)Ms +As dBs

◆T

(r2R)Q�1
t

Z t

0
�(s)Qs

p
L(Xs)Ms +As dBs

By comparing this to the same expression, where we replace the losses L(Xs) by  s and compute
expectations over the Brownian terms, we arrive at (compare (41))

R(Xt) = M
(3)
t +R

�
Xgf

�(t)

�
+

1

2

Z t

0
�2(s) tr

✓
(r2R)Q�2

t Q
2
sAs

◆
ds

+
1

2

Z t

0
�2(s) tr

✓
(r2R)Q�2

t Q
2
sMs

◆
 s ds.

Provided the Hessian (r2R) and gradient rR(0) are bounded independently of d uniformly on T ,
the concentration of M (3)

t now follows exactly as in Steps 4 and 5.

E Limiting values of the excess risk

In this section, we prove the limiting excess risk values, Theorem 3. We will, in fact, prove a
more general version of Theorem 3 which holds for a wider class, so called the Volterra SLD class,
as discussed in (37). Theorems 12 (constant learning rate) and 13 (time dependent learning rate)
immediately imply Theorem 3 by setting Mt ⌘ 1

nr
2L and At ⌘ 0. By using the Volterra SLD class,

we also recover the result for streaming, Theorem 10.

Excess risk in the constant case. Under the stronger assumptions of constant learning rate, and
constant variance profile, this can be further simplified. That is, suppose
Assumption 11. Suppose that the covariance processes M and A are constant and satisfy for some
absolute constants c > 0 and ✏ > 0

(�(t),Mt,At) ⌘ (�,M,A), where
�
trM+trA

�
 c < 1 and

�
kMkop+kAkop

�
< d�✏.

Under this assumption the kernels in the Volterra equation simplify to be:

K(t, s;P ) = K(t� s;P ) = �2 tr

✓
MP exp

�
�2�(AT

A+ �Id)(t� s)
�◆

,

A(t, s;P ) = A(t� s;P ) = �2 tr

✓
AP exp

�
�2�(AT

A+ �Id)(t� s)
�◆ (43)

The theory of convolution-type Volterra equations is substantially simpler than those of non-
convolution type. In particular, we can completely rates of convergence and the limiting loss,
as well as convergence guarantees (note that if the training loss of the underlying GF does not tend to
0 and or A 6= 0, then the loss does not tend to 0, and so this is neighborhood convergence).
Theorem 12 (Limit risk values, constant learning rate ). Suppose the learning rate is constant,
�(t) ⌘ �. Under Assumption 11, the Volterra SLD is (neighborhood) convergent if and only if

I(�) def
=

Z 1

0
K(t;AT

A) dt =
�

2
tr

✓
M(AT

A)
�
A

T
A+ �Id)

��1
◆

< 1. (44)

In the case that I(�) < 1,  t converges as t ! 1 to

 1
def
= (1� I)�1

✓
L(Xgf

1) +
�

2
tr
�
A(AT

A)
�
A

T
A+ �Id)

��1�
◆
. (45)

Likewise, the population risk ⌦t converges as t ! 1 to

⌦1
def
= R(Xgf

1) +
�

2
tr
�
(A+M 1)(r2R)

�
A

T
A+ �Id)

��1�
. (46)
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Proof of Theorem 12. follows immediately from limiting values of renewal equations (see [22] and
[5]).

By setting M = 1
nr

2L and A ⌘ 0, we recover the multi-pass SGD setting discussed in the main
portion of this paper. When the learning rate satisfies �(t) ⌘ � 2 (0, 2( 1n tr

� (ATA)2

ATA+�Id

 
)�1, it

follows that I(�) < 1. Consequently, Theorem 12 proves Theorem 3 when the learning rate is
constant.

Excess risk when learning rate is time dependent. In the case that the learning rate is time
dependent, we prove the following result for the limiting dynamics under the expanded Volterra SLD
class. Here we will still assume that the covariance processes M and A are constant.

Assumption 12. Suppose that the covariance processes M and A are constant and satisfy for some
absolute constants c > 0 and ✏ > 0

(Mt,At) ⌘ (M,A), where
�
trM+ trA

�
 c < 1 and

�
kMkop + kAkop

�
< d�✏.

The time-dependent learning rate excess risk is given below.

Theorem 13 (Time infinity risk values for SLD class). Suppose Assumption 12 holds for the Volterra
SLD class and the integrated learning rate satisfies �(t) ! 1 and �(t) ! � 2 [0,1). Let the
limiting learning rate value � be chosen such that the kernel norm is less than 1, that is,

I(�) def
=

Z 1

0
K(t, s;AT

A) dt =
�

2
tr

✓
M(AT

A)
�
A

T
A+ �Id)

��1
◆

< 1. (47)

Then with  1 given by the limiting empirical risk,

 1 =

✓
1� �

2
tr

⇢
MA

T
A

ATA+ �Id

�◆�1

⇥
✓
L(Xgf

1) +
�

2
tr

⇢
AA

T
A

ATA+ �Id

�◆
, (48)

the excess risk converges to

⌦t �R
�
Xgf

�(t)

�
! �

2
⇥ tr

⇢
(A+M 1)(r2R)

ATA+ �Id

�
.

Proof. First suppose that the limiting loss value of  t, defined in (38), is bounded and it exists at
infinity. We show under this condition on  t that the limiting risk value holds for ⌦1, defined in
(39). A simple computation with a change of variables gives

lim
t!1

⌦t �R(Xgf
�(t))

= lim
t!1

Z t

0

�2(s) tr

✓
r2R)A exp

�
� 2(ATA+ �Id)(�(t)� �(s))

�◆
ds

+ lim
t!1

Z t

0

�2(s)tr
✓
(r2R)M exp

�
� 2(ATA+ �Id)(�(t)� �(s))

�◆
 s ds

= lim
t!1

Z �(t)

0

�(s) tr

✓
r2R)A exp

�
� 2(ATA+ �Id)(�(t)� s)

�◆
ds

+ lim
t!1

Z �(t)

0

�(s)tr
✓
(r2R)M exp

�
� 2(ATA+ �Id)(�(t)� s)

�◆
 ��1(s) ds

= lim
t!1

Z �(t)

0

�(�(t)� v) tr

✓
r2R)A exp

�
� 2(ATA+ �Id)v

�◆
ds

+ lim
t!1

Z �(t)

0

�(�(t)� v)tr
✓
(r2R)M exp

�
� 2(ATA+ �Id)v

�◆
 ��1(�(t)�v) dv.

(49)

32



Dominated convergence theorem allows us to interchange the integral and limit as  t and �(t) are
bounded. We pull out the limiting values of limt!1 �(t) = � and  1. By integrating, we deduce

lim
t!1

⌦t �R(Xgf
�(t))

= lim
t!1

Z �(t)

0

�(�(t)� v) tr

✓
r2R)A exp

�
� 2(ATA+ �Id)v

�◆
ds

+ lim
t!1

Z �(t)

0

�(�(t)� v)tr
✓
(r2R)M exp

�
� 2(ATA+ �Id)v

�◆
 ��1(�(t)�v) dv

= �

Z 1

0

tr
✓
(r2R)A exp

�
� 2(ATA+ �Id)v

�◆
dv

+ � 1

Z 1

0

tr
✓
(r2R)M exp

�
� 2(ATA+ �Id)v

�◆
dv

= � tr

✓
(r2R)

�
M 1 +A

�
(2(ATA+ �Id))�1

◆
.

(50)

The result for the limiting risk value limt!1 ⌦t �R(Xgf
�(t)) follows.

It remains to show that  t is bounded and exists at infinity with its limiting value given by (48).
Recall the loss kernel for  t given by

K(t, s)
def
= K(t, s;AT

A) = �2(s) tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(�(t)� �(s))
�◆

, (51)

so that  t is the solution to the Volterra equation

 t = L(Xgf
�(t)) +

Z t

0
K(t, s) s ds. (52)

Under the kernel norm bounded by 1, (47), we show that the kernel K(s, t) is of L1-type on [0,1).
A kernel is L1-type if |||K|||L1(J) < 1 for a set J ⇢ R where |||K|||L1(J) = supt2J

R
J |K(s, t)| ds

[22, Chapter 9.2]. For this, we see that for each t and s

K(t, s)  b� · �(s) tr
✓
MA

T
A exp

�
� 2(AT

A+ �Id)(�(t)� �(s))
�◆

. (53)

This implies by change of variables that
Z t

0
K(t, s) ds 

Z �(t)

0
b� tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(�(t)� s)
�◆

ds

 b�
2
tr
�
MA

T
A(AT

A+ �Id)�1
�
< 1.

(54)

Hence, it follows that the kernel K is L1-type on [0,1). To prove the boundedness assumption
of  t, we will need something slightly stronger. We show that there exists a finite number of
intervals Ji such that [iJi = [0,1) and |||K|||L1(Ji)

 1. From this and Theorem 9.3.13 in [22],
it will follow that the resolvent is also of type L1 on [0,1). Since �(t) ! �, there exists a t0
such that for all t � t0, �(t)  � + ". This " > 0 can be chosen sufficiently small such that
� + " < 2

�
tr(MA

T
A(AT

A+ �Id)�1)
��1 (see (47) which gives an upper bound on �). First, we

observe that
sup
t�0

sup
0st0

K(t, s)  b�2 tr
�
M(AT

A)e2(A
TA+�Id)�(t0)

�
< 1.

We break up the interval [0, t0] into finitely many intervals of length each of which has a length
strictly less than

�
b�2 tr

�
MA

T
Ae2(A

TA+�Id)�(t0)
���1. If we denote these intervals by Ji, then it

immediately follows by bounding the integral using the sup of K multiplied by the length of the
interval Ji that

|||K|||L1(Ji)
= sup

t2Ji

Z

Ji

K(t, s) ds < 1.
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It only remains to show on the tail, that is, J1
def
= (t0,1), for which |||K|||L1(J1) < 1. Using the

same change of variables as in (53) and our choice of t0, we have that for all t � t0
Z t

t0

K(t, s) ds 
Z t

t0

(� + ")�(s) tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(�(t)� �(s))
�◆

ds

=

Z �(t)

�(t0)
(� + ") tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(�(t)� s)
�◆

ds

 � + "

2
tr
�
MA

T
A(AT

A+ �Id)�1
�
< 1.

The last inequality following by our assumption on � + " being sufficiently small. By Theorem
9.3.13 in [22], we have that the resolvent is also of type L1 on [0,1). We also have that K(t, s) is
of bounded type, that is the kernel is bounded (see [22, Definition 9.5.2] for precise definition). Since
the forcing term L(Xgf

�(t)) and
R t
0 A(t, s;AT

A) ds are bounded, then it follows by [22, Theorem
9.5.4] that the solution to the Volterra equation (52),  t, is bounded.

We now show that  t exists at infinity. Fix a " > 0. By the assumptions on the learning rate, there
exists a t0 > 0 such that for all sufficiently large t � s � t0

� � "  �(t)  � + " and (� � ")(t� s)  �(t)� �(s)  (� + ")(t� s). (55)

Using these inequalities for �(t), we get an upper bound and lower bound on the kernel K(t, s)
which we denote by K(t, s) and K(t, s), respectively. Specifically for all t, s � t0,

K(t, s)  K(t, s)
def
= (� + ")2 tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(� � ")(t� s)
�◆

K(t, s) � K(t, s)
def
= (� � ")2 tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(� + ")(t� s)
�◆

.

(56)

The kernels K(t, s) and K(t, s) are substantially nicer than the original K(t, s) because they are
proper convolution kernels. Here one can define K : [0,1) ! R by

K(t)
def
= (� + ")2 tr

✓
MA

T
A exp

�
� 2(AT

A+ �Id)(� � ")t
�◆

.

Then it follows that K(t, s) = K(t� s). A similar result holds for K(t, s).

For ease of notation, define the forcing function: for t � t0

F (t)
def
= L(Xgf

�(t)) +

Z t0

0
K(t, s) s ds+

Z t

0
A(t, s;AT

A) ds, (57)

where  t is a solution to (52). Similar to the definitions of K(t) and K(t), we define F (t) and F (t)
respectively as

F (t)  F (t)  F (t), (58)

where F (t)
def
= L(Xgf

�(t)) +

Z t0

0
K(t, s) s ds+

Z t0

0
A(t, s;AT

A) ds

+

Z t

0
(� + ")2 tr

✓
AA

T
A exp

�
� 2(AT

A+ �Id)(� � ")(t� s)
�◆

and F (t)
def
= L(Xgf

�(t)) +

Z t0

0
K(t, s) s ds+

Z t0

0
A(t, s;AT

A) ds

+

Z t

0
(� � ")2 tr

✓
AA

T
A exp

�
� 2(AT

A+ �Id)(� + ")(t� s)
�◆

ds

(59)

Because  s is bounded, it follows that limt!1
R t0
0 K(t, s) s = limt!1 A(t, s;AT

A) = 0. Also
it is clear that the F (t), F (t), and F (t) are bounded.
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Using the upper/lower bound on the kernel (56), we can squeeze the value of  t between two
expressions: for t, s � t0,

F (t) +

Z t

t0

K(t, s) s ds   t  F (t) +

Z t

t0

K(t, s) s ds. (60)

Using a similar argument for K(t, s) and choosing " sufficiently small, K(t, s) and K(t, s) are
L1-type on [0,1). Moreover using a similar argument as we did for K itself, the norms������K

������
L1([0,1))

< 1 and |||K|||L1([0,1)) < 1. Here we used the upper bound on � in (47) and
a sufficiently small ". Note we do not need to break up into finite intervals. As before, the resolvent
then is of L1-type on [0,1) [22, Corollary 9.3.10]. Further because of non-negativity, Proposition
9.8.1 in [22] yields that the resolvents are also non-negative.

Consider the upper bound (a similar argument will hold for the lower bound). We can apply
Gronwall’s inequality (60) [22, Theorem 9.8.2]. It follows that  t is upper bounded (lower bounded)
by the solutions  t ( t) to the following convolution Volterra equations

 t = F (t) +

Z t

t0

K(t, s) s ds and  t = F (t) +

Z t

t0

K(t, s) s ds.

Specifically, we have  t   t   t for all t � t0. Since  t and  t are solutions to a proper
convolution-type Volterra equation and both functions F (t), and F (t) have limits at infinity (F (1)

def
=

limt!1 F (t) and F (1)
def
= limt!1 F (t)), by [5], for t � t0

lim sup
t!1

 t  lim sup
t!1

 t = F (1)
�
1�

������K
������

L1([t0,1))

��1  F (1)
�
1�

������K
������

L1([0,1))

��1
, (61)

and similarly, the lower bound gives

lim inf
t!1

 t � lim inf
t!1

 t  F (1)
�
1� |||K|||L1([0,1))

��1
. (62)

A simple computation yields that
������K

������
L1([0,1))

=
(� + ")2

� � "
G(M) and |||K|||L1([0,1)) =

(� � ")2

� + "
G(M)

and F (1) = L(Xgf
1) +

(� + ")2

� � "
G(A) and F (1) = L(Xgf

1) +
(� � ")2

� + "
G(A)

where G(H)
def
= 1

2 tr
�
HA

T
A(AT

A+ �Id)�1
�
.

(63)

So for any sufficiently small " > 0, we have that
✓
1� (� � ")2

� + "
G(M)

◆�1

⇥
⇢
L(Xgf

1) +
(� � ")2

� + "
G(A)

�
 lim inf

t!1
 t

 lim sup
t!1

 t 
✓
1� (� + ")2

� � "
G(M)

◆�1

⇥
⇢
L(Xgf

1) +
(� + ")2

� � "
G(A)

�
.

(64)

As this holds for any sufficiently small ", the result follows by sending "! 0.

F Algorithmic regularization

In this section, we discuss the exact asymptotic convergence rates for SGD and full batch momentum
algorithms on high-dimensional `2-regularized least squares problems. The results in this section
(e.g., Theorems 4 and 5) were shown in a series of papers [58–60] that explored exact trajectories of
loss function.

F.1 Convergence rates of SGD

To characterize the rates, we define �min as the smallest non-zero eigenvalue of AT
A. Then for

generic initial conditions, (in particular almost surely if X0 is isotropic norm 1), then

lim
t!1

✓
L(Xgf

t )� L(Xgf
1)

◆1/t

=

⇢
e��(�min+�), if � > 0,
e�2��min , otherwise.
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The rate of convergence of  t to  1 is given by, (for small �), the rate above. For larger �, another
rate can frustrate the convergence. Recall the Malthusian exponent of the convolution Volterra
equation in (11) is given by

�⇤ = inf

⇢
x : 1 =

Z 1

0

extK(t;ATA) dt = �2
Z 1

0

ext tr

✓
MATA exp

�
�2�(ATA+ �I)t

�◆
dt

�
. (65)

The set may be empty, in which case the infimum is 1. We recall below Theorem 4.
Theorem 14. For � > 0 satisfying I(�) < 1 (see (44)), define

⌅(�)
def
=

⇢
min{�(�min + �),�⇤(�)} if � > 0,
min{2��min,�⇤(�)} if � = 0.

(66)

Then the rates of convergence of both the training and test loss are

lim
t!1

�
 t � 1

�1/t
= e�⌅(�) = lim

t!1

�
⌦t � ⌦1

�1/t

Furthermore, when � = n/ tr(AT
A), we have the rate guarantee ⌅(�) � �minn

2 tr(ATA) .

Proof. See [59, Theorem 1.2] for proof.

F.2 Momentum GD (MGD) rates

In this section, we consider a popular deterministic or full-batch algorithm for solving the ridge
regression problem in (1), that is, gradient descent with momentum (a.k.a Polyak momentum).
Throughout this section, we use the notation, xm-gd

t = xt. Gradient descent with momentum (MGD),
initialized at x0 2 Rd and x1 = x0 � �

1+mrf(x0), iterates for k � 1

xk+1 = xk +m(xk � xk�1)� �rf(xk), (67)

where �,m > 0 are the stepsize and momentum parameters respectively. From Proposition 3.1
in [60], there exists k-degree polynomials Pk and Qk such that the iterates of GD+M satisfy the
following

xk = Pk(A
T
A+ �I)x0 +Qk(A

T
A+ �I)AT

b, with Pk(�) = 1� (�)Qk(�) (68)

and the coefficients of Pk and Qk only depend on the largest and smallest eigenvalue of AT
A. For

Polyak, similar to the work in [60, Section 3.1], we can give an explicit representation for these
polynomials Pk and Qk.
Proposition 1 (Polynomial representation of MGD). Suppose x0 2 Rd and fix a stepsize � > 0 and
momentum parameter m > 0. For the iterates of GD+M on (1) with ridge parameter � > 0, we have
the following representation for the polynomials

xk = Pk(A
T
A+ �I)x0 +Qk(A

T
A+ �I)AT

b, (69)

where Pk and Qk are k-degree polynomials satisfying

Pk(�) = mk/2

✓
2m

1 +m
Tk(�(�)) +

✓
1� 2m

1 +m

◆
Uk(�(�)

�◆
and Qk(�) =

1� Pk(�)

�

where �(�) =
1 +m� ��

2
p
m

and Tk, Uk are Chebyshev polynomials of the 1st and 2nd kind respectively.
(70)

Proof. The proof can be found in [60, Appendix A.2] or [19, Chapter 11]. We include a sketch of the
proof. From the recurrence in (67) and the gradient of the ridge regression, the polynomials Pk that
generate GD+M satisfy the following three-term recurrence,

Pk+1(�) = (1 +m� ��)Pk(�)�mPk�1(�)

Pk(�) =
Pk+1(�) +mPk(�)

1 +m� ��
.

(71)
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We define the polynomial generating function for Pk as G(�, t) =
P1

k=0 t
kPk(�). Using the

recurrence in (71), we get that

G(�, t) = 1 +
1

t(1�m+ ��)

1X

k=2

tkPk(�)�
mt

1�m+ ��

1X

k=0

tkPk(�)

= 1 +
1

t(1�m+ ��)

⇥
G(�, t)� 1� t(1� �

1+m�)
⇤
� mt

1�m+ ��
G(�, t).

By solving this expression for the generating polynomial, we have

G(�, t) =
1 + t(m� (� + �

1+m ))

1� t(1�m+ ��)�mt2
.

This generating function for MGD closely resembles the generating function for Chebyshev polyno-
mials of the 1st and 2nd kind. Under simple transformations (e.g., t 7! tp

m
), this is exactly the case.

These transformations yield the expression in (70).

The role of �(�) is to transform the eigenvalues of AT
A+ �Id within a specific range controlled by

the learning rate and momentum. It is known that the Chebyshev polynomials are well-behaved on
the interval of [�1, 1] and grow exponentially off of this region.

Moreover for a generic quadratic applied to xk, the rate of convergence will be controlled by Pk(�).
Using standard asymptotic behavior of Chebyshev polynomials, we can derive asymptotic rates based
on �min

def
= �min(AT

A+ �Id) and �max
def
= �max(AT

A+ �Id), the smallest (non-zero) and largest
eigenvalues of AT

A respectively. We record this result below
Proposition 2 (Asymptotic rates of MGD). The asymptotic rate of MGD is

lim sup
k!1

k
p
Pk =

8
>>>><

>>>>:

p
m if � 2

h
(1�

p
m)2

�min
, (1+

p
m)2

�max

i

p
m
�
|�(�min)|+

p
�(�min)2 � 1

�
if � 2

⇥
0,min

� 2(1+m)
�min+�max

, (1�
p
m)2

�min

 ⇤
p
m
�
|�(�max)|+

p
�(�max)2 � 1

�
if � 2

⇥
max

� 2(1+m)
�min+�max

, (1+
p
m)2

�max

 
, 2(1+m)

�max

⇤

� 1 otherwise.
(72)

Proof. See [62] for a complete proof. The result follows from knowing that the iterates are given by
Chebyshev polynomials and then applying well-known asymptotics of Chebyshev polynomials to get
the convergence rate.

We can minimize over the rate to find the optimal parameters. In this case, they become the parameters
used in the Heavy-Ball algorithm [65] where

m =

✓p
�max �

p
�minp

�max +
p
�min

◆2

and � =

✓
2p

�max +
p
�min

◆2

. (73)

A simple computation yields that the asymptotic rate for Heavy-Ball is
p
�max�

p
�minp

�max+
p
�min

.

G Numerical simulations

To illustrate our theoretical results and conjectures we report simulations and experiments using
SGD with constant learning rate on the `2-regularized least squares problem. In all simulations for
the random `2-regularized least-square problem, the vectors ⌘, and � are sampled from a standard
Gaussian and the initialization vector x0 = 0 (for Figures 1 and 5) and N(0, 4Id) (Figure 6). For the
random features model (see Section B.1 and Figure 1, a standardized ReLu activation function was
applied, that is

�(·) = max{·, 0}� 0.5(⇡)�1

0.5� 0.5⇡�1
. (74)

The entries of the hidden weight matrix W 2 Rn0⇥d in the random feature model are standard
normal.
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Figure 6: Concentration of mean squared error (MSE) and expected test loss, 1
2kx � �k22, for

SGD on a Gaussian random `2-regularized least-squares problem (Section B) where � ⇠ N(0, Id)
is the ground truth signal and a generative model b = A� + ⌘ where entries of ⌘ iid standard
normal with k⌘k22 = 2.25, n = 0.9d with `2-regularization parameter � = 0.1. SGD with constant
learning rate � = 0.8 was initialized at x0 ⇠ N(0, 4Id) (independent of A, �); an 80% confidence
interval (shaded region) over 10 runs for each n. Any quadratic statistic, such as the MSE, becomes
non-random in the large limit and all runs of SGD converge to a deterministic function ⌦t (red)
solving a Volterra equation (9). This is an illustration of Theorem 1 and Theorem 2.

Volterra: computing theoretical dynamics. When the entries of A are generated by standard
Gaussians, a celebrated work [50] gives an explicit limiting density for the eigenvalues when d and n
are proportional. In this case, the Volterra equation (8) for the loss function L is computable without
needing to input the empirical eigenvalues of the data matrix AA

T . Since the covariance of standard
Gaussians is explicitly ⌃f = Id (see Appendix B.1), one can also directly solve for the expected risk
(9) for applications such as in-distribution expected risk. As such, the Volterra equation is completely
determined. To solve it, a Chebyshev quadrature was used to derive a numerical approximation
for the kernel, K, (8). The size of the grid points used to compute the numerical integration does
effect the Volterra equations convergence to the theoretical limit. We suggest that the number of
epochs be equal to the number of grid points used in the numerical quadrature rule. Next, to generate
the solution L of the Volterra equation, we implement a Picard iteration which finds a fix point to
the Volterra equation by repeatedly convolving the kernel and adding the forcing term. Despite the
numerical approximations to integrals, the resulting solutions to the Volterra equation ( and ⌦)
model the true behavior of SGD remarkably well. Similarly, by evaluating contour integrals, random
features with Gaussian X and W known explicit formulas for the limiting densities of eigenvalues
and eigenvectors (see e.g., [2]). This approach was used to compute the theoretical dynamics in
Figure 6.

When the limiting eigenvalues and eigenvectors are unavailable, as in the case of real data sets,
an empirical Volterra equation solver was used. We computed the svd of the data matrix A and
calculated an empirical covariance for ⌃f (see Appendix B.1). The singular values and vectors of
A and ⌃f were then used to compute the forcing term (i.e., the GF terms L(Xgf) and R(Xgf)) and
kernel K (10). As before, a Chebyshev quadrature was used to derive the integral for the kernel
K and a Picard iteration to find the fix point of the Volterra was applied. This method was used to
compute the theoretical dynamics ⌦t and  t in Figures 1 and 5.

Real data. The CIFAR-5m [54] example (Figures 1 is shown to demonstrate that large-dimensional
random matrix predictions often work for large dimensional real data. Random features models were
used to predict the car/plane class vector which has approximately 1 million samples. The data sets
were all standardized and pre-processed to have mean 0 and variance 1 before applying the random
features model with standardized ReLu.

We give specific simulation/experimental details below:

• CIFAR-5m streaming, Figure 1: Plots of single runs of SGD on CIFAR-5m [54] using the
car/plane class vector (samples n = 1 million, features n0 = 32⇥32⇥3) on a random features
model with standardized ReLu (see (74)). CIFAR-5m car/plane data set was standardized so
that entries were mean 0 and variance 1. Standard Gaussian weight matrix W 2 Rn0⇥d with
fixed d = 6, 000 used in the random features set-up (see Appendix B.1). Multi-pass SGD
with constant learning rate � = 0.8 applied to various sample size n = 1000·[4, 6, 10, 20, 40]
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Table 1: Summary of the eigenvalues in ICR with normalized trace equal to 1.0, i.e.,
1
n tr(AA

T ) = 1.0. All data sets were standardized before applying any transformations
(e.g., random features). For random features (RF), standard Gaussian W 2 Rn0⇥d applied
to the data set followed by entry-wise application of standardized ReLu (see (74) and
Appendix B.1 and Appendix G for exact set-up).

Eigenvalues of AA
T

Data set Samples (n) Features (d) Largest Smallest

CIFAR-101 (all) 50,000 3,072 11,118.80 4.7 · 10�4

CIFAR-101 RF
large d

50,000 5,551 8,162.84 2.8 · 10�1

CIFAR-101 RF
small d

50,000 452 8,403.31 13.18

CIFAR-5m2 (all) 5 million 3,072 1,195,595.52 1.03 · 10�1

CIFAR-5m2 (car/plane) 1 million 3,072 258,599.09 1.7 · 10�2

Gaussian
under parameterized 2,000 100 29.35 12.4

Gaussian
equal 2,000 1,930 4.06 3.4 · 10�4

Gaussian
over parameterized 2,000 100,000 1.30 7.4 · 10�1

Gaussian-RF
under parameterized 2,000 100 66.38 3.95

Gaussian-RF
equal 2,000 1,467 27.15 6.2 · 10�3

Gaussian-RF
over parameterized 2,000 316,227 21.77 6.6 · 10�2

MNIST3 (all) 60,000 784 5,562.79 1.1 · 10�2

MNIST3 RF
large d

60,000 5,551 4,249.29 2.8 · 10�1

MNIST3 RF
small d

60,000 452 4,564.77 15.09
1 [34] 2 [54] 3 [37]

on (1) with � = 0.01. Empirical volterra solver was applied to match the multi-pass setting
using the same variables. An empirical covariance ⌃�(W ) computed using all 1 million
samples. Streaming SGD using constant learning rate � = 0.8 applied to the expected risk
using the empirical covariance ⌃�(W ). As the `2 regularization parameter � is hit by a
factor of n, in the streaming setting, the regularization is set to 0.0. Empirical Volterra using
the eigenvalues of ⌃�(W ) with � = 0.8 and � = 0.0 matched the SGD steaming setting.

• Random features theory.
• ICR, Figure 2: Graph of the ICR under the assumption that the normalized trace of r2L

is 1.0, that is, 1
n tr(r2L) = 1.0. All data sets, MNIST, CIFAR-10, and CIFAR-5m are

standardized (i.e., entries normalized so that mean 0.0 and variance 1.0). Largest and
smallest (non-zero) eigenvalues of the feature covariance reported. For the random features
set-up (RF), standard Gaussian matrix W 2 Rn0⇥d where n0 is the underlying number
of features from the data set and d ranged from 102.5 to 103.9 was applied to the data
set followed by an entry-wise activation standardized ReLu. Reported (dashed lines) are
the largest and smallest eigenvalues after applying the standardized ReLu and making the
normalized trace equal to 1.0. In the Gaussian set-up, the number of samples n was fixed
at 2000 and d ranged from 102 to 105; entries of A standard Gaussians. In the random
features Gaussian (Gaussian-RF), we fixed the samples n = 2000 and n0 = 100 and varied
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the d = 102 to 105.5. Largest and smallest eigenvalues of �(XW )T�(XW ) reported after
making the normalized trace 1.0.

• Gaussian linear regression streaming, Figure 5: Simple linear regression with targets from
a generative model, b = A� + ⇠; signal � ⇠ N(0, 1

d Id) and noise ⇠ ⇠ N(0, 0.04
d I). A

(n ⇥ 2000) data matrix A with Aij ⇠ N(0, 1/2000) with various n values (see figure).
SGD with constant learning rate � = 0.8 initialized at x0 = 0 was applied to the linear
regression problem with a regularization parameter of 0.01, see training loss and excess
risk in linear regression in Appendix B.1. In this setting, the covariance of the expected
risk is explicitly given by Id/d. A new data point a ⇠ N(0, 1

d Id) and b = a� + 0.2Z with
Z ⇠ N(0, 1) generated and the expected risk computed as (axt � b)2 where xt are the
iterates of SGD. Empirical volterra solver used with grid points ⇡ number of iterations of
SGD.

• Gaussian linear regression concentration, Figure 6: Simple linear regression with targets
from generative model, b = A� + ⇠; signal � ⇠ N(0, 1

d Id), noise ⇠ ⇠ N(0, 1.52

n In).
Matrix A 2 Rn⇥d is row normalized and d

n = 0.9 for n = {100, 400, 1600, 6400}. 10
runs of SGD with constant learning � = 0.8 started at x0 ⇠ N(0, 4

n Id) applied to the
`2-regularized least squares problem with � = 0.1, see training loss and excess risk in linear
regression in Appendix B.1. 80% confidence interval (shaded) depicted in Figure 6. Volterra
equation solver used with grid points approximately the same as epochs. Expected risk
computed as in Figure 5. Concentration around the Volterra equation occurs as n (or d) !
1 across different risk functions.
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