Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIALS

A MIXTURE WEIGHT REGULARIZATION

Here we discuss two regularizers that can be used to force each mixture weight &, to be a one-hot
vector.

Entropy regularization Treating each &, as a probability distribution, we can minimize entropy
H&,] to regularize the mixture weights vectors &p:

K
H[g) == & logé.
k=1

However, this regularizer has one significant flaw: if {; < &; for some 7 and j, the gradient of
H €] will push &; and &; to move further apart thus preventing them from switching their order and
reaching a state where §; > &;.

“Clustering” regularizer To avoid this issue, in all our experiments, we used another regularizer

RIE, 6] B
RIE 0= &g(ll0 — 0k]),
k=1

where 0 = > &0k, g is an arbitrary monotonically increasing function with g(0) = 0, «v is a
regularization weight and 6, are parameters of a block fr, € F. It is easy to see that when all
0, are different, R[¢, 0] is minimized for one-hot vectors . At the same time, the gradients of
R with respect to 8 push templates towards the current average weight § with an effective force
proportional to &. Intuitively, these potentially conflicting “clustering” forces getting stronger for
templates contributing the most to a particular layer parameters, together with the force making
mixture weights more singular, should allow the templates to self-organize.

B MODEL AND TRAINING PARAMETERS

B.1 MODEL DETAILS

Here we provide additional details about the models that were used in our experiments. The approx-
imate number of parameters in individual model components are shown in Table

Model blocks Just like in the original isometric model (Sandler et al., 2019)), each residual block
used the expansion factor of 6, i.e., “expansion” convolution mapped input tensor with 40 channels
into the intermediate 2400-channel tensor, which was later projected back into the tensor with 400
channels. The intermediate depthwise convolution used the kernel size of 3.

Output adapter Output adapter was chosen to be a sequence of two nonlinear kernel-1 convo-
lutions with an average pooling layer in between. Assuming that the first convolution produces a
tensor with ¢; channels and the second convolution produces a tensor with co channels, the total
number of parameters in this part of the model was approximately 400c; + ¢y c2 +¢1 + co. For larger
networks, we used ¢; = 960 and co = 1280, while for smaller networks we chose ¢; = 128 and
Co — 256.

Logits layer Final fully-connected layer mapped embedding vectors produced by the output

adapter into the final predictions. It used about coC' + C' parameters with C being the total number
of labels.

B.2 TRAINING PARAMETERS

In all our experiments, we used RMSPROP optimizer. In smaller scale experiments, the learning
rate was chosen to be either 0.02, or 0.04. The dropout keep probability and the weight decay were

12

Under review as a conference paper at ICLR 2021

80% and 10~° correspondingly. In all of our experiments, we used exponential moving averages of
all trained variable for inference.

All datasets that we experimented with are available in tensorflow datasets. For the
airplane dataset, we used an 80% of the total number of labeled samples for the training set
and 20% of samples for the test set.

C SINGLE-TASK LEARNING

In Section[d.2] we explored single-task training of networks with mixture modules. Model signatures
that we discovered in the process contained multiple repeated occurrences of the same template
with the number of repetitions increasing towards the tail of the model. But are these discovered
signatures optimal and if so, how much better are they compared to other possible signatures? Here
we discuss experiments conducted for several hand-designed model signatures and study how model
performance changes if we perturb the sequence of modules and perform inference using a different
order of computational blocks compared to the one the models have been trained with.

C.1 MODELS WITH DIFFERENT SIGNATURES

In all experiments discussed here, we train and evaluate classification models on the CIFAR-100
dataset. We explore models with different signatures: (a) sequential signatures (f;}/ K) 0---0

(flL / K) repeating each of K templates L/K times, where L is the number of layers; (b) cyclic

signatures corresponding to (fxo- - -0 fl)L/ K (¢) random signatures, and (d) networks with mixture
modules. In all experiments, we chose ¢ = 0.6 and a smaller output adapter (see Appendix [B.I).
Specific model and training parameters chosen for performing these experiments are outlined in
Appendix [B] Experimental results can be found in Table [5|and Figure [d] shows validation accuracies
for different signature choices, different numbers of modules K in F and different numbers of layers
L. While we did not have an opportunity to gather sufficient statistics for all of these experiments,
reproducing individual experiments we observed accuracy fluctuations with a standard deviation of
approximately 0.5.

As one would expect, we see that the model accuracy grows monotonically both with K and L.
Sequential signatures are seen to outperform models with cyclic and random signatures. At the
same time, models with mixture weights appear to have an accuracy close to that of sequential
models. Examples of discovered mixture weights are shown in Figure [3] After studying multiple
such signatures, we observed that they tend to repeat the same modules in contiguous uninterrupted
sequences and the number of repetitions grows towards the end of the model. In other words, early
modules use fewer repetitions. Interestingly, even in the absence of regularization, the mixture
weights = frequently approach a collection of one-hot vectors, i.e., max;(&;); ~ 1 for most layers

We also conducted experiments with modules containing blocks that accept both the output of the
previous layer and the original input fed into the first block (output of the input adapter). Here the
difference between different signatures shown in Table [f]is even more dramatic.

Table 4: Approximate number of parameters used in each component of the model: (a) 20000
parameters in input adapter, (b) 400c1 + c1¢2 + ¢1 + 2 in the output adapter and (c) coC' + C'in
the logits layer. Here g is the model depth multiplier (affecting the number of channels), C' is the
number of classes and (c1, ¢) are the numbers of output channels of two convolutions used in the
output adapter.

Input Adapter Block with SE Block without SE Output Adapter Logits
Smaller (¢ = 0.6) 1200 20000 9000 37000 256C
Larger (0 = 1) 2000 52000 22000 1.27-10° 1280C

13

Under review as a conference paper at ICLR 2021

0123
Templates Templates Templates

(2) (b (©)

Figure 3: Examples of mixture-weight model signatures obtained with 4 modules and 8 layers: (a)
mixture weights mid-training without any extra regularizers; (b) mixture weights obtained with the
“clustering” regularizer; (c) mixture weight for a 16-layer model with 4 templates.

Table 5: Comparison of validation accuracies for networks with fixed and trainable signatures on the
CIFAR-100 dataset. We compare different types of signatures with a particular number of layers L
and number of templates K: (a) cyclic signatures [(1, 2,1, 2)], (b) sequential signatures [(1, 1, 2, 2)],
(c) random signatures (obtained by randomly shuffling a sequential or repeated signature) and (d)
mixture-weight models. Top results (and those smaller by at most 0.5) are highlighted.

K L Signature
Cyclic Sequential Random Mixture
4 60.6 61.0 60.5 61.1
> 8 61.6 63.2 61.7 62.5
16 624 64.1 64.1 63.4
32 637 65.2 64.2 64.9
8 64.0 65.1 65.5 64.1
4 16 633 66.7 65.1 66.4
32 649 65.5 63.7 66.2
3 16 653 67.3 66.5 67.0
32 66.2 67.4 66.6 66.4

Table 6: Comparison of validation accuracies for the CIFAR-100 dataset in models where each
block receives the output of the previous layer and the original input (output of the input adapter).
We compare different types of signatures with a particular number of layers L (12 or 16) and 4
templates. We consider: (a) cyclic signatures [(1,2,1,2)], (b) sequential signatures [(1,1,2,2)],
and (c) mixture-weight models.

K Signature
Cyclic Sequential Mixture
4 12 65.7 67.0 67.3
16 64.9 67.6 67.6

14

Under review as a conference paper at ICLR 2021

Accuracy
(2] [=)] (=] o
S v o ~

o
w

— ' —— Cyclic

62 S
’ //’ —— Sequential
61 (./’ ------- Random
---- Mixture
5 10 15 20 25 30

Layers

Figure 4: Visualization of results with fixed and trainable signatures on CIFAR-100 presented
in Table [5} validation accuracies for signatures with 2 templates (red), 4 templates (green) and 8
templates (blue).

D MULTI-TASK LEARNING

Here, we summarize multi-task training results obtained for a set 5 supervised tasks trained on:
IMAGENET, CIFAR-100, PLACES365, SUN397 and FOOD101 datasets. In our experiments, we
compared the following multi-task training approaches:

1. Simple baseline: A more straightforward approach, in which all model blocks are con-
ventional model layers that do not use any parameter sharing (across layers). Here input
adapter, model body and the output adapter were shared by all models solving different
tasks and only the logits layers were trained independently for every head. Since model ac-
tivations may differ for different tasks, we also accumulated per-task batch normalization
moving means (adding thousands of parameters for each task on top of parameters for the
final logits).

2. Baseline with linear patches: A similar approach inspired by Mudrakarta et al.| (2019),
where batch normalization 5 and +y variables were not shared and trained for each task
independently.

3. Model with mixture weights: Model with mixture weights, where all mixture weights &;
were initialized randomly and all batch normalization S and v were also linearly mixed
using these mixture weight

4. Model with mixture weights and linear patches: Same as the previous model, except
B and ~y variables were not shared here, but were trained for each layer and each task
independently.

The final comparison results are presented in Table

While it appears that additional templates result in overall performance improvement, there are
reasons to believe that the model does not reach a true optimum. Notice that the model with linear
patches can be viewed as a special case of a network with mixture modules and linear patches, where
the total number of templates K is the same as the number of layers L and all mixture weights for
all tasks satisfy (¢]), = dox, where £/ are the mixture weights for layer ¢ for task 7. In our
experiments where we chose K = L = 16 (see Table , the final training loss turned out to be
higher than that of the conventional model with linear patches, which suggests that the training
procedure fails to identify a solution in which every layer uses a unique template. As a sanity check,
we verified that by initializing mixture weights &, at (§,); ~ J¢ . the resulting model matches
baseline model performance (with linear patches) much better and the final cross-entropy losses are
essentially identical. Another indication that our model does not currently reach the optimum is

"moving means and variances were not shared

15

Under review as a conference paper at ICLR 2021

the fact that the models with mixture weights and linear patches appear to perform worse than the
model with mixture weights alone. Improving modular network training will be one of priorities of
our future work.

Table 7: Comparison of models co-trained on 5 datasets. Models marked with “diag” used mixture
weight initialization with (&), ~ J, ¢. Reported values correspond to validation accuracies with
the training accuracy also specified for IMAGENET and PLACES datasets. Training accuracy for
other datasets reached 99.9% in all experiments. Because of this, the final comparison of model
performance may need to rely on IMAGENET accuracy and the final aggregated cross-entropy loss
Lcg. Here K = | F| is the number of templates in F and models with “linear patches” (Mudrakarta
et al., 2019) are models that maintain distinct per-task batch normalization 5 and -y variables.

Dataset

Model CIFAR FoOD IMAGENET PLACES SUN LCE
Simple baseline 77.0 704 61.1(70.4) 48.6(56.5) 61.3 4.59
Baseline with patches 76.8 71.3 61.8(71.8) 49.2(56.4) 60.0 4.48
Mixture weights (MW) (K = 32) 76.6 719 63.1(73.5) 48.7(60.0) 58.8 4.29
MW with patches (K = 16) 74.9 70.3 60.9 (71.0) 48.3(56.2) 588 4.6
MW with patches (K = 32) 74.9 70.3 62.7(72.7) 48.8(57.8) 580 44

MW with patches (diag. K = 16) 77.3 71.1 62.1(71.6) 48.9(57.1) 59.9 4.48
MW with patches (diag. K =32) 777 717 62.3(72.6) 49.3(57.9) 600 4.4

E UNSUPERVISED DOMAIN ADAPTATION

E.1 RELATED WORK

Unsupervised domain adaptation (UDA) methods aim to learn a transformation of unlabeled target
domain such that its distribution is close to the source domain distribution according to some metric
of similarity. There has been proposed a significant number of UDA methods. Some methods|Tzeng
et al.|(2017);Long et al.|(2017); Tzeng et al.| (2014)); [Long et al.|(2015)) minimize the discrepancy be-
tween the source and target domain distributions by introducing an additional domain classifier; the
target domain features are transformed so that the domain classifier cannot distinguish the domains
accurately. Other works have explored feature moments matching Zellinger et al.| (2017); |Peng et al.
(2019) and second-order correlation [Sun et al.| (2016); Peng & Saenko| (2018]) between source and
target domain. Recent domain adaptation papers|Zhu et al.|(2017)); Hoffman et al.|(2018)); [L1u et al.
(2017) use GANs to minimize the pixel-level domain shift. Some recent papers such as|Chang et al.
(2019); [Wang et al.| (2020) show the power of batch normalization for unsupervised domain adapta-
tion. In fact, the concurrent work by Wang et al.| (2020) shows that fine-tuning of domain-specific
batch normalization parameters alone gives promising results. We argue that our domain adaptation
methods based on a compositional model described in Section can be viewed as an extension
of the domain-specific batch normalization since mixture weights affect the learnable parameters 3
and ~y of batch normalization.

E.2 SETUP

Digits For the experiment on digits datasets, we pretrained a classifier jointly on MNIST, Cor-
rupted MNIST (shear), Corrupted MNIST (scale) and SVHN, and used USPS dataset as the target
domain. The model contained 4 templates and 16 layers, used dropout with factor 0.3, with a linearly
decaying learning rate from 2 x 1073 to 2 x 10~°; convolutional kernel weights regularization was
set to 10~°. The model was trained for 2 epochs, at which point the accuracy over 97% was reached
for all source datasets except SVHN (over 92%). For the compositional models, we then copied the
values of mixture weights of Corrupted MNIST (shear) to the target mixture weights since it gave
the best source-only accuracy among source domains. We fine-tuned our model by minimizing the
DA loss for 10 epochs. The total number of parameters in the classifier is ~ 135000.

DomainNet For the experiment with DomainNet dataset, we selected 100 classes that occur most
frequently in the dataset, and reshaped the images to 128 x 128. We used infograph, clipart, painting,

16

Under review as a conference paper at ICLR 2021

real and quickdraw as source domains, and sketch as target domain. For the baseline methods, we
use an isometric model with 12 blocks that output tensors of shape 16 x 16 x 40, and 12 templates
and 16 blocks for the compositional models. We used the same learning rate, dropout and kernel
regularization parameters as in the Digits experiment. We pretrained the classifier on the source
domains for 20 epochs and fine-tuned them for another 20 epochs. For the compositional models,
we copied the mixture weights from the painting domain to the target domain as it resulted in the
best source-only accuracy. The classifier contained ~ 340000 parameters in total.

E.3 ADVERSARIAL DISCRIMINATIVE DOMAIN ADAPTATION

After pretraining the model on source domain and copying the mixture weights, we started training
the domain discriminator and target mixture weights simultaneously in an adversarial fashion. The
discriminator was trained with Adam optimizer and a polynomially decaying learning rate from 2 x
10~% to 1075, We compared the results of the compositional ADDA with those of the conventional
ADDA model without weight sharing. The conventional baseline used a standard isometric model
with the number of layers equal to number of templates in the compositional case and contained
roughly same number of learnable parameters as our model. Our discriminator is a 3-layer CNN
with a binary cross-entropy loss.

E.4 MOMENT MATCHING DOMAIN ADAPTATION

In this setup, we used an isometric model with 12 templates for the baseline method and a compo-
sitional model with 12 templates and 16 layers for compositional moment matching method. We
pretrained our models for 20 epochs and finetuned them on target domain for 15 epochs. For the
compositional model, we copied the mixture weights from the painting domain for before finetun-
ing. For the moment matching, we used Adam optimizer with learning rate decaying from 10~ to
10~°. Both models used dropout with drop probability 0.3 and kernel regularization with weight
1072,

17

