
Supplement to “Kernel-based tests for Likelihood-Free
Hypothesis Testing”

Patrik Róbert Gerber∗
Department of Mathematics, MIT

Cambridge, MA 02139
prgerber@mit.edu

Tianze Jiang∗

Department of Mathematics, MIT
Cambridge, MA 02139
tjiang@mit.edu

Yury Polyanskiy∗
Department of EECS, MIT

Cambridge, MA 02139
yp@mit.edu

Rui Sun∗

Department of Mathematics, MIT
Cambridge, MA 02139
eruisun@mit.edu

Contents

A Notation 3

B Applications of Theorem 3.2 3

B.1 Bounded Discrete Distributions Under L2/L1-Separation 3

B.2 β-Hölder Smooth Densities on [0, 1]d Under L2/L1-Separation 4

B.3 (β, 2)-Sobolev Smooth Densities on Rd Under L2-Separation 5

C Black-box Boosting of Success Probability 6

D Proof of Theorem 3.2 6

D.1 Notation and Technical Tools . 6

D.2 Mean and Variance Computation . 8

E Proof of Theorem 3.3 11

E.1 Information theoretic tools . 11

E.2 Constructing hard instances . 12

E.2.1 Lower Bound on m . 13

E.2.2 Lower Bound on n . 13

E.2.3 Lower Bound on m · n . 14

F Proofs From Section 4 16

F.1 Heuristic Justification of the Objective (7) . 16

F.2 Proof of Proposition 4.1 . 17
∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

F.3 Proof of Proposition 4.2 . 17

F.4 Additive Test Statistics . 17

G Application: Diffusion Models vs CIFAR 18

G.1 Dataset Details . 18

G.2 Experiment Setup and Benchmarks . 19

G.3 Sample Allocation . 20

G.4 Remarks on Results . 20

H Application: Higgs-Boson Detection 20

H.1 Dataset Details . 20

H.2 Experiment Setup and Training Models . 20

H.2.1 Configuration and Model Architecture . 20

H.2.2 Training . 21

H.3 Evaluating the Performance . 22

H.3.1 Evaluating the p-Value with the Methodology of Algorithm 1 22

H.3.2 Evaluating the Error of the Test (4) . 22

2

A Notation

We use A ≳ B,A ≲ B,A ≍ B to denote A = Ω(B), B = Ω(A) and A = Θ(B) respectively,
where the hidden constants depend on untracked parameters multiplicatively.2

We write TV,KL, χ2 for total-variation, KL-divergence and χ2-divergence, respectively. We write
D(PY |X∥QY |X |PX) = EX∼PX

D(PY |X∥QY |X) as the conditional divergence for any probability
measures P,Q on two variables X,Y and divergence D ∈ {TV,KL, χ2}.
We write ℓp for the usual ℓp sequence space and Lp for the usual Lp space with respect to the
Lebesgue measure. Both the ℓp norm and the Lp norm are written as ∥ · ∥p if no ambiguity arises.

For real numbers a, b ∈ R we also write max{a, b} as a ∨ b and min{a, b} as a ∧ b.

We use 1⃗d to denote an d-dimensional all 1’s vector.

For an integer k ∈ Z+, we write [k] as a short notation for the set {1, 2, . . . , k}.

In the proofs of Theorem 3.2 and Theorem 3.3, we use !
= for an equality that we are trying to prove.

B Applications of Theorem 3.2

Usually, minimax rates of testing are proven under separation assumptions using more traditional
measures of distance such as Lp, where p ∈ [1,∞]. In this section we show one example of
how Theorem 3.2 can be used to recover known results, and also obtain some novel results under
L2-separation and L1-separation.

B.1 Bounded Discrete Distributions Under L2/L1-Separation

Sample Complexity Upper Bounds Let PDb(k,C) be the set of all discrete distributions P
supported on [k] = {1, 2, . . . , k} satisfying max1≤i≤k p(i) ≤ C/k, where p is the probability mass
function of P (here

∑k
i=1 p(k) = 1). For distributions PX , PY , PZ we shall write pX , pY , pZ as

their probability mass functions, respectively.

Let us apply Theorem 3.2 with underlying space X = [k] and measure µ = 1
k

∑k
i=1 δi. Take the

kernel K(x, y) = 1{x = y} =
∑k
i=1 1{x = y = i}, and note that for any two distributions PX , PY

we have

MMD2(PX , PY) = E
[
K(X,X ′) +K(Y, Y ′)− 2K(X,Y)

]
=
∑
i

|pX(i)− pY (i)|2

where (X,X ′, Y, Y ′) ∼ P⊗2
X ⊗ P⊗2

Y . So the corresponding MMD is the ℓ2-distance on prob-

ability mass functions. Note also that K =
∑k
i=1

1
k

(√
k1{x = i}

)(√
k1{y = i}

)
, where{√

k1{x = i}
}k
i=1

forms an orthonormal basis of L2(µ). So K has only one nonzero eigenvalue,
namely

λ1 = λ2 = . . . = λk = 1/k,

of multiplicity k. Suppose that we observe samples X,Y, Z of size n, n,m from PX , PY , PZ ∈
PDb(k,C), where MMD(PX , PY) =

√∑
i |pX(i)− pY (i)|2 ≥ ϵ. Plugging into Theorem 3.2

shows that:
Proposition B.1. For any two PX , PY ∈ PDb(k,C), if the ℓ2-distance between pX , pY is at least
ϵ, then testing (mLFHT) is possible at total error α using n simulation samples and m real data
samples provided that

min{m,n} ≳ C∥λ∥∞ log(1/α)(1 +R)2

δ2ϵ2
≍ log(1/α)(1 +R)2

kϵ2δ2
,

min{n,
√
mn} ≳

C∥λ∥2
√

log(1/α)

ϵ2δ
≍
√

log(1/α)√
kϵ2δ

.

(1)

2For example, the first equation in (1) means that there exists a constant c independent of α, k, ϵ, δ, R, such
that min{m,n} ≥ c log(1/α)(1+R)2

kϵ2δ2
.

3

where R is defined as in the assumption (iii) of Section 3.2.

We can convert the above results to measure separation with respect to total variation (recall
TV(p, q) = 1

2

∑
i |p(i) − q(i)| = 1

2∥p − q∥1) using the AM-QM inequality ∥pX − pY ∥1 ≤√
k∥pX − pY ∥2. Then, taking R ≍ α ≍ δ = Θ(1) recovers the minimax optimal results of

[3; 7; 8], for LFHT over the class PDb. Note that analogous results for two-sample testing follow
from the above using the reduction presented in Section 3.5.

Sample Complexity Lower Bounds Recall the definition of J⋆ϵ and note that ∥λ∥22,J = min(J−1,k)
k2

for all J ≥ 2. By Corollary 3.6 we see that J⋆ϵ ≳ k as soon as ϵ ≲ 1/k. Thus, for ϵ ≲ 1/k the
necessity of

m ≳
log(1/α)

kϵ2δ2
, n ≳

√
log(1/α)√
kϵ2

and m+
√
mn ≳

√
log(1/α)√
kϵ2δ

(2)

follows by Theorem 3.3. Here it is crucial to note that when δ = Θ(1), we have

m+
√
mn ≳

√
log(1/α)√
kϵ2

and n ≳

√
log(1/α)√
kϵ2

⇐⇒
√
mn ≳

√
log(1/α)√
kϵ2

and n ≳

√
log(1/α)√
kϵ2

and hence the upper bound (1) meets with the lower bound (2) provided R ≍ δ = Θ(1). Once again,
setting R ≍ δ ≍ α = Θ(1) we the optimal lower bounds recovering the results of [3] (in the regime
ϵ ≲ 1/k). In short we can also recover the following result for LFHT.
Proposition B.2 ([3, Theorem 1, adapted]). On the class PDb(k,C), using n simulation samples and
m real data samples, if

n ≳
1√
kϵ2

, m ≳
1

kϵ2
,
√
mn ≳

1√
kϵ2

, (3)

then for any two distributions PX , PY ∈ PDb(k,C) with ∥pX−pY ∥2 ≥ ϵ, testing (LFHT) is possible
with a total error of 1%. Conversely, to ensure the existence of a procedure that can test (LFHT) with
a total error of 1% for any PX , PY ∈ PDb(k,C) with ∥pX − pY ∥2 ≥ ϵ, the number of observations
(n,m) must satisfy

n ≳
1√
kϵ2

, m ≳
1

kϵ2
,
√
mn ≳

1√
kϵ2

. (4)

The implied constants in (3) and (4) do not depend on k and ϵ, but may differ.

B.2 β-Hölder Smooth Densities on [0, 1]d Under L2/L1-Separation

Sample Complexity Upper Bounds Let PH(β, d, C) be the set of all distributions on [0, 1]d with
β-Hölder smooth Lebesgue-density p satisfying ∥p∥Cβ ≤ C for some constant C > 1, where

∥p∥Cβ ≜ max
0≤|α|≤⌈β−1⌉

∥f (α)∥∞ + sup
x ̸=y∈[0,1]d,|α|=⌈β−1⌉

|f (α)(x)− f (α)(y)|
∥x− y∥β−⌈β−1⌉

2

,

where ⌈β − 1⌉ is the largest integer strictly smaller than β and |α| =
∑
i αi is the norm of a multi-

index α ∈ Nd. Abusing notation, we also use PH(β, d, C) to denote the set of all corresponding
density functions.

We take K(x, y) =
∑
j 1{x, y ∈ Bj}, where {Bj}j∈[κ]d is the j’th cell of the regular grid of size

κd on [0, 1]d, i.e., Bj = [(j − 1⃗d)/κ, j/κ] for j ∈ [κ]d. Clearly there are κd nonzero eigenvalues,
each equal to 1. The following approximation result is due to Ingster [5], see also [1, Lemma 7.2].
Lemma B.3. Let f, g ∈ PH(β, d, C) with ∥f−g∥2 ≥ ϵ. Then, there exist constants c, c′ independent
of ϵ such that for any κ ≥ cϵ−1/β ,

MMD(f, g) ≥ c′∥f − g∥2.

Now, suppose that we have samples X,Y, Z of size n, n,m from PX , PY , PZ ∈ PH(β, d, C) with
densities pX , pY , pZ such that ∥pX − pY ∥2 ≥ ϵ. Then, Theorem 3.2 combined with Lemma B.3 and
the choice κ ≍ ϵ−1/β shows that

4

Proposition B.4. Testing (mLFHT) on PH(β, d, C) at total error α using n simulation and m real
data samples is possible provided

min{m,n} ≳ C∥λ∥∞ log(1/α)(1 +R)2

δ2ϵ2
≍ log(1/α)(1 +R)2

δ2ϵ2
,

min{n,
√
nm} ≳

C∥λ∥2
√

log(1/α)

ϵ2δ
≍
√

log(1/α)

ϵ(2β+d/2)/βδ
,

where ϵ is an L2-distance lower bound between PX , PY and R is defined as in the assumption (iii)
of Section 3.2.

Setting R ≍ α ≍ δ = Θ(1) recovers the optimal results of [3] for the class PH. Once again, identical
results under L1 separation follow from Jensen’s inequality ∥ · ∥L1([0,1]d) ≤ ∥ · ∥L2([0,1]d). Note
that analogous results for two-sample testing follow from the above using the reduction presented in
Section 3.5.

Sample Complexity Lower Bounds The kernel defined in the previous paragraph is not suitable
for constructing lower bounds over the class PH because its eigenfunctions do not necessarily lie in
PH. It would be possible to consider a different kernel that is more adapted to this problem/class but
we do not pursue this here.

B.3 (β, 2)-Sobolev Smooth Densities on Rd Under L2-Separation

Sample Complexity Upper Bounds Let PS(β, d, C) be the class of distributions that are supported
on Rd and whose Lebesgue density p satisfies ∥p∥β,2 ≤ C, where

∥p∥β,2 ≜
∥∥(1 + ∥ · ∥)βF [p]∥∥

2
(5)

and F denotes the Fourier transform. Again, abusing notation, we write PS(β, d, C) both as the set
of distributions and the set of density functions.

We take the Gaussian kernel Gσ(x, y) = σ−d exp(−∥x − y∥22/σ2) on X = Rd with base mea-
sure dµ(x) = exp(−x2)dx. In [9] the authors showed that the two-sample test that thresholds
the Gaussian MMD with appropriately chosen variance σ2 achieves the minimax optimal sample
complexity over PS, when separation is measured by L2. A key ingredient in their proof is the
following inequality.

Lemma B.5 ([9, Lemma 5]). Let f, g ∈ PS(β, d, C) with ∥f − g∥2 ≥ ϵ. Then, there exist constants
c, c′ independent of ϵ such that for any σ ≤ c ϵ1/β , we have

MMD(f, g) ≥ c′∥f − g∥2.

Now, suppose that we have samples X,Y, Z of sizes n, n,m from PX , PY , PZ ∈ PS(β, d, C) for
some constant C with densities pX , pY , pY satisfying ∥pX − pY ∥2 ≥ ϵ.
Note that the heat-semigroup is an L2-contraction (∥λ∥∞ ≤ 1) and that

∥λ∥22 =

∫
Gσ(x, y)

2dµ(x)dµ(y) ≍ σ−d

up to constants depending on the dimension. Theorem 3.2 combined with Lemma B.5 and a choice
σ ≍ ϵ1/β yields the following result.

Proposition B.6. Testing (mLFHT) over the class PS with total error α is possible provided

min{m,n} ≳ C∥λ∥∞ log(1/α)(1 +R)2

δ2ϵ2
≍ log(1/α)(1 +R)2

δ2ϵ2

min{n,
√
nm} ≳

C∥λ∥2
√

log(1/α)

ϵ2δ
≍
√
log(1/α)

ϵ(2β+d/2)/βδ
,

where ϵ is the lower bound on the L2-distance between PX , PY and R is defined as in the assumption
(iii) of Section 3.2.

5

Taking R ≍ δ ≍ α = Θ(1) above, we obtain new results for LFHT and using the reduction from
two-sample testing given in Section 3.5 we partly recover [9, Theorem 5]. Only partly, because the
above requires bounded density with respect to our base measure dµ(x) = exp(−x2)dx.

Sample Complexity Lower Bounds Note that our lower bound Theorem 3.3 doesn’t apply because
the top eigenfunction of the Gaussian kernel is not constant. Once again, a more careful choice of the
base measure (or kernel) might lead to a more suitable argument for the lower bound. We leave such
pursuit as open.

C Black-box Boosting of Success Probability

In this section we briefly describe how upper bounds on the minimax sample complexity in the
constant error probability regime (α = Θ(1)) can be used to obtain the dependence log(1/α) in
the small error probability regime (α = o(1)). We will argue abstractly in a way that applies to the
setting of Theorem 3.2.

Suppose that from some distributions P1, P2, . . . , Pk we take samples X1, X2, . . . , Xk of size
n1, n2, . . . , nk respectively and are able to decide between two hypotheses H0 and H1 (fixed but
arbitrary) with total error probability at most 1/3. Call this test as Ψ(X1, . . . , Xk) ∈ {0, 1}, so that

P(Ψ(X1, . . . , Xk) = 0|H0) ≥ 2/3 and P(Ψ(X1, . . . , Xk) = 1|H1) ≥ 2/3.

Now, to each an error of o(1), instead, we take 18n1 log(2/α), . . . , 18nk log(2/α) observations from
P1 through Pk, and split each sample into 18 log(2/α) equal sized batches {Xi,j}i∈[k],j∈[18 log(2/α)].
Here 18 log(2/α) is assumed to be an integer without loss of generality. The split samples form
18 log(2/α) independent binary random variables

Aj ≜ Ψ(X1,j , . . . , Xk,j)

for j = 1, 2, . . . , 18 log(2/α). We claim that the majority voting test

Ψα({Xi,j}i,j) =
{
1 if Ā ≥ 1/2

0 otherwise

tests H0 against H1 with total probability of error at most α, where

Ā ≜
1

18 log(2/α)

18 log(2/α)∑
j=1

Aj .

Indeed, by Hoeffding’s inequality, we have

P
(
Ā ≥ 1/2

∣∣H0

)
≤ α/2

P
(
Ā ≤ 1/2

∣∣H1

)
≤ α/2.

Therefore, in the remainder of our upper bound proofs, we only focus on achieving a constant
probability of error (α = Θ(1)) as the logarithmic dependence follows by the above.
Remark C.1. As mentioned in the discussion succeeding Corollary 3.6, we do conjecture the tight
dependence in the upper bound to be

√
log(α−1) instead of log(α−1) shown by this method.

D Proof of Theorem 3.2

D.1 Notation and Technical Tools

We use the expansion
K(x, y) =

∑
ℓ

λℓeℓ(x)eℓ(y)

extensively, where λ ≜ (λ1, λ2, . . .) are K’s eigenvalues (regarded as an integral operator on L2(µ))
in non-increasing order and e1, e2, . . . are the corresponding eigenfunctions forming an orthonormal

6

basis for L2(µ), and convergence is to be understood in L2(µ). We use the notation ⟨ · ⟩ ≜
∫
·dµ.

For all u ∈ L2(µ) we define

uℓ ≜ ⟨ueℓ⟩, uℓℓ′ ≜ ⟨ueℓeℓ′⟩, ℓ = 1, 2, . . .

and consequently u =
∑
ℓ uℓeℓ. We also define

K[u](·) ≜
∫
K(t, ·)u(t)µ(dt) =

∑
ℓ

λℓuℓeℓ(·),

where the second equality follows from the orthonormality of {eℓ}∞ℓ=1. Note that the RKHS embed-
ding satisfies θu ≜

∫
K(x, ·)u(x)dµ(x) = K[u]. Now, for PX we write

xℓ ≜ (pX)ℓ = ⟨pXeℓ⟩, xℓℓ′ ≜ (pX)ℓℓ′ = ⟨pXeℓeℓ′⟩, ℓ, ℓ′ = 1, 2, . . .

where pX is the µ-density of PX . The similar notations also apply to PY , PZ . The following identities
will be very useful in our proofs.
Lemma D.1. For each identity below, let f, g, h ∈ L2(µ) be such that the quantity is well defined.
Then,

∥θf∥2HK
=
∑
ℓ

λℓf
2
ℓ (6)

MMD2(f, g) =
∑
ℓ

λℓ(fℓ − gℓ)2 (7)

∥K[f]∥22 =
∑
ℓ

λ2ℓf
2
ℓ (8)∑

ℓ

λℓfℓgℓ = ⟨fK[g]⟩ = ⟨K[f]g⟩ (9)∑
ℓℓ′

λℓλℓ′hℓℓ′fℓgℓ′ = ⟨hK[f]K[g]⟩ (10)∑
ℓℓ′

λℓλℓ′gℓℓ′fℓℓ′ =
∑
ℓ

λℓ⟨feℓK[geℓ]⟩. (11)

Suppose that f, g are probability densities with respect to µ that are bounded by C. Then

0 ≤
∑
ℓℓ′

λℓλℓ′gℓℓ′fℓℓ′ ≤ C2∥λ∥22. (12)

Proof. We prove each claim, starting with (6). Clearly

∥θf∥2HK
= ∥K[f]∥2HK

=

∥∥∥∥∫ K(x, ·)f(x)dµ(x)
∥∥∥∥2
HK

=

∫∫
⟨K(x, ·),K(y, ·)⟩HK

f(x)f(y)dµ(x)dµ(y)

=

∫∫
K(x, y)f(x)f(y)dµ(x)dµ(y)

=
∑
ℓ

λℓf
2
ℓ

as required. The second claim (7) follows immediately from (6) by definition. For (8) by orthogonality
we have

∥K[f]∥22 = ∥
∑
ℓ

λℓfℓeℓ∥22

=
∑
ℓ

λ2ℓf
2
ℓ .

7

For (9) by the definition of K[·] we have

∑
ℓ

λℓfℓgℓ =

〈(∑
ℓ

λℓfℓeℓ

)
g

〉
= ⟨K[f]g⟩.

For (10) we can write

∑
ℓℓ′

λℓλℓ′hℓℓ′fℓgℓ′ =
∑
ℓ

λℓfℓ

〈(∑
ℓ′

λℓ′gℓ′eℓ′

)
heℓ

〉
=
∑
ℓ

λℓfℓ⟨K[g]heℓ⟩

= ⟨K[g]hK[f]⟩.

Finally, for (11) we have

∑
ℓℓ′

λℓλℓ′fℓℓ′gℓℓ′ =
∑
ℓ

λℓ

〈(∑
ℓ′

λℓ′gℓℓ′eℓ′

)
feℓ

〉
=
∑
ℓ

λℓ⟨K[geℓ]feℓ⟩.

Suppose now that f, g are probability densities with respect to µ that are bounded by C > 0. Let
X,Y be independent random variables following the densities f, g. Then

∑
ℓℓ′

λℓλℓ′fℓℓ′gℓℓ′ = E

(∑
ℓ

λℓeℓ(X)eℓ(Y)

)2


≤ C2

∫
X

∫
X

(∑
ℓ

λℓeℓ(x)eℓ(y)

)2

dµ(x)dµ(y)

= C2∥λ∥22

as claimed, where we used that the eℓ are orthonormal.

D.2 Mean and Variance Computation

We take π = δ/2. Our statistic reads

−T (X,Y, Z) + γ(X,Y, π) = ⟨θP̂Z
− (π̄θP̂X

+ πθP̂Y
), θP̂X

− θP̂Y
⟩u,HK

=
1

nm

∑
ij

k(Xi, Zj)︸ ︷︷ ︸
I

− 1

nm

∑
ij

k(Yi, Zj)︸ ︷︷ ︸
II

− 2π̄

n(n− 1)

∑
i<i′

k(Xi, Xi′)︸ ︷︷ ︸
III

+
2π

n(n− 1)

∑
i<i′

k(Yi, Yi′)︸ ︷︷ ︸
IV

+
π̄ − π
n2

∑
ij

k(Xi, Yj)︸ ︷︷ ︸
V

.

Recall that ν = argminν′∈R MMD(PZ , ν̄
′PX+ν′PY). Let us write z = ν̄x+νy+r for 1− ν̄ = ν,

where the residual term is denoted as r ∈ L2(µ). Let θr =
∫
r(t)K(t, ·)µ(dt) be the mean

embedding of r. Under both hypotheses we assume that ∥θr∥HK
≤ R ·MMD(PX , PY), moreover

⟨θr, θPY
− θPX

⟩HK
= 0 by the definition of ν. We look at each of the 5 +

(
5
2

)
= 15 terms of the

8

variance separately.

var(I) =
∑
ℓℓ′

λℓλℓ′
{
n(n− 1)m(zℓℓ′ − zℓzℓ′)xℓxℓ′ + nm(m− 1)(xℓℓ′ − xℓxℓ′)zℓzℓ′

+ nm(xℓℓ′zℓℓ′ − xℓxℓ′zℓzℓ′)
}

var(II) =
∑
ℓℓ′

λℓλℓ′
{
n(n− 1)m(zℓℓ′ − zℓzℓ′)yℓyℓ′ + nm(m− 1)(yℓℓ′ − yℓyℓ′)zℓzℓ′

+ nm(yℓℓ′zℓℓ′ − yℓyℓ′zℓzℓ′)
}

var(III) =
∑
ℓℓ′

λℓλℓ′
{(n

2

)
(x2ℓℓ′ − x2ℓx2ℓ′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(xℓℓ′ − xℓxℓ′)xℓxℓ′

}

var(IV) =
∑
ℓℓ′

λℓλℓ′
{(n

2

)
(y2ℓℓ′ − y2ℓ y2ℓ′) + (

(
n

2

)2

−
(
n

2

)
−
(
4

2

)(
n

4

)
)(yℓℓ′ − yℓyℓ′)yℓyℓ′

}

var(V) =
∑
ℓℓ′

λℓλℓ′
{
n2(n− 1)(yℓℓ′ − yℓyℓ′)xℓxℓ′ + n2(n− 1)(xℓℓ′ − xℓxℓ′)yℓyℓ′

+ n2(xℓℓ′yℓℓ′ − xℓxℓ′yℓyℓ′)
}

For the cross terms we obtain

cov(I, II) =
∑
ℓℓ′

λℓλℓ′n
2m(zℓℓ′ − zℓzℓ′)xℓyℓ′

cov(I, III) =
∑
ℓℓ′

λℓλℓ′n(n− 1)m(xℓℓ′ − xℓxℓ′)zℓxℓ′

cov(I, IV) = 0

cov(I,V) =
∑
ℓℓ′

λℓλℓ′n
2m(xℓℓ′ − xℓxℓ′)zℓyℓ′

cov(II, III) = 0

cov(II, IV) =
∑
ℓℓ′

λℓλℓ′n(n− 1)m(yℓℓ′ − yℓyℓ′)zℓyℓ′

cov(II,V) =
∑
ℓℓ′

λℓλℓ′n
2m(yℓℓ′ − yℓyℓ′)zℓxℓ′

cov(III, IV) = 0

cov(III,V) =
∑
ℓℓ′

λℓλℓ′n
2(n− 1)(xℓℓ′ − xℓxℓ′)xℓyℓ′

cov(IV,V) =
∑
ℓℓ′

λℓλℓ′n
2(n− 1)(yℓℓ′ − yℓyℓ′)yℓxℓ′ .

9

Note that
(
n
2

)2 − (n2)− (n2)(n4) = n(n− 1)2 − n(n− 1). Collecting terms, and simplifying, we get
the coefficient of the 1

n term:

Coef

(
1

n

)
=
∑
ℓ,ℓ′

λℓλℓ′

(
(xℓℓ′ − xℓxℓ′)zℓzℓ′︸ ︷︷ ︸

var(I)

+(yℓℓ′ − yℓyℓ′)zℓzℓ′︸ ︷︷ ︸
var(II)

+4π̄2(xℓℓ′ − xℓxℓ′)xℓxℓ′︸ ︷︷ ︸
var(III)

+ 4π2(yℓℓ′ − yℓyℓ′)yℓyℓ′︸ ︷︷ ︸
var(IV)

+(π̄ − π)2(yℓℓ′ − yℓyℓ′)xℓxℓ′ + (π̄ − π)2(xℓℓ′ − xℓxℓ′)yℓyℓ′︸ ︷︷ ︸
var(V)

− 4π̄(xℓℓ′ − xℓxℓ′)zℓxℓ′︸ ︷︷ ︸
cov(I,III)

+2(π̄ − π)(xℓℓ′ − xℓxℓ′)zℓyℓ′︸ ︷︷ ︸
cov(I,V)

− 4π(yℓℓ′ − yℓyℓ′)zℓyℓ′︸ ︷︷ ︸
cov(II,IV)

− 2(π̄ − π)(yℓℓ′ − yℓyℓ′)zℓxℓ′︸ ︷︷ ︸
cov(II,V)

− 4π̄(π̄ − π)(xℓℓ′ − xℓxℓ′)xℓyℓ′︸ ︷︷ ︸
cov(III,V)

+4π(π̄ − π)(yℓℓ′ − yℓyℓ′)yℓxℓ′︸ ︷︷ ︸
cov(IV,V)

)
.

After expanding zℓ as zℓ = ν̄xℓ + νyℓ + rℓ, we split the calculation into multiple parts to simplify
it. First, we focus on terms that are multiplied by (xℓℓ′ − xℓxℓ′) and do not contain rℓ or rℓ′ . Using
Lemma D.1 extensively and the fact that π̄ = 1− π, ν̄ = 1− ν, we find that the sum of these terms
equals

ν̄2⟨xK[x]2⟩+ ν2⟨xK[y]2⟩+ 2ν̄ν⟨xK[x]K[y]⟩ − ν̄2⟨xK[x]⟩2 − ν2⟨xK[y]⟩2 − 2ν̄ν⟨xK[x]⟩⟨xK[y]⟩
+ 4π̄2⟨xK[x]2⟩ − 4π̄2⟨xK[x]⟩2 + (π̄ − π)2⟨xK[y]2⟩ − (π̄ − π)2⟨xK[y]⟩2

− 4π̄ν̄⟨xK[x]2⟩ − 4π̄ν⟨xK[x]K[y]⟩+ 4π̄ν̄⟨xK[x]⟩2 + 4π̄ν⟨xK[x]⟩⟨xK[y]⟩
+ 2(π̄ − π)ν̄⟨xK[x]K[y]⟩+ 2(π̄ − π)ν⟨xK[y]2⟩ − 2(π̄ − π)ν̄⟨xK[x]⟩⟨xK[y]⟩ − 2(π̄ − π)ν⟨xK[y]⟩2

− 4π̄(π̄ − π)⟨xK[x]K[y]⟩+ 4π̄(π̄ − π)⟨xK[x]⟩⟨xK[y]⟩

=(ν̄ − 2π̄)2
(
⟨xK[x− y]2⟩ − ⟨xK[x− y]⟩2

)
≤C ∥λ∥∞ MMD2(PX , PY).

Similarly, the terms involving (yℓℓ′ − yℓyℓ′) but not rℓ or rℓ′ sum up to the quantity

(ν − 2π)2
(
⟨yK[x− y]2⟩ − ⟨yK[x− y]⟩2

)
≤ C∥λ∥∞ MMD2(PX , PY).

Next, collecting the terms involving both (xℓℓ′ − xℓxℓ′) and rℓ or rℓ′ we get

2ν̄⟨xK[r]K[x]⟩+ 2ν⟨xK[r]K[y]⟩+ ⟨xK[r]2⟩ − 2ν̄⟨xK[x]⟩⟨xK[r]⟩ − 2ν⟨xK[y]⟩⟨xK[r]⟩ − ⟨xK[r]⟩2

− 4π̄⟨xK[x]K[r]⟩+ 4π̄⟨xK[x]⟩⟨xK[r]⟩
+ 2(π̄ − π)⟨xK[y]K[r]⟩ − 2(π̄ − π)⟨xK[y]⟩⟨xK[r]⟩

=2(ν̄ − 2π̄)
(
⟨xK[r]K[x− y]⟩ − ⟨xK[r]⟩⟨xK[x− y]⟩

)
+ ⟨xK[r]2⟩ − ⟨xK[r]⟩2

≲C ∥λ∥∞(R+R2)MMD2(PX , PY).

Finally, collecting the terms involving both (yℓℓ′ − yℓyℓ′) and rℓ or rℓ′ we get

2(ν − 2π)
(
⟨yK[r]K[y − x]⟩ − ⟨yK[r]⟩⟨yK[y − x]⟩

)
+ ⟨yK[r]2⟩ − ⟨yK[r]⟩2

≲C∥λ∥∞(R+R2)MMD2(PX , PY).

Similarly we get

Coef

(
1

m

)
=
∑
ℓℓ′

λℓλℓ′

(
(zℓℓ′ − zℓzℓ′)xℓxℓ′︸ ︷︷ ︸

var(I)

+(zℓℓ′ − zℓzℓ′)yℓyℓ′︸ ︷︷ ︸
var(I)

+2(zℓℓ′ − zℓzℓ′)xℓyℓ′︸ ︷︷ ︸
cov(I,II)

)

= ⟨zK[x− y]2⟩ − ⟨zK[x− y]⟩2

≲ C∥λ∥∞ MMD2(PX , PY).

10

The remaining coefficients don’t rely on subtle cancellations, and simple bounds yield

Coef

(
1

n(n− 1)

)
=
∑
ℓℓ′

λℓλℓ′

(
4π̄2

(
1

2
(x2ℓℓ′ − x2ℓx2ℓ′)− (xℓℓ′ − xℓxℓ′)xℓxℓ′

)
︸ ︷︷ ︸

var(III)

+ 4π2

(
1

2
(y2ℓℓ′ − y2ℓ y2ℓ′)− (yℓℓ′ − yℓyℓ′)yℓyℓ′

)
︸ ︷︷ ︸

var(IV)

)

≲ C2∥λ∥22

Coef

(
1

nm

)
=
∑
ℓℓ′

λℓλℓ′

(
−(zℓℓ′ − zℓzℓ′)xℓxℓ′ − (xℓℓ′ − xℓxℓ′)zℓzℓ′ + (xℓℓ′zℓℓ′ − xℓxℓ′zℓzℓ′)︸ ︷︷ ︸

var(I)

− (zℓℓ′ − zℓzℓ′)yℓyℓ′ − (yℓℓ′ − yℓyℓ′)zℓzℓ′ + (yℓℓ′zℓℓ′ − yℓyℓ′zℓzℓ′)︸ ︷︷ ︸
var(I)

)

≲ C2∥λ∥22

Coef

(
1

n2

)
=
∑
ℓℓ′

λℓλℓ′

(
(π̄ − π) (−(yℓℓ′ − yℓyℓ′)xℓxℓ′ − (xℓℓ′ − xℓxℓ′)yℓyℓ′ + (xℓℓ′yℓℓ′ − xℓxℓ′yℓyℓ′))︸ ︷︷ ︸

var(V)

)

≲ C2∥λ∥22.

Summarizing, we’ve found that

var(T (X,Y, Z)− γ(X,Y, π)) ≲
(
1

n
+

1

m

)
C∥λ∥∞(1 +R2)MMD2(PX , PY)

+

(
1

n2
+

1

nm

)
C2∥λ∥22.

(13)

Using that ⟨θr, θPY
− θPX

⟩HK
= 0, we compute the expectation to be

E [−T (X,Y, Z) + γ(X,Y, π)] = (π − ν)MMD2(PX , PY).

Taking π ≜ δ/2 and applying Chebyshev’s inequality shows that there exists a universal constant
c > 0, such that the testing problem is possible at constant error probability (say α = 5%), provided
that the sample sizes m,n satisfy the following inequalities:

min{m,n} ≥ cC∥λ∥∞(1 +R2)

δ2ϵ2

min{n,
√
nm} ≥ cC∥λ∥2

δϵ2
.

By repeated sample splitting and majority voting (see Appendix C), we can boost the success
probability of this test to the desired level 1− α by incurring a multiplicative Θ(log(1/α)) factor on
the sample sizes n,m, which yields the desired result.

E Proof of Theorem 3.3

E.1 Information theoretic tools

Our lower bounds rely on the method of two fuzzy hypotheses [14]. Given a measurable space S , let
M(S) denote the set of all probability measures on S . We call subsets H ⊆M(S) hypotheses. The
following is the main technical result that our proofs rely on.

11

Lemma E.1. Take hypotheses H0, H1 ⊆M(S) and P0, P1 ∈M(S) random with P(Pi ∈ Hi) = 1.
Then

inf
ψ

max
i=0,1

sup
P∈Hi

P (ψ ̸= i) ≥ 1

2
(1− TV(EP0,EP1)) ,

where the infimum is over all tests ψ : X → {0, 1}.

Proof. For any ψ

max
i=0,1

sup
Pi∈Hi

Pi(ψ ̸= i) ≥ 1

2
sup

Pi∈Hi

(P0(ψ = 1) + P1(ψ = 0))

≥ 1

2
E
[
P0(ψ = 1) + P1(ψ = 0)

]
.

Optimizing over ψ we get that the RHS above is equal to 1
2 (1− TV(EP0,EP1)) as required.

Therefore, to prove a lower bound on the minimax sample complexity of testing with total error prob-
ability α, we just need to construct two random measures Pi ∈ Hi such that 1− TV(EP0,EP1) =
Ω(α). In our proofs we also use the following standard results on f -divergences.
Lemma E.2 ([12, Section 7]). For any probability distributions P,Q the inequalities

1− TV(P,Q) ≥ 1

2
exp(−KL(P∥Q)) ≥ 1

2

1

1 + χ2(P∥Q)

hold.
Lemma E.3 (Chain rule for χ2-divergence). Let PX,Y , QX,Y be probability measures such that the
marginals on X are equal (PX = QX). Then

χ2(PX,Y ∥QX,Y) = χ2(PY |X∥QY |X |PX).

Proof. Let PX,Y , QX,Y have densities p, q with respect to some µ. Then, by some abuse of notation,
we have

χ2(PX,Y ∥QX,Y) = −1 +
∫
p(x, y)2

q(x, y)
dµ(x, y)

= −1 +
∫
p(y|x)2p(x)
q(y|x)

dµ(x, y)

=

∫
p(x)

∫ (
p(y|x)2

q(y|x)
− 1

)
dµ(y, x)

= χ2(PY |X∥QY |X |PX).

E.2 Constructing hard instances

Recall that in the statement of Theorem 3.3, we assume that µ(X) = 1, supx∈X K(x, x) ≤ 1 and∫
K(x, y)µ(dx) ≡ λ1. Let f0 ≡ 1 and for each η ∈ {±1}N define

fη = 1 + ϵ
∑
j≥2

ρjηjej︸ ︷︷ ︸
≜gη

(14)

where {ρj}j≥2 is chosen as ρj = 1{2 ≤ j ≤ J}
√
λj/∥λ∥2,J , where we define ∥λ∥2,J =√∑

2≤j≤J λ
2
j for some J ≥ 2. Notice that

∫
fη(x)µ(dx) = µ(X) = 1 due to orthogonality

of the eigenfunctions. Assume from here on that J is chosen so that for all η we have fη(x) ≥ 1/2
for all x ∈ X . This makes fη into a valid probability density with respect to the base measure µ.
Before continuing, we prove the following Lemma, which gives a lower bound on the maximal J for
which fη ≥ 1/2 for all η.

12

Lemma E.4. J ≤ J⋆ϵ holds provided 2ϵ
√
J − 1 ≤ ∥λ∥2J .

Proof of Lemma E.4. Notice that

∥ej∥∞ = sup
x∈X
⟨K(x, ·), ej⟩H ≤ sup

x∈X
∥K(x, ·)∥H∥ej∥H ≤

1√
λj
, (15)

where we use ∥K(x, ·)∥H =
√
K(x, x). We have

∥gη∥∞ = ϵ∥
∑
j≥2

ρjηjej∥∞ = ϵ sup
x∈X
⟨K(x, ·),

∑
j≥2

ρjηjej⟩H

≤ ϵ∥
∑
j≥2

ρjηjej∥H = ϵ

√∑
j≥2

ρ2j/λj =
ϵ
√
J − 1

∥λ∥2,J
,

and the result follows.

Note that Lemma E.4 immediately gives us a proof of Corollary 3.6.

Proof of Corollary 3.6. Suppose that J is such that
∑J
j=2 λ

2
j ≥ c2∥λ∥22. Then, by Lemma E.4,

if ϵ ≤ ∥λ∥2J/(2
√
J − 1) then J ≤ J⋆ϵ . By assumption, this is implied by the inequality ϵ ≤

c∥λ∥2/(2
√
J − 1), and the result follows.

Continuing with our proof, note that by construction we have

MMD2(f0, fη) =
∑
j≥2

λjρ
2
j = ϵ2, ∀η ∈ {±1}N. (16)

E.2.1 Lower Bound on m

Again, we apply Lemma E.1 with the new (deterministic) construction

P0 = f⊗n0 ⊗ f⊗n
1
⊗ (1 + δϵg1)

⊗m P1 = f⊗n0 ⊗ f⊗n
1
⊗ f⊗m0 , (17)

where we write f1 = f(1,1,...) and similarly for g1. By the data-processing inequality for χ2-
divergence (also by Lemma E.3), we may drop the first 2n coordinates and obtain

χ2(EP0,EP1) = χ2((1 + δϵg1)
⊗m∥f⊗m0)

= (1 + δ2ϵ2)m − 1

≤ exp(δ2ϵ2m)− 1.

By Lemma E.2 we

1− TV(EP0,EP1) ≳
1

χ2(EP0,EP1)− 1
≥ exp(−δ2ϵ2m)

!
= Ω(α).

The lower bound m ≳ log(1/α)/(δϵ)2 now follows readily.

E.2.2 Lower Bound on n

Once again, we apply Lemma E.1 to the new construction

P0 = f⊗n0 ⊗ f⊗nη ⊗ f⊗m0 , P1 = f⊗nη ⊗ f⊗n0 ⊗ f⊗m0 , (18)

where we put a uniform prior on η ∈ {±1}N as before. Using the subadditivity of total variation
under products, we compute

TV(EP0,EP1) = TV(f⊗n0 ⊗ E f⊗nη ,E[f⊗nη]⊗ f⊗n0)

≤ 2TV(E f⊗nη , f⊗n0).

13

Just as in Appendix E.2.3 we upper bound by the χ2-divergence to get

χ2(E f⊗nη ∥f⊗n0) = −1 + Eηη′
∫ n∏

i=1

(fη(xi)fη′(xi))µ(dx1) . . . µ(dxn)

≤ −1 + E exp(nϵ2
∑
j≥2

ρ2jηjη
′
j)

= −1 +
∏
j≥2

cosh(nϵ2ρ2j)

≤ −1 + exp(n2ϵ4
∑
j≥2

ρ4j)

= −1 + exp(n2ϵ4/∥λ∥22,J).

Again, by Lemma E.2 we obtain

1− TV(EP0,EP1) ≳
1

χ2(EP0∥EP1)− 1
≥ exp(−n2ϵ4/∥λ∥22,J)

!
= Ω(α).

The lower bound n ≳
√
log(1/α)∥λ∥2,J/ϵ2 now follows readily.

E.2.3 Lower Bound on m · n

We take a uniform prior on η and consider the random measures

P0 = f⊗n0 ⊗ f⊗nη ⊗ ((1− δ)f0 + δfη)
⊗m and P1 = f⊗n0 ⊗ f⊗nη ⊗ f⊗m0 . (19)

Our goal is to apply Lemma E.1 to P0, P1. Notice that (1 − δ)f0 + δfη = 1 + δϵgη. Let us
write X,Y, Z for the marginals first n, second n and last m coordinates of P0 and P1. By the data
processing inequality and the chain rule Lemma E.3 we have

χ2(EP0∥EP1) = χ2((EP0)Y,Z∥(EP1)Y,Z)

= χ2((EP0)Z|Y ∥(EP1)Z|Y |(EP0)Y)

= Eχ2
(
E
[
(1 + δϵgη)

⊗m∣∣Y] ∥f⊗m0

)
=: (†).

Notice that the expectation inside the χ2-divergence is with respect to η given the variables Y , or
in other words, over the posterior of η with uniform prior given n observations from the density
1 + ϵgη = fη. The outer expectation is over Y . Given Y , let η and η′ be i.i.d. from said posterior.
We get the bound

(†) + 1 ≤ E
∫ m∏

i=1

(1 + δϵgη(xi))(1 + δϵgη′(xi))µ(dxi)

= E(1 + δ2ϵ2
∑
j≥2

ρ2jηjη
′
j)
m

≤ E exp(δ2ϵ2m
∑
j≥2

ρ2jηjη
′
j).

Define the collections of variables η−j = {ηj}j≥2 \ {ηj} and η′−j similarly. We shall prove the
following claim:

E
[
exp(δ2ϵ2mρ2jηjη

′
j)
∣∣ η−jη′−j] ≤ exp(cδ2ϵ4(δ2m2 +mn)ρ4j) (20)

for some universal constant c > 0. Assuming that (20) holds, by induction we can show that

(†) + 1 ≤ exp(cδ2(δ2m2 +mn)ϵ4
∑
j≥2

ρ4j)

= exp(cδ2(δ2m2 +mn)ϵ4/∥λ∥22,J).

Thus, if mn+ δ2m2 = o
(
∥λ∥22,J/(δ2ϵ4)

)
then testing is impossible.

14

We now prove (20). Since the variable η′jη
′
j is either 1 or −1, we have

E
[
exp(δ2ϵ2mρ2jηjη

′
j)
∣∣ η−jη′−j] = (eδ

2ϵ2mρ2j − e−δ
2ϵ2mρ2j) · P(ηjη′j = 1|η−jη′−j) + e−δ

2ϵ2mρ2j .

Let us write η±1,j for the vector of signs equal to η but whose j’th coordinate is ±1 respectively.
Looking at the probability above, and using the independence of η, η′ given Y , we have

P(ηjη′j = 1|Y, η−j , η′−j) = P(ηj = 1|Y, η−j)2 + P(ηj = −1|Y, η−j)2

=
1

4

(f⊗nη1j (Y))2 + (f⊗nη−1j
(Y))2(

1
2f

⊗n
η1j (Y) + 1

2f
⊗n
η−1j (Y)

)2 .
Taking the expectation E[· |η−j , η′−j] and using the HM-AM inequality (12 (x+ y))−1 ≤ 1

2 (
1
x + 1

y)

valid for all x, y > 0 gives

P(ηjη′j = 1|η−j , η′−j) =
1

4

∫
(
∏n
i=1 fη1j (xi))

2 + (
∏n
i=1 fη−1j

(xi))
2

1
2

∏n
i=1 fη1j (xi) +

1
2

∏n
i=1 fη−1j (xi)

µ(dx1) . . . µ(dxn)

≤ 1

4
+

1

8

∫ (
(
∏n
i=1 fη1j (xi))

2∏n
i=1 fη−1j (xi)

+
(
∏n
i=1 fη−1j

(xi))
2∏n

i=1 fη1j (xi)

)
µ(dx1) . . . µ(dxn) = (⋆).

Note that fη1j = fη−1j
+ 2ϵρjej . Using the lower bound fη±1j

(x) ≥ 1
2 for all x ∈ X and the

inequality 1 + x ≤ exp(x), we get

(⋆) ≤ 1

4
+

1

8

[(
1 +

∫
4ϵ2ρ2je

2
j (x)

fη−1j
(x)

µ(dx)

)n
+

(
1 +

∫
4ϵ2ρ2je

2
j (x)

fη1j (x)
µ(dx)

)n]

≤ 1

4
(1 + e8ϵ

2nρ2j).

Recall that (⋆) is a probability so (⋆) ≤ 1, and we obtain

(⋆) ≤ 1

4
(1 + e8ϵ

2nρ2j∧ln 3).

Putting it together and applying Lemma E.5 we get

LHS of (20) ≤ (eδ
2ϵ2mρ2j − e−δ

2ϵ2mρ2j)
1

4
(1 + e8ϵ

2nρ2j∧ln 3) + e−δ
2ϵ2mρ2j

≤ ecδ
2ϵ4ρ4j (δ

2m2+mn)

for universal c = 16 > 0. Thus, by Lemma E.2 we obtain

1− TV(EP0,EP1) ≳
1

χ2(EP0,EP1) + 1
≥ exp(−cδ2ϵ4(δ2m2 +mn)/∥λ∥22,J)

!
= Ω(α).

The necessity of

mn+ δ2m2 ≳
log(1/α)∥λ∥22,J

δ2ϵ4

follows immediately. In fact, this was even stronger than stated in Theorem 3.3 with mn+m2 ≳
log(1/α)∥λ∥22,J/(δ2ϵ4).3

Lemma E.5. For a, b ≥ 0, the following inequality holds:

1

4
(ea − e−a)(1 + eb∧ln 3) + e−a ≤ e2(ab+a

2).

Proof. If b ≥ ln 3 or a ≥ 1 we have:

LHS ≤ 1

4
(ea − e−a)(1 + eln 3) + e−a = ea ≤ e b

ln 3a+a
2

.

3We have mn+m2 ≤ (
√
mn+m)2 ≤ 2(mn+m2), so

√
mn+m ≍

√
mn+m2.

15

If b < ln 3 and a < 1, we have

eb ≤ 1 +
2

ln 3
b ≤ 1 + 2b,

ea + e−a

2
≤ ea

2

,
ea − e−a

2
≤ e− e−1

2
a ≤ 2a,

and then

1

4
(ea − e−a)(1 + eb) + e−a =

1

2
(ea + e−a) +

eb − 1

4
(ea − e−a)

≤ ea
2

+ 2ab

≤ ea
2

(1 + 2ab)

≤ ea
2+2ab

The result follows from ln 3 > 1.

F Proofs From Section 4

F.1 Heuristic Justification of the Objective (7)

As usual, let X,Y, Z denotes samples of sizes n, n,m from PX , PY , PZ respectively. Let us give a
heuristic justification for using the training objective defined in (7) for the purpose of obtaining a
kernel for LFHT/mLFHT. Note that originally it was proposed as a training objective for kernels to
be used in two sample testing. Recall that our test for LFHT can be written as

Ψ1/2(X,Y, Z) = 1

{
TLF ≥ 0

}
where

TLF = MMD2
u(P̂Z , P̂Y ;K)−MMD2

u(P̂Z , P̂X ;K),

Heuristically, to maximize the power of (mLFHT), we would like to maximize the following popula-
tion quantity

JLF ≜
E0[TLF]− E1[TLF]√

var0(TLF)

where

E0[TLF] = EX,Y,Z [TLF|PZ = PX] = +MMD2(PX , PY ;K),

E1[TLF] = EX,Y,Z [TLF|PZ = PY] = −MMD2(PX , PY ;K).

Let TTS = MMDu(P̂X , P̂Y) be the usual statistic that is thresholded for two-sample testing. Then, a
computation analogous to that in Section D.2 show (cf. (13)) that

var0(TLF) ≈
A(K)

n
+
A(K)

m
+
B(K)

n2
+
B(K)

mn
,

var0(TTS) ≈
A(K)

n
+
B(K)

n2

for some A(K) and B(K). Therefore, we have approximately

JLF ≈
2MMD2(PX , PY ;K)√

1 + n
m

√
var0(TTS)

≈ 2

√
m

m+ n
Ĵ(X,Y ;K)

which only differs from our optimization objective defined in (7) by a constant factor.

Second, notice that MMD(PX ,PY ;K)√
var(TTS)

depends only on PX −PY and that ((1− δ)PX + δPY)−PX ∝
PY −PX , therefore it is sensible to use (7) as our training objective for is also sensible for (mLFHT),
and we don’t even need to observe the sample Z.

16

F.2 Proof of Proposition 4.1

Proof. In this proof we regard D ≜ (Xtr, Xev, Y tr, Y ev) and the parameters of the kernel ω as fixed.
Recall that we are looking at the problem mLFHT with a misspecification parameter R = 0 (see
Theorem 3.2). Given a test set {zi}i∈[m], our test statistic is T ({zi}i∈[m]) =

1
m

∑m
i=1 f(zi) where

f(zi) =
1

nev

nev∑
j=1

(
Kω(zi, Y

ev
j)−Kω(zi, X

ev
j)
)
.

In Phase 3 of Algorithm 1, we observe the value T̂ = T (Z) = 1
m

∑m
i=1 f(Zi) and reject the null

hypothesis for large values of T̂ . Thus, the p-value is defined as

p = p(Z,D) ≜ PZ̃∼P⊗m
X

(T (Z̃) > T̂).

Phase 2 of our Algorithm 1 produces random variables T1, . . . , Tk that all have the distribution of
T ({Z̃i}i∈[m]), so that 1{Tr ≥ T̂} (r = 1, . . . , k) are unbiased estimates of the p-value. However,
the Ti are not independent, because they sample from the finite collection of calibration samples Xcal.
However, as ncal →∞ the covariances between Tr1 , Tr2 for r1 ̸= r2 tend to zero, and we obtain a
consistent estimate of p.

F.3 Proof of Proposition 4.2

Proof. The test statistic T (X,Y, Z) in (3) is given by

T (X,Y, Z) =
1

m

m∑
i=1

fK(Zi)

where
fK(z) = θP̂Y

(z)− θP̂X
(z).

This simplifies to (consider K(x, y) = f(x)f(y))

fK(z) =

 1

n

n∑
j=1

f(Yj)−
1

n

n∑
j=1

f(Xj)

 f(z) = C(X,Y)f(z).

where C(X,Y) does not depend on z. Therefore, for any witness function f , we obtain the desired
additive test.

F.4 Additive Test Statistics

In this section we prove accordingly that the test statistics of all of MMD-M/G/O, SCHE, LBI,
UME, RFM are of the form Tf (Z) =

1
m

∑m
i=1 f(Zi) (where f might depends on X,Y). The test is

to compare Tf (Z) with some threshold γ(X,Y).

Note that in the setting of Algorithm 1, the X and Y here correspond to Xev and Y ev.

MMD-M/G/O As described in (3) we have

Tf (Z) =
1

m

m∑
i=1

 1

n

n∑
j=1

(K(Zi, Yj)−K(Zi, Xj))

 .

SCHE As described in Section 4.2 we have

Tf (Z) =
1

m

m∑
i=1

1{ϕ(Zi) > t}.

LBI As described in Section 4.2 we have

Tf (Z) =
1

m

m∑
i=1

log

(
ϕ(Zi)

1− ϕ(Zi)

)
.

17

UME As described in [6], the UME statistic evaluates the squared witness function at Jq test
locations W = {wk}

Jq
k=1 ⊂ X . Formally for any two distributions P,Q we define

U2(P,Q) = ∥θQ − θP ∥2L2(W) =
1

Jq

Jq∑
k=1

(θQ(wk)− θP (wk))2.

However, we note a crucial difference that their result only considers the case of n = m, and their
proposed estimator for U2(PZ , PX) can not be naturally extended to the case of n ̸= m. Here we
generalize it tom ̸= n where we (conveniently) use a biased estimate of their distance. Given samples
X,Y, Z and a set of witness locations W , the test statistic is a (biased yet) consistent estimator of
U2(PZ , PY)−U2(PZ , PX). Let ψW (z) = 1√

Jq
(K(z, w1), . . . ,K(z, wJq)) ∈ R|W | be the “feature

function,” then:

Û2(Z,X) =

∥∥∥∥∥∥ 1

m

m∑
i=1

ψW (Zi)−
1

n

n∑
j=1

ψW (Xi)

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

m

m∑
i=1

ψW (Zi)

∥∥∥∥∥
2

2

+

∥∥∥∥∥∥ 1n
n∑
j=1

ψW (Xi)

∥∥∥∥∥∥
2

2

− 2

mn

∑
1≤i≤m,1≤j≤n

⟨ψW (Zi) , ψW (Xj)⟩

Here ⟨·, ·⟩ denotes the usual inner product. Therefore, the difference between distances is

Û2(Z, Y)− Û2(Z,X) =
1

m

m∑
i=1

〈
ψW (Zi) ,

2

n

n∑
j=1

(ψW (Xj)− ψW (Yj))

〉
+ F (X,Y)

where F is sum function based only on X,Y . This is clearly an additive statistic for Z.

RFM Algorithm 1 in [13] describes a method for learning a kernel from data given a binary
classification task. For convenience lets concatenate the data to XRFM = (X,Y) ∈ R2n×d and
labels yRFM = (⃗0n, 1⃗n) ∈ R1×2n. Given a learned kernel K, we write the Gram matrix as
(K(XRFM, XRFM))i,j = K(XRFM

i , XRFM
j) (1 ≤ i, j ≤ 2n). Let K(XRFM, z) be a column vec-

tor with components K(XRFM
i , z) (1 ≤ i ≤ 2n). The classifier is then defined as

fRFM(z) = yRFM ·K(XRFM, XRFM)−1 ·K(XRFM, z). (21)

Though in [13] the kernel learned from RFM is used to construct a classifier as in Equation (21),
since RFM is a feature learning method, we also apply the RFM kernel to our MMD test, namely

fRFM to MMD(z) =
1

n

n∑
j=1

(K(z, Yj)−K(z,Xj)) .

G Application: Diffusion Models vs CIFAR

We defer a more fine-grained detail to our code submission, which includes executable programs
(with PyTorch) once the data-generating script from DDPM has been run (see README in the
./codes/CIFAR folder).

G.1 Dataset Details

We use the CIFAR-10 dataset available online at https://www.cs.toronto.edu/~kriz/cifar.
html, which contains 50000 colored images of size 32 × 32 with 10 classes. For the diffusion
generated images, we use the SOTA Hugging Face model (DDPM) that can be found at https:
//huggingface.co/google/ddpm-CIFAR-10-32. We generated 10000 artificial images for our
experiments. The code can be found at our code supplements.

For dataset balancing, we randomly shuffled the CIFAR-10 dataset and used 10000 images as data
in our code. Most of our experiments are conducted with the null PX as CIFAR images, and the
alternate as PY = 2

3 · CIFAR + 1
3 · DDPM. To this end, we matched 20000 images from CIFAR to

18

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://huggingface.co/google/ddpm-CIFAR-10-32
https://huggingface.co/google/ddpm-CIFAR-10-32

Figure 4: Data visualization for CIFAR-10 (left) vs DDPM diffusion generated images (right)

belong to the alternate hypothesis, and the remaining 30000 images to stay in the null hypothesis.
For the alternate dataset, we simply sample without replacement from the 20000 + 10000 mixture.
This sampled distribution is almost the same as mixing (so long as the sample bank is large enough
compared to the acquired data, so that each item in the alternate has close to 1/3 probability of being
in DDPM, which is indeed the case).

G.2 Experiment Setup and Benchmarks

We use a standard deep Conv-net [11], which has been employed for SOTA GAN discriminator tasks
in similar settings. It has four convolutional layers and one fully connected layer outputting the
feature space of size (300, 1). For SCHE and LBI, we simply added a linear layer of (300, 2) after
applying ReLU to the 300-dimensional layer and used the cross-entropy loss to train the network.
Note that this is equivalent to first fixing the feature space and then performing logistic regression to
the feature space. For kernels, we add extra trainable parameters after the 300-d feature output.

For the MMD-based tests, we simply train the kernel on the neural net and evaluate our objective.
For UME, we used a slightly generalized version of the original statistic in [6] which allows for com-
parison on randomly selected witness locations in the null hypothesis with m ̸= n (see Appendix F.4).
The kernel is trained using our heuristic (see (7) and Appendix F.1), with MMD replaced by UME.
The formula for UME variance can be found in [6]. For RFM, we use Algorithm 1 in [13] to learn a
kernel on (stochastic batched) samples, and then use our MMD test on the trained kernel.

We use 80 training epochs for most of our code from the CNN architecture (for classifiers, this is
well after interpolating the training data and roughly when validation loss stops decreasing), and a
batch size of 32 which has a slight empirical benefit compared to larger batch sizes. The learning
rates are tuned separately in MMD methods for optimality, whereas for classifiers they follow the
discriminator’s original setting from [11]. In Phase 2 of Algorithm 1, we choose k = 1000 for the
desired precision while not compromising runtime. For each task, we run 10 independent models and
report their performances as the mean and standard deviation of those 10 runs as estimates. We refer
to a full set of hyper-parameters in our code implementation.

Our code is implemented in Python 3.7 (PyTorch 1.1) and was ran on an NVIDIA RTX 3080 GPU
equipped with a standard torch library and dataset extensions. Our code setup for feature extraction
is similar to that of [10]. For benchmark implementations, our code follows from the original code
templated provided by the cited papers.

19

50 100 150 200 250 300 350
m

0.0

0.2

0.4

0.6

0.8

1.0
Rejection Rate (alpha=0.05)

100 200 300 400
m

0.00

0.05

0.10

0.15

0.20

0.25
False Positive Rate

50 100 150 200 250 300 350
m

0.0

0.1

0.2

0.3

0.4

0.5
Expected P-Value

50 100 150 200 250 300 350
m

0.0

0.1

0.2

0.3

0.4

0.5
Error Probability At 0

Figure 5: Relevant plots following the setting in Figure 2 (in the main text) of fixing ntr = 1920
and varying sample size m in the x-axis for the comparison with missing benchmarks. Errorbars are
projected showing standard deviation across 10 runs. We replaced part (d) in Figure 2 (in the main
text) to a sanity check in our FPR when thresholded at α = 0.05.

G.3 Sample Allocation

We make a comment on why (4) is different from just thresholding M̂MD2(Z, Y tr)−M̂MD2(Z,Xtr)
at 0, which was what we did in part (c) of Figure 2 (and hence the difference along the curve of
MMD-M vs Figure 1). Our theory assumes that the samples are i.i.d. conditioned on the kernel
being chosen already. However, in the experiments, the kernel is dependent on the training data.
Therefore, to evaluate the MMD estimate (between experimentations), one needs extra data that does
not intersect with training.

In fact, it can be experimentally shown by comparing Figure 1 and Figure 2(c) that doing so (while
reducing the sample complexity on nev) hurts performance. Indeed, we found out that when Xev, Y ev

are non-intersecting with training, performance is (almost) always better at a cost of hurting the
overall sample complexity of n.

G.4 Remarks on Results

Figure 5 lists all of our benchmarks in the setting of Figure 2 (in the main text) on missing benchmarks,
where the last figure is replaced by the false positive rate at thresholding at α = 0.05 to verify
our results. As mentioned in the main text, our MMD-M method consistently outperforms other
benchmarks on both the expected p-value (of alternate) and rejection rate at α = 0.05, while all of our
tests observe a empirical false positive rate close to α = 0.05% (Part (b)), showing the consistency of
methods.

H Application: Higgs-Boson Detection

H.1 Dataset Details

We use the Higgs dataset available online at http://archive.ics.uci.edu/ml/datasets/
HIGGS, produced using Monte Carlo simulations [2]. The dataset is nearly balanced, containing
5, 829, 122 signal instances and 5, 170, 877 background instances. Each instance is a 28-dimensional
vector, consisting of 28 features. The first 21 features are kinematic properties measured by the
detectors in the accelerator, such as momentum and energy. The last 7 properties are invariant masses,
derived from the first 21 features.

H.2 Experiment Setup and Training Models

The modified Algorithm 1 is shown in Algorithm 2 and Algorithm 3. Compared with Algorithm 2,
we implement the thresholding trick (Section 4.3) in Algorithm 3.

H.2.1 Configuration and Model Architecture

We implement all methods in Python 3.9 and PyTorch 1.13 and run them on an NVIDIA Quadro
RTX 8000 GPU.

20

http://archive.ics.uci.edu/ml/datasets/HIGGS
http://archive.ics.uci.edu/ml/datasets/HIGGS

0.4 0.6 0.8 1.0 1.2 1.4 1.6
mWbb(normalized)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

 o
f e

ve
nt

s

Background
Signal
Above threshold
Below threshold

Figure 6: This figure visualizes the distribution of the 26th feature, the invariant mass mWbb. The red
and black lines are the histograms of the original dataset. We employ MMD-M as a classifier, trained
and evaluated using ntr = 1.3×106 and nev = nopt = 2×104 through Algorithm 3. The blue(green)
line represents all instances z’s whose “witness scores” f(z;Xev, Y ev)’s are larger(smaller) than topt.

For all classifier-based methods in this study (SCHE and LBI), we adopt the same architecture as
previously proposed in [2]. The classifiers are six-layer neural networks with 300 hidden units in each
layer, all employing the tanh activation function. For SCHE, the output layer is a single sigmoid unit
and we utilize the binary cross-entropy loss for training. For LBI, the output layer is a linear unit and
we utilize the binary cross entropy loss combined with a logit function (which is more numerically
stable than simply using a sigmoid layer followed by a cross entropy loss).

For all MMD-based methods (MMD-M, MMD-G, MMD-O, and UME), the networks φ and φ′

are both six-layer neural networks with 300 ReLU units in each layer. The feature space, which is
the output of the neural network φ, is set to be 100-dimensional. Here UME has the same kernel
architecture as MMD-M, and the number of test locations is set to be Jq = 4096. For RFM, we adopt
the same architecture as in [13], where the kernel is KM (x, y) = exp(−γ(x− y)TM(x− y)) with
a constant γ and a learnable positive semi-definite matrix M . We set γ ≡ 1.

The neural networks are initialized using the default setting in PyTorch, and the bandwidths σ, σ′

are initialized using the median heuristic [4]. The parameter τ is initially set to 0.5. For UME, the
witness locations W are initially randomly sampled from the training set. For RFM, the initial M
equals the median bandwidth times an identity matrix.

H.2.2 Training

The size of our training set, denoted as ntr, varies from 1.0 × 102 to 1.6 × 106. For a given ntr,
we select the first ntr datapoints from each class of the Higgs dataset to form Xtr and Y tr, i.e.,
|Xtr| = |Y tr| = ntr. Subsequently, we randomly select nvalidation = min(

√
10ntr, 0.1ntr) points

from each of Xtr, Ytr to constitute the validation set, while the remainder of Xtr, Ytr are used for
running gradient descent. The optimizer is set to be a minibatch SGD, with a batch size of 1024, a
learning rate of 0.001, and a momentum of 0.99. Training is halted once the validation loss stops
to decrease for 10 epochs, then we choose the checkpoint (saved for each epoch) with the smallest
validation loss thus far as our trained model. Beyond the general setting above, in RFM a batch size
of 1024 doesn’t work well and instead we use a batch size of 20, 000.

21

H.3 Evaluating the Performance

H.3.1 Evaluating the p-Value with the Methodology of Algorithm 1

We call the “witness score” of an instance z ∈ X as

f(z;Xev, Y ev) =
1

ncal

ncal∑
i=1

(k(z, Y ev
i)− k(z,Xev

i)) . (22)

For a vector of instances Z = (Z1, . . . , Zm), we write

f(Z;Xev, Y ev) = (f(Z1;X
ev, Y ev), . . . , f(Zm;Xev, Y ev)).

The testing procedure is summarized in Phases 2, 3 and 4 in Algorithm 2 and Algorithm 3. In the
Higgs experiment, we utilize the Gaussian approximation method to determine the p-values when the
witness function f is not thresholded, which allows us to reach very small p-values and errors under
limited computational resource. In cases where the score function f is thresholded by a value t, using
the Binomial distribution as in Algorithm 3 is more precise and also fast enough.

Given a trained kernel K trained on Xtr and Y tr, we set Xev = Xtr and Y ev = Y tr, and accordingly
nev = ntr. This results in a more efficient use of data (since we reuse Xtr, Y tr also as Xev, Y ev).
Then, out of the untouched portion of the data, we randomly choose ncal = 20, 000 datapoints from
both classes to populate Xcal and Y cal, i.e., |Xcal| = |Y cal| = ncal = 20, 000. In addition to the
general setting above, for RFM, we need to solve a 2nev-dimensional linear equation during inference,
which arises from the inverse matrix in Equation (21) (solving K(XRFM, XRFM)u = (yRFM)T for
u ∈ R2nev). So we set nev = min(ntr, 10, 000) that Xev, Yev are randomly sampled from the training
set.

In order to compare different benchmarks, we evaluate the expected significance of discovery on
a mixture of 1000 backgrounds and 100 signals. For each benchmark and each ntr, we train 10
independent models. Then for each trained model we proceed through the Phases 2, 3 (and 4) in
Algorithm 2 and Algorithm 3 by 10 times for 10 different (Xev, Xcal, Xopt, Y ev, Y cal, Y opt). The
mean and standard deviation from these 100 runs are reported in Figure 7.

We also display in Figure 8 the trade-off b (m,nev) and (m,ntr) to reach certain levels of significance
of discovery in MMD-M. From the bottom left plot, we see that the (averaged) significance is not
sensitive to nev when lg nev is large. So taking nev = 20, 000 is sufficient.

H.3.2 Evaluating the Error of the Test (4)

We set the parameters to be δ = 0.1 and π = 1
2δ in our experiments. As explained Appendix G.3,

here we no longer take Xev = Xtr. Empirically, taking Xev = Xtr yields a very bad threshold
γ(Xev, Y ev, π).4 Instead, Xev is sampled from untouched datapoints other than Xtr, and the same
applies for Y . We still take nev = ntr here, resulting in a total size of nev + ntr = 2ntr. Specifically,
when nev ≥ 10, 000, computing a nev × nev Gram matrix becomes computationally expensive, so we
adopt Monte Carlo method to compute γ(Xev, Y ev, π), in which we subsample 10, 000 points from
Xev and Y ev to calculate γ and repeat this process 100 times.

Again, we utilize the Gaussian approximation. Recall that the test is to compare T = 1
m

∑m
i=1 f(Zi)

with γ. The type 1 and type 2 error are estimated as CDFN (0,1)

(
−γ(X

ev,Y ev,π)−E[f |H0]√
var(f |H0)/m

)
and

CDFN (0,1)

(
−E[f |H1]−γ(Xev,Y ev,π)√

var(f |H1)/m

)
for the witness function f , which can be estimated efficiently

using the calibration samples Xcal, Y cal.

We consider both the regimes of fixing kernels and varying kernels (training kernel based on n). The
results are shown in the top plot in Figure 1 and the top plot in Figure 8. For each point on the plot,
we train 30 independent models and test each model 10 times, and report the average of these 300
runs. In both plots, we observe the asymmetric m vs n trade-off.

4If the kernel K(·, ·) = KXtr,Y tr(·, ·) is independent of Xev, Y ev, then we have γ(Xev, Y ev, δ/2) ≈
1
2

(
EZ∼Px [T (X

ev, Y ev, Z)] + EZ∼δPY +(1−δ)PX
[T (Xev, Y ev, Z)]

)
. However this is no longer true if

(X tr, Y tr) and (Xev, Y ev) intersect.

22

Algorithm 2 Estimate the significance of discovery of an input Ztest, using the original statistic

Input: (Xtr, Xev, Xcal), (Y tr, Y ev, Y cal); parametrized kernel Kω; input Ztest.
Phase 1: Kernel training on Xtr and Y tr

ω ← argmaxoptimizer
ω Ĵ(Xtr, Y tr;Kw) # maximize objective Ĵ(Xtr, Y tr;Kω) as in (7)

Phase 2: Distributional calibration of test statistic
Scores(0) ← f(Xcal;Xev, Y ev) # Scores(0) has a length of ncal
Scores(1) ← f(Y cal;Xev, Y ev) # Scores(1) has a length of ncal
θ0 ← mean(Scores(0)) # estimate E[f(Z)|Z ∼ PX]

θ1 ← mean(Scores(1)) # estimate E[f(Z)|Z ∼ PY]
σ0 ← std(Scores(0)) # estimate

√
var[f(Z)|Z ∼ PX]

Phase 3: Inference with input Ztest
m ← length(Ztest)
T ← Tf (Ztest;X

ev, Y ev) = mean(f(Ztest;X
ev, Y ev)) # compute test statistic

Zdiscovery ← T−θ0
σ0/

√
m

Output: Estimated significance: Zdiscovery

Algorithm 3 Estimate the significance of discovery of an input Ztest, applying the thresholding trick

Input: (Xtr, Xev, Xcal, Xopt), (Y tr, Y ev, Y cal, Y opt); parametrized kernel Kω; input Ztest.
Phase 1: Kernel training on Xtr and Y tr

ω ← argmaxoptimizer
ω Ĵ(Xtr, Y tr;Kw) # maximize objective Ĵ(Xtr, Y tr;Kω) as in (7)

Phase 2: Find the best threshold
Scores(0) ← f(Xopt;Xev, Y ev)

Scores(1) ← f(Y opt;Xev, Y ev) # witness function as in (22)
for i = 1, 2, ..., 2nopt do
t = (Scores(0) ∪ Scores(1))[i]
TP,TN = mean(Scores(1) > t),mean(Scores(0) < t) # true positive and true negative rate
poweri =

TP+TN−1√
TN(1−TN)

find t to maximize the (estimated) p-value

end for
topt = (Scores(0) ∪ Scores(1))[argmaxi poweri]
Phase 3: Distributional calibration of test statistic (under null hypothesis)
Scores(0) ← (f(Xcal;Xev, Y ev) > t) # Scores(0) ∈ {0, 1}nev

Scores(1) ← (f(Y cal;Xev, Y ev) > t) # Scores(1) ∈ {0, 1}nev

θ0 ← mean(Scores(0)) # estimate E[ft(Z)|Z ∼ PX] ∈ [0, 1]

θ1 ← mean(Scores(1)) # estimate E[ft(Z)|Z ∼ PY] ∈ [0, 1]

Phase 4: Inference with input Ztest

m ← length(Ztest)
T ← Tf (Ztest;X

ev, Y ev) = mean(f(Ztest;X
ev, Y ev) > t) # compute test statistic

Zdiscovery ← CDF−1
N (0,1)(CDFBin(m,θ0)(T))

Output: Estimated significance: Zdiscovery

23

2.
6

2.
0

1.
4

0.
8

0.
4

0.
1

Training set size 2n/million

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Si
gn

ifi
ca

nc
e

of
 d

isc
ov

er
y/

MMD-M with topt

MMD-M
MMD-G
MMD-O
UME

SCHE with topt

SCHE with t=0.5
LBI
RFM as classifier
RFM for MMD

Figure 7: Complete image of Figure 1 in the main text. The mean and standard deviation are
calculated based on 100 runs. See Appendix H for details.

24

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
lg(m)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lg
(n

ev
)

Type I error + II error

6.0 10 12

2.4 10 6

1.5 10 3

1.0 10 2

0.20

0.44

0.66

0.81

0.90

0.95

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
lg(m)

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

lg
(n

ev
)

Significance

0.0
3.0
6.0
9.0
12.0
15.0
18.0
21.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0
lg(m)

3.5

4.0

4.5

5.0

5.5

6.0

lg
(n

tr
)

Significance

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8
14.4

Figure 8: The top plot displays the (m,nev) trade-off to reach certain levels of total error using
ntr = 1.3× 106 in MMD-M. The bottom figures show the trade-off of (m,nev) and (m,ntr) to reach
certain level of significance of discovery in MMD-M. In the bottom left figure, we fix ntr = 1.3×106.
In the bottom right figure, we fix nev = 20, 000. See Appendix H for details.

References
[1] Arias-Castro, E., Pelletier, B., and Saligrama, V. Remember the curse of dimensionality: The

case of goodness-of-fit testing in arbitrary dimension. Journal of Nonparametric Statistics, 30
(2):448–471, 2018.

[2] Baldi, P., Sadowski, P., and Whiteson, D. Searching for exotic particles in high-energy physics
with deep learning. Nature communications, 5(1):1–9, 2014.

[3] Gerber, P. R. and Polyanskiy, Y. Likelihood-free hypothesis testing. CoRR, abs/2211.01126,
2022. doi: 10.48550/arXiv.2211.01126.

[4] Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., and
Sriperumbudur, B. K. Optimal kernel choice for large-scale two-sample tests. Advances in
neural information processing systems, 25, 2012.

[5] Ingster, Y. I. Minimax testing of nonparametric hypotheses on a distribution density in the lp
metrics. Theory of Probability & Its Applications, 31(2):333–337, 1987. doi: 10.1137/1131042.

[6] Jitkrittum, W., Kanagawa, H., Sangkloy, P., Hays, J., Schölkopf, B., and Gretton, A. Informative
features for model comparison. Advances in Neural Information Processing Systems, 31, 2018.

[7] Kelly, B. G., Tularak, T., Wagner, A. B., and Viswanath, P. Universal hypothesis testing in the
learning-limited regime. In 2010 IEEE International Symposium on Information Theory, pages
1478–1482. IEEE, 2010.

[8] Kelly, B. G., Wagner, A. B., Tularak, T., and Viswanath, P. Classification of homogeneous data
with large alphabets. IEEE transactions on information theory, 59(2):782–795, 2012.

25

[9] Li, T. and Yuan, M. On the optimality of gaussian kernel based nonparametric tests against
smooth alternatives. arXiv preprint arXiv:1909.03302, 2019.

[10] Liu, F., Xu, W., Lu, J., Zhang, G., Gretton, A., and Sutherland, D. J. Learning deep kernels
for non-parametric two-sample tests. In International conference on machine learning, pages
6316–6326. PMLR, 2020.

[11] Lopez-Paz, D. and Oquab, M. Revisiting classifier two-sample tests. In International Conference
on Learning Representations, 2017.

[12] Polyanskiy, Y. and Wu, Y. Information Theory: From Coding to Learning. Cambridge University
Press, 2023+.

[13] Radhakrishnan, A., Beaglehole, D., Pandit, P., and Belkin, M. Feature learning in neural
networks and kernel machines that recursively learn features. arXiv preprint arXiv:2212.13881,
2022.

[14] Tsybakov, A. B. Introduction to Nonparametric Estimation. Springer Publishing Company,
Incorporated, 1st edition, 2008. ISBN 0387790519.

26

	Notation
	Applications of Theorem 3.2
	Bounded Discrete Distributions Under L2-L1-Separation
	beta-Holder Smooth Densities on [0,1]d Under L2/L1-Separation
	(beta,2)-Sobolev Smooth Densities on Rd Under L2-Separation

	Black-box Boosting of Success Probability
	 Proof of Theorem 3.2
	Notation and Technical Tools
	Mean and Variance Computation

	 Proof of Theorem 3.3
	Information theoretic tools
	Constructing hard instances
	Lower Bound on m
	Lower Bound on n
	Lower Bound on m*n

	Proofs From sec:learning kernels
	Heuristic Justification of the Objective
	Proof of Consistency of Estimating p-value
	Proof of Equivalence
	Additive Test Statistics

	Application: Diffusion Models vs CIFAR
	Dataset Details
	Experiment Setup and Benchmarks
	Sample Allocation
	Remarks on Results

	Application: Higgs-Boson Detection
	Dataset Details
	Experiment Setup and Training Models
	Configuration and Model Architecture
	Training

	Evaluating the Performance
	Evaluating the p-Value with the Methodology of alg:learndeepkernel
	Evaluating the Error of the Test (4)

