
Under review as a conference paper at ICLR 2021

A DERIVATION OF THE ROUGH ADJOINT EQUATION

In this section, we will present a “rough path” derivation of the adjoint equation for Neural SDEs.
Since rough path theory is a well developed field, much of our analysis involves quoting key results.
To begin, we recall the informal statement of the theorem that we wish to prove:

Theorem (Informal). Consider the Stratonovich SDE

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, (4)

where µθ and σθ = {σiθ}1≤i≤d are sufficiently regular vector fields. Let L be a scalar loss on XT .
Then the adjoint process at = dL(XT)/dXt is a strong solution of the linear Stratonovich SDE

dat = −(at · ∇)µθ(t,Xt) dt− (at · ∇)σθ(t,Xt) ◦ dWt (5)

for t ∈ [0, T]. In particular Wt is the same Brownian noise as used in the forward pass.

Whilst the above theorem looks simple enough, it provides us with three main challenges to address:

The first challenge in proving this theorem is that Brownian sample paths are not differentiable and
thus the adjoint process will not be differentiable. In particular, we cannot use the proof given by
Chen et al. (2018) where the derivative of the adjoint process is approximated using a Taylor series.

The second challenge is more subtle and relates to fact that Brownian sample paths do not have
bounded variation. In particular, this means that we cannot define integrals with respect to Brownian
sample paths in the Riemann-Stieltjes sense (this is discussed in Section 1.5 of Lyons et al. (2007)).

The third challenge is purely technical in that the vector fields of the adjoint equation (5) do not
satisfy certain technical conditions. Typical assumptions in rough path theory are that the vector
fields are either bounded (and with some smoothness) or linear. However the adjoint vector fields
are linear in a but nonlinear in X; overall they are unbounded and nonlinear. Therefore our analysis
will involve separating the linear part of the adjoint equation from the bounded nonlinear part.

The outline of this section is as follows. In subsection A.1, we will derive the adjoint equation for
systems where the “driving path” has bounded variation but can be non-differentiable (Challenge 1).
In subsection A.2, we will discuss some aspects of rough path theory – which provides a “pathwise”
integration theory for SDEs (Challenge 2). Finally, in subsection A.3, we shall put the various pieces
together and derive the rough adjoint equation for Stratonovich SDEs (Challenge 3).

A.1 THE ADJOINT FOR CONTROLLED DIFFERENTIAL EQUATIONS

Before we consider SDEs and Brownian motion, we first derive the adjoint equation for a slightly
more manageable class of differential equation – namely the controlled differential equation.3 A
CDE takes a similar form to an SDE, except the system is “controlled” by a continuous path X
instead of Brownian motion with time (that is, we write dXt instead of dt or dWt). By assuming
that X has bounded variation, we can use Riemann-Stieltjes integration to define well-posed CDEs
(existence and uniqueness results for CDE solutions are given in Chapter 3 of Friz & Victoir (2010)).

Theorem A.1 (Adjoint equation for CDEs that are driven by bounded variation paths).
Consider the controlled differential equation,

dyt =
d∑

i=1

f iθ(yt) dXi
t , (6)

y0 = ξ ∈ Rn, (7)

where X : [0, T] → Rd is continuous bounded variation path and each f iθ : Rn → Rn is bounded,
differentiable and with bounded first derivatives. Let L : Rn → R be a differentiable loss function.
Then the adjoint process

at :=
dL(yT)

dyt
, (8)

3Also referred to in the literature as a rough differential equation.

12

Under review as a conference paper at ICLR 2021

satisfies the following linear CDE

dat = −
d∑

i=1

at∇f iθ(yt) dXi
t . (9)

Proof. For s ≤ t, let Ψs,t : Rn → Rn be the “time-reversed” flow map for the CDE (7) on [s, t].
So for y ∈ Rn, Ψs,t(y) is the solution of the CDE (7) at time s so that its future value at time t is y.
SinceX has bounded variation, Ψs,t is well-defined (via Riemann-Stieltjes integration) and satisfies

y = Ψs,t(y) +
d∑

i=1

∫ t

s

f iθ
(
Ψu,t(y)

)
dXi

u. (10)

It was shown by Theorem 4.4 in Friz & Victoir (2010) that CDE flows have directional derivatives.
As a result of this theorem, taking the gradient of (10) is possible and rearranging gives

∇Ψs,t(y) = Id−
d∑

i=1

∫ t

s

∇f iθ
(
Ψu,t(y)

)
∇Ψu,t(y) dXi

u. (11)

Applying the chain rule to the adjoint process at = dL(yT)
dyt

gives

at =
dL(yT)

dyt
=

dL(yT)

dys

dys
dyt

, (12)

where dys
dyt

is the Jacobian matrix given by∇Ψs,t(yt), and so

at = as∇Ψs,t(yt). (13)

Thus, substituting (11) into the above yields

at = as − as
(d∑

i=1

∫ t

s

∇f iθ
(
yu
)
∇Ψu,t(yt) dXi

u

)
.

So by the above equation along with the triangle inequality, we have
∥∥∥∥at −

(
as −

d∑

i=1

∫ t

s

au∇f iθ(yu) dXi
u

)∥∥∥∥ (14)

≤
∥∥∥∥at −

(
as −

d∑

i=1

∫ t

s

as∇f iθ(yu) dXi
u

)∥∥∥∥+

∥∥∥∥
d∑

i=1

∫ t

s

(au − as)∇f iθ(yu) dXi
u

∥∥∥∥

=

∥∥∥∥ as
(d∑

i=1

∫ t

s

∇f iθ
(
yu
)(
∇Ψu,t(yt)− Id

)
dXi

u

)∥∥∥∥+

∥∥∥∥
d∑

i=1

∫ t

s

(au − as)∇f iθ(yu) dXi
u

∥∥∥∥ .

In order to estimate these terms, we consider the matrix-valued path M t,y : [s, t]→ Rn×n given by

M t,y
u := −

d∑

i=1

∫ t

u

∇f iθ(Ψv,t(y)) dXi
v ,

so that equation (14) becomes
∥∥∥∥at −

(
as −

d∑

i=1

∫ t

s

au∇f iθ(yu) dXi
u

)∥∥∥∥ (15)

≤
∥∥∥∥ as

∫ t

s

dM t,yt
u

(
∇Ψu,t(yt)− Id

)∥∥∥∥+

∥∥∥∥
∫ t

s

(au − as) dM t,yt
u

∥∥∥∥.

13

Under review as a conference paper at ICLR 2021

We use the notation ‖γ‖1-var;[s,t] to denote the total variation (or 1-variation) of a path γ : [s, t]→ Rk,

‖γ‖1-var;[s,t] := sup
D

∑

i

‖γti+1
− γti‖,

where ‖·‖ is a norm on Rk (we use k = d, n2). The supremum is taken over all partitionsD of [s, t].

It is worth noting that since u 7→ ∇fi(yu, θ) is continuous, it is bounded for u ∈ [s, t]. As a result,
Mu,yu has bounded variation on [s, u] and there exists a constant C1 (depending only on t) such that

‖Mu,yu‖1-var;[s,u] ≤ C1‖X‖1-var;[s,t], (16)
for u ∈ [s, t] with s and t sufficiently close together.

We can rewrite (11) as the following linear CDE:

dzu = −
(
dMv,yv

u

)
zu ,

z0 = Id,

where zu := ∇Ψu,v(yv) for s ≤ u ≤ v ≤ t. Since the path Mv,yv has bounded variation, by
Davie’s lemma for linear CDEs (Lemma 10.56 in Friz & Victoir (2010)), there exists a constant C2

such that ∥∥zu − z0
∥∥ ≤ C2‖Mv,yv‖1-var;[s,v].

for s ≤ u ≤ v ≤ t whenever s is sufficiently close to t and we note that zu− z0 = ∇Ψu,v(yv)− Id.

Hence by the total variation estimate (16), there exists a constant C3 depending only on t, such that∥∥∇Ψu,v(yv)− Id
∥∥ ≤ C3‖X‖1-var;[s,t], (17)

for s ≤ u ≤ v ≤ t whenever s is sufficiently close to t.

Since a is continuous, it is bounded on [s, t] and so it follows from (13) with the estimate (17) that
∥∥∥∥
∫ t

s

(au − as) dM t,yt
u

∥∥∥∥ ≤ sup
u∈[s,t]

(
‖au − as‖

)∥∥M t,yt
∥∥
1-var;[s,t]

≤ sup
u∈[s,t]

(∥∥as∇Ψs,u(yu)− as
∥∥
)∥∥M t,yt

∥∥
1-var;[s,t]

≤ sup
u∈[s,t]

(
‖as‖

∥∥∇Ψs,u(yu)− Id
∥∥
)∥∥M t,yt

∥∥
1-var;[s,t]

≤ C4‖X‖21-var;[s,t],

and ∥∥∥∥ as
∫ t

s

dM t,yt
u

(
∇Ψu,t(yt)− Id

)∥∥∥∥ ≤ sup
u∈[s,t]

(
‖as‖

∥∥∇Ψu,t(yt)− Id
∥∥
)∥∥M t,yt

∥∥
1-var;[s,t]

≤ C5‖X‖21-var;[s,t],

where the constants C4 and C5 only depends on t (provided that ε := t − s is sufficiently small).
Therefore equation (15) for the adjoint process becomes

∥∥∥∥at −
(
as −

d∑

i=1

∫ t

s

au∇f iθ(yu) dXi
u

)∥∥∥∥ ≤ (C4 + C5)‖X‖21-var;[s,t].

In other words, for a fixed t, we have

at = as −
d∑

i=1

∫ t

s

au∇f iθ(yu) dXi
u +O

(
‖X‖21-var;[s,t]

)
,

provided that s is sufficiently close to t. Thus, letting s→ t− gives

dat = −
d∑

i=1

at∇f iθ(yt) dXi
t ,

as required.

14

Under review as a conference paper at ICLR 2021

A.2 THE ROUGH PATH APPROACH TO STOCHASTIC DIFFERENTIAL EQUATIONS

In this subsection, we shall briefly outline the “pathwise solution” theory for SDEs that was made
possible by the advent of rough path theory (originally proposed in Lyons (1998)). Whilst rough
path theory extends beyond the SDE setting, this is not within the scope of this paper.

Let
(
Ω,F ,P ; {Ft}t≥0

)
be a filtered probability space containing a d-dimensional Brownian motion.

Since the Brownian motion W : Ω × [0,∞) → Rn corresponds to a certain Gaussian measure on
(infinite-dimensional) path space, it must be discretised in order to be used in SDE simulation.
Moreover, by constructing a sequence of approximations converging to the Brownian path we can
extend the adjoint equation from the bounded variation setting (see Theorem A.1) to the SDE setting.

To begin, we give a few key definitions (the signature, p-variation metric and geometric rough path).

Definition A.2. The (depth-2) signature of a continuous bounded variation path X : [0, T]→ Rd is
S2(X) =

{
S2
s,t(X)

}
0≤s≤t≤T where S2

s,t(X) is a collection of increments and integrals given by

S2
s,t(X) :=

(
1,
{
Xi
t −Xi

s

}
1≤i≤d ,

{∫ t

s

(
Xi
u −Xi

s

)
dXj

u

}

1≤i,j≤d

)
, (18)

where the above is defined using Riemann-Stieltjes integration.

Therefore S2(X) : 4T → R1+d+d2 where4T = {(s, t) ∈ [0, T]2 : s < t} is a rescaled 2-simplex.

Definition A.3. For p ∈ [2, 3), the p-variation metric between functions Z1, Z2 : 4T → R1+d+d2

is

dp
(
Z1, Z2

)
:= max

k=1,2
sup
D

(∑

ti∈D

∥∥∥πk
(
Z1
ti,ti+1

)
− πk

(
Z2
ti,ti+1

)∥∥∥
p
k

) k
p

, (19)

where πk denotes the projection map from R1+d+d2 onto Rdk (for k = 1, 2) and the above
supremum is taken over all partitions D of [0, T] and the norms ‖ · ‖ must satisfy (up to a constant)

‖a⊗ b‖ ≤ ‖a‖‖b‖,
for a, b ∈ Rd. For example, we could use the standard L2 (operator) norms for vectors and matrices.

Definition A.4. For p ∈ [2, 3), we say that a sequence of continuous bounded variation paths
XN : [0, T]→ Rd converges in the p-variation sense to a continuous map X : 4T → R1+d+d2 if

dp
(
S2
(
XN

)
,X
)
→ 0, (20)

as N →∞. When such a sequence exists, we can refer to the limit X as a geometric p-rough path.

We now state the following result from rough path theory (Corollary 13.22 in Friz & Victoir (2010)).

Theorem A.5 (Brownian motion as a geometric rough path). LetW be a standard d-dimensional
Brownian motion and WN be the piecewise linear path with N pieces that coincides with W on the
uniform partition DN := {0 = t0 < t1 < · · · < tN = T} with tk := kh and mesh size h := T

N .
Then there exists a random geometric p-rough path W (p ∈ (2, 3)) such that for almost all ω ∈ Ω,

dp

(
S2
(
WN

)
(ω),W (ω)

)
→ 0, (21)

as N →∞ for any p ∈ (2, 3) and

W (ω) =

{(
1,
(
Wt −Ws

)
(ω),

(∫ t

s

(
Wr −Ws

)
⊗ ◦ dWr

)
(ω)

)}

0≤s≤t≤T
. (22)

Hence the geometric rough path W is often referred to as Stratonovich enhanced Brownian motion.

To put simply, this theorem states that Brownian motion can be approximated (in a rough path sense)
by a sequence of bounded variation paths. This is particularly helpful within stochastic analysis as
it allows one to construct pathwise solutions for SDEs governed by sufficiently regular vector fields.
The central result within rough path theory that makes this possible is the Universal Limit Theorem.
To counter the roughness of Brownian motion, this requires vector fields to have Lip(γ) regularity.

15

Under review as a conference paper at ICLR 2021

Definition A.6 (Lip(γ) functions). A function f : Rn → Rn is said to be Lip(γ) with γ > 1 if it is
bounded with bγc bounded derivatives, the last being Hölder continuous with exponent (γ − bγc).
Equivalently, f is Lip(γ) if the following norm is finite:

‖f‖Lip(γ) := max
0≤k≤bγc

∥∥Dkf
∥∥
∞ ∨

∥∥Dbγcf
∥∥
(γ−bγc)-Höl , (23)

where Dkf is the k-th (Fréchet) derivative of f and ‖ · ‖α-Höl is the standard α-Hölder norm for
α ∈ (0, 1). We say that f is Lip(1) if it is bounded and Lipschitz continuous. That is, if the norm

‖f‖Lip(1) :=
∥∥f
∥∥
∞ ∨ sup

x,y∈Rn

x6=y

∥∥f(x)− f(y)
∥∥

‖x− y‖ , (24)

is finite.

Theorem A.7 (Universal Limit Theorem for RDEs (Theorem 5.3 in Lyons et al. (2007))). Let
p ∈ (2, 3) and xN : [0, T] → Rd be a sequence of continuous bounded variation paths which
converge in p-variation to a geometric p-rough path x. Let {fi}1≤i≤d denote a collection of Lip(γ)
functions on Rn with γ > p and consider the controlled differential equation (CDE)

dyNt =
d∑

i=1

fi(y
N
t) d

(
xN
)i
t
,

yN0 = ξ,

where ξ ∈ Rn and the above differential equation is defined using Riemann-Stieltjes integration.
Then there exists a unique geometric p-rough path z = (x,y) : 4T → R1+(d+n)+(d+n)2 such that
yN converges to y in p-variation. Moreover, the “universal limit” y depends only on x, {fi} and ξ.

Definition A.8. We shall refer to y as the solution of the rough differential equation (RDE),

dyt =
d∑

i=1

fi(yt) dxit. (25)

Remark A.9. Theorem A.7 and Definition A.8 also apply when the vector fields {fi} are linear
(Theorem 10.57 in Friz & Victoir (2010)).

Importantly for us, the above theory applies directly to (Stratonovich) SDEs as Brownian motion
can be viewed as a geometric p-rough path with p ∈ (2, 3) by Theorem A.5. We refer the reader
to Section 17.2 of Friz & Victoir (2010) for a detailed account of the “rough path approach” to
Stratonovich theory. For our purposes, we state a Universal Limit Theorem for Stratonovich SDEs

Theorem A.10 (Remark 17.5 in Friz & Victoir (2010)). Suppose that µ is a Lip(1) function on
Rn+1 and {σk}1≤k≤d are Lip(2) functions on Rn+1. Let {WN}N≥1 be a sequence of piecewise
linear paths converging to the Stratonovich enhanced Brownian motion W given by Theorem A.5.
Let {yN}N≥1 be the sequence of solutions to the following controlled differential equations (CDEs),

dyNt = µ(t, yNt) dt+

d∑

i=1

σi(t, yNt) d
(
WN

)i
t
,

y0 = ξ ∈ Rn,

Then yN converges in p-variation to a geometric p-rough path y with p ∈ (2, 3) and the process
y : [0, T] → Rn given by yt := ξ + π1(y0,t) coincides with the strong solution of the Stratonovich
SDE

dyt = µ(t, yt) dt+
d∑

i=1

σi(t, yt) ◦ dW i
t , (26)

y0 = ξ,

almost surely.

16

Under review as a conference paper at ICLR 2021

A.3 THE ADJOINT FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Ideally, we would like to just replace the path X in Theorem A.1 with a Brownian motion (coupled
with time, that is to say (t,Wt).). However, that result required that X have bounded variation,
whilst sample paths of Brownian motion have infinite total variation. Resolving this difficulty is one
of the essential reasons that rough path theory exists (see also in Section 1.5 of Lyons et al. (2007)).

As mentioned previously, the main challenge in applying rough path theory here is that the adjoint
equation (29) has nonlinear unbounded vector fields, which are not Lip(γ) functions in (a, y).
Our trick is to first derive an adjoint equation for the stochastic process corresponding to the
Jacobian (which satisfies assumptions of boundedness), and then to drive the adjoint equation by
this Jacobian-valued stochastic process (which satisfies assumptions of linearity).

Theorem A.11 (Adjoint equation for Stratonovich SDEs). Suppose that µθ and {σkθ}1≤k≤d are
bounded functions on Rn+1 such that

• The drift vector field µθ is continuously differentiable with bounded first derivative.

• Each noise vector field σkθ is a Lip(γ) function with γ > 2.

Consider the (Stratonovich) stochastic differential equation,

dyt = µθ(t, yt) dt+
d∑

i=1

σiθ(t, yt) ◦ dW i
t , (27)

y0 = ξ ∈ Rn,

and let L : Rn → R denote a differentiable loss function. Then the adjoint process

at :=
dL(yT)

dyt
, (28)

coincides with the strong solution of the linear Stratonovich SDE

dat = −at∇µθ(t, yt) dt−
d∑

i=1

at∇σiθ(t, yt) ◦ dW i
t . (29)

almost surely.

Proof. Let {yN}N≥1 be the sequence of solutions to the following controlled differential equations,

dyNt = µθ(t, y
N
t) dt+

d∑

i=1

σiθ(t, y
N
t) d

(
WN

)i
t
, (30)

yN0 = ξ,

where {WN}N≥1 are the piecewise linear paths converging to W in p-variation by Theorem A.5.
Hence by Theorem A.10, we have that the corresponding sequence of CDE solutions {yN}N≥1
converges almost surely in p-variation to the solution y of the Stratonovich SDE (27).

Let L be a differentiable loss function so that by Theorem A.1, each adjoint process

aNt =
dL
(
yNT
)

dyNt
, (31)

satisfies the linear CDE

daNt = −aNt ∇µθ(t, yNt) dt−
d∑

i=1

aNt ∇σiθ(t, yNt) d
(
WN

)i
t
,

Just as in the proof of Theorem A.1, we can rewrite the adjoint equation for aN as

daNt = −aNt dMN
t ,

17

Under review as a conference paper at ICLR 2021

where the matrix-valued path MN : [0, T]→ Rn×n is given by

MN
t := −

∫ T

t

∇µθ
(
s, yNs

)
ds−

d∑

i=1

∫ T

t

∇σiθ
(
s, yNs

)
d
(
WN

)i
s
. (32)

Since the vector fields∇µθ and {∇σiθ}1≤i≤n are bounded, we see that MN has bounded variation.

Recall from the universal limit theorem (Theorem A.7) that (x,y) was a geometric p-rough path.
This carries over to our setting and thus we define the (random) geometric p-rough path z = (W ,y).
Then by Proposition 17.1 in Friz & Victoir (2010), we have that the following rough integral exists

∫ t

0

ϕ(W, y) ◦ d(W, y) = π1

(∫ t

0

ϕ(z) dz

)
,

for all t ∈ [0, T] with probability one, provided that ϕ = {ϕi} is a collection of Lip(γ−1) functions
with γ > p. Since each vector field σiθ is Lip(γ), it follows that each gradient ∇σiθ is Lip(γ − 1).
Therefore we can apply Proposition 17.1 in Friz & Victoir (2010) to the dWN integrals in (32) and,
since∇µθ is continuous and bounded, it is clear that the dt integral in equation (32) also converges.

Thus, due to the regularity of µθ and σθ, we see that the sequence {MN} converges in p-variation
to a geometric p-rough path M and the limiting (matrix-valued) process Mt := π1

(
M t,T

)
satisfies

Mt = −
∫ T

t

∇µθ
(
s, ys

)
ds−

d∑

i=1

∫ T

t

∇σiθ
(
s, ys

)
◦ dW i

s , (33)

almost surely. We now have all the ingredients needed to construct the rough adjoint equation (29),

1. Each CDE (30) admits a unique solution yN and the resulting sequence {yN} converges to
the solution y of the SDE (27) almost surely.

2. Each CDE (30) admits a unique adjoint process aN satisfying a linear CDE driven byMN .

3. The sequence {MN} converges in p-variation to a geometric p-rough path (almost surely).

4. By Theorem 10.57 in Friz & Victoir (2010), we have that the Universal Limit Theorem
(Theorem A.7) also holds for linear RDEs.

Therefore the sequence {aN} converges in p-variation to a geometric p-rough path a almost surely
and the process at := dL(yT)

dy0
+π1(a0,t) coincides with the strong solution to the Stratonovich SDE

dat = −at ◦ dMt

= −at∇µθ(t, yt) dt−
d∑

i=1

at∇σiθ(t, yt) ◦ dW i
t .

almost surely. The fact that a is the adjoint process follows from (31) and the continuity of∇L.

Remark A.12. The above argument can also extend to an RDE driven by a geometric p-rough path.
In this case, the vector fields governing the differential equation would have to be Lip(γ) with γ > p.

B SAMPLING BROWNIAN MOTION

B.1 ALGORITHM

We begin with providing the complete traversal and splitting algorithm needed to find or create all
intervals in the Brownian Interval, as in Section 3.2. We discuss its operation in the next section.

Here, List is an ordered data structure that needs to be appended to, and iterated over sequentially.
For example a linked list would suffice. We let split denote a splittable PRNG as in Salmon
et al. (2011); Claessen & Pałka (2013). We use ∗ to denote an unfilled part of the data structure,
equivalent to None in Python or a null pointer in C/C++; in particular this is used as a placeholder

18

Under review as a conference paper at ICLR 2021

for the (nonexistent) children of leaf nodes. We use = to denote the creation of a new local variable,
and← to denote in-place modification of a variable.

Algorithm 2: Definition of traverse
def bisect(I : Node, x : R):

Only called on leaf nodes
Let I = ([a, b], s, Iparent, ∗, ∗)
sleft, sright = split(s)
Ileft = ([a, x], sleft, J, ∗, ∗)
Iright = ([x, b], sright, J, ∗, ∗)
I ← ([a, b], s, Iparent, Ileft, Iright)

def traverse(I : Node, [c, d] : Interval, nodes : List[Node]):
Let I = ([a, b], s, Iparent, Ileft, Iright)

Outside our jurisdiction - pass to our parent
if c < a or d > b then

traverse(Iparent, [c, d], nodes)
return

It’s I that is sought. Add I to the list and return.
if c = a and d = b then

nodes.append(I)
return

Check if I is a leaf or not.
if Ileft is ∗ then

I is a leaf
if a = c then

If the start points align then create children and add on the left child.
(Which is created in bisect.)
bisect(I, d)
nodes.append(Ileft) # nodes is passed by reference
return

Otherwise create children and pass on to our right child.
(Which is created in bisect.)
bisect(I, c)
traverse(Iright, [c, d], nodes)
return

else
I is not a leaf.
Let Ileft = ([a,m], sleft, I, Ill, Ilr)
if d ≤ m then

Strictly our left child’s problem.
traverse(Ileft, [c, d], nodes)
return

if c ≥ m then
Strictly our right child’s problem.
traverse(Iright, [c, d], nodes)
return

A problem for both of our children.
traverse(Ileft, [c,m], nodes)
traverse(Iright, [m, d], nodes)
return

B.2 DISCUSSION

The function traverse is simply a depth-first tree traversal for locating an interval within a binary
tree. The search may split into multiple (potentially parallel) searches (on the last few lines) if the
target interval crosses the intervals of multiple existing leaf nodes. If its target is not found then
additional nodes are created if needed.

19

Under review as a conference paper at ICLR 2021

Sections 3.2 and B.1 now between them define the algorithm in technical detail.

There are some further technical considerations worth mentioning. Recall that the context we are
explicitly considering is when sampling Brownian motion to solve an SDE forwards in time, then
the adjoint backwards in time, and then discarding the Brownian motion. This motivates several of
the choices here.

Small intervals First, the access patterns of SDE solvers are quite specific. Queries will be
over relatively small intervals: the step that the solver is making. This means that the list of
nodes populated by traverse is typically small. In our experiments we observed it usually only
consisting of a single element; occasionally two. In contrast if the Brownian Interval has built up
a reasonable tree of previous queries, and was then queried over [0, s] for s � 0, then a long
(inefficient) list would be returned. It is the fact that SDE solvers do not make such queries that
means this is acceptable.

Searching from Ĵ Moreover, the queries are either just ahead (fixed-step solvers; accepted steps
of adaptive-step solvers) or just before (rejected steps of adaptive-step solvers) previous queries.
Thus in Algorithm 1, we keep track of the most recent node Ĵ , so that we begin traverse near to
the correct location.

LRU cache The fact that queries are often close to one another is also what makes the strategy of
using an LRU (least recently used) cache work. Most queries will correspond to a node that have a
recently-computed parent in the cache.

Backward pass The queries are broadly made left-to-right (on the forward pass), and then right-
to-left (on the backward pass). (Other than the occasional rejected adaptive step.)

Left to its own devices, the forward pass will thus build up a highly imbalanced binary tree. At any
one time, the LRU cache will contain only nodes whose intervals are a subset of some contiguous
subinterval [s, t] of the query space [0, T]. Letting n be the number of queries on the forward
pass, then this means that the backward pass will consume O(n2) time – each time the backward
pass moves past s, then queries will miss the LRU cache, and a full recomputation to the root will
be triggered, costing O(n). This will then hold only nodes whose intervals are subets of some
contiguous subinterval [u, s]: once we move past u then this O(n) procedure is repeated, O(n)
times. This is clearly undesirable.

This is precisely analogous to the classical problem of optimal recomputation for performing
backpropagation, whereby a dependency graph is constructed, certain values are checkpointed, and
a minimal amount of recomputation is desired; see Griewank (1992).

In principle the same solution may be applied: apply a snapshotting procedure in which specific
extra nodes are held in the cache. This is a perfectly acceptable solution, but implementing it requires
some additional engineering effort, carefully determining which nodes to augment the cache with.

Fortunately, we have an advantage that Griewank (1992) does not: we have some control over the
dependency structure between the nodes, as we are free to prespecify any dependency structure we
like. That is, we do not have to start the binary tree as just a stump. We may exploit this to produce
an easier solution.

Given some estimate ν of the average step size of the SDE solver, a size of the LRU cache L,
and before a user makes any queries, we simply make some queries of our own. These queries
correspond to the intervals [0, T/2], [T/2, T], [0, T/4], [T/4, T/2], . . ., so as to create a dyadic tree,
such that the smallest intervals (the final ones in this sequence) are of size not more than νL. (In
practice we use 0.8× νL as an additional safety factor.)

Letting [s, t] be some interval at the bottom of this dyadic tree, where t ≈ s + 0.8νL, then we are
capable of holding every node within this interval in the LRU cache. Once we move past s on the
backward pass, then we may in turn hold the entire previous subinterval [u, s] in the LRU cache,
and in particular the values of the nodes whose intervals lie within [u, s] may be computed in only
logarithmic time, due to the dyadic tree structure.

20

Under review as a conference paper at ICLR 2021

This is now analogous to the Brownian Tree of Gaines & Lyons (1997); Li et al. (2020). (Up to the
use of intervals rather than points.) If desired, this approach may be loosely interpreted as placing a
Brownian Interval on every leaf of a shallow Brownian Tree.

Recursion errors We find that for some problems, the recursive computations of traverse (and
in principle also sample, but this is less of an issue due to the LRU cache) can occasionally grow
very deep. In particular this occurs when crossing the midpoint of the pre-specified tree: for this
particular query, the traversal must ascend the tree to the root, and then descend all the way down
again. As such traverse should be implemented with trampolining and/or tail recursion to avoid
maximum depth recursion errors.

CPU vs GPU memory We describe this algorithm as requiring only constant memory. To be more
precise, the algorithm requires only constant GPU memory, corresponding to the fixed size of the
LRU cache. As the Brownian Interval receives queries then its internal tree tracking dependencies
will grow, and CPU memory will increase. For deep learning models, GPU memory is usually the
limiting (and so more relevant) factor.

Stochastic integrals What we have not discussed so far is the simulation of integrals such as
Ws,t =

∫ t
s
Ws,r ◦ dWr and Hs,t = 1

t−s
∫ t
s
Ws,r dr which are used in higher order SDEs solvers

(such as the Runge-Kutta methods in Rößler (2010) and the log-ODE method in Foster et al. (2020)).
Just like increments Ws,t, these integrals fit nicely into an interval-based data structure.

In general simulating the pair (Ws,t,Ws,t) is known to be a difficult problem (Dickinson, 2007),
and exact solutions are only known when W is one or two dimensional (Gaines & Lyons, 1994).
However, the approximation developed in Davie (2014) and further analysed using rough path theory
by Flint & Lyons (2015) constitutes a simple and computable solution. Their approach is to generate

W̃s,t :=
1

2
Ws,t ⊗Ws,t +Hs,t ⊗Ws,t −Ws,t ⊗Hs,t + λs,t ,

where λs,t is an anti-symmetric matrix with independent entries λi,js,t ∼ N
(
0, 1

12 (t− s)2
)
, i < j .

In both papers, the authors input W̃ into an SDE solver (the Milstein and log-ODE methods
respectively) and prove that the resulting approximation achieves a 2-Wasserstein convergence rate
beyond O

(
1/
√
N
)
, where N is the number of steps. We have follow-up work planned on this topic.

C EXPERIMENTAL DETAILS

C.1 GENERAL NOTES

Code Our code is available at [redacted].

Software We used PyTorch (Paszke et al., 2019) as an autodifferentiable framework. We used
the [redacted] library to solve SDEs. We used the Signatory library (Kidger & Lyons, 2020) to
calculate the signatures used in the MMD metric. We used the torchcde library (Kidger, 2020)
for its interpolation schemes, and to solve the neural CDEs used in the classification and prediction
metrics. We used the torchdiffeq library (Chen, 2018) to solve the neural ODEs used in the
classification and prediction metrics, and for the ODE components of the Latent ODE and CTFP
models.

Architectures By using similar differential equation models, we were able to use essentially
the same parameterisation for every model’s vector fields. We used essentially the same
hyperparameters for every dataset.

To recap, the neural SDE has generator initial condition ζθ, generator drift µθ, generator diffusion
σθ, discriminator initial condition ξφ, discriminator drift fφ, and discriminator diffusion gφ. All of
these are parameterised as neural networks.

Meanwhile Latent ODEs have an ODE-RNN encoder (with a neural network vector field) and a
neural ODE decoder (with a neural network vector field). The CTFP has an ODE-RNN encoder

21

Under review as a conference paper at ICLR 2021

(with a neural network vector field) and a continuous normalising flow (Chen et al., 2018; Grathwohl
et al., 2019) (with a neural network vector field) Additionally Deng et al. (2020) condition the
normalising flow on the time evolution of a neural ODE of some latent state, which requires another
neural network vector field.

In every case, the neural network was parameterised as a feedforward network with 2 hidden layers,
width 64, and softplus activations. The drift, diffusion and vector fields, for every model, all
additionally had a tanh nonlinearity as their final operation. As per Kidger et al. (2020b) we found
that this improved the performance of every model.

The neural SDE’s generator has hidden state of size x and the discriminator has hidden state is of
size h. These were both taken as x = h = 96. Note that this is larger than the width of each hidden
layer within the neural networks, so that the first operation within each neural network is a map
from R96 → R64. Somewhat anecdotally, we found that taking the state to be larger than the hidden
width was beneficial for model performance.4

The Latent ODE likewise has evolving hidden state, which was also taken to be of size 96.

The Latent ODE samples noise from a normally distributed initial condition, we took to have 40
dimensions. The CTFP samples noise from a Brownian motion, which as a continuous normalising
flow has dimension equal to the number of dimensions of target distribution.

The neural SDE samples noise from both a normally distributed initial condition and a Brownian
motion. We took the initial condition to have 40 dimensions. The number of dimensions of the
Brownian motion was dataset dependent, see below.

The CTFP included a latent context vector as described in Deng et al. (2020). This was taken to
have 40 dimensions.

These hyperparameters were selected based on informal initial experiments with all models.

SDE solvers The SDEs used the midpoint method, without adaptive stepping. Recall that the
target time series data was regularly sampled and linearly interpolated to make a path. We took the
SDE solver to take a single step between each output data point.

ODE solvers The ODEs of the Latent ODE and CTFP models were solved using the midpoint
method, for consistency with the SDE solvers.

CDE solvers The CDEs of the classification and prediction models were solved by reducing to
ODEs as in Kidger et al. (2020b) and then using the midpoint method, for consistency with the SDE
solvers.

Optimisers The CTFP, Latent ODE, and the generator of the neural SDE were all trained with
Adam (Kingma & Ba, 2015) with a learning rate of 4× 10−5. The discriminator of the neural SDE
was trained with RMSprop with a learning rate of 4 × 10−5. The learning rates were chosen by
starting at 4 × 10−4 (arbitrarily) and reducing until good performance was achieved. (In particular
seeking to avoid oscillatory behaviour in training of the neural SDE.)

Training Every model was trained for 100 epochs. The discriminator of the neural SDE received
five training steps for every step with which the generator was trained, as is usual; the number of
epochs given at 100 is for the generator, for a fair comparison to the other models.

Batch sizes were picked based on what was the largest possible batch size that GPU memory allowed
for; these vary by problem and are given below.

Classifier and predictor The classifier was taken to be a neural CDE with hidden state of size 32,
and whose vector field was parameterised as a feedforward neural network with 2 hidden layers of
width 32, with softplus activations and final tanh activation.

4This has some loose theoretical justification: a signature is a linear differential equation with very large
state, and it is a universal approximator. (See Kidger et al. (2020b, Appendix B) and references within – this is
a classical fact within rough analysis.) That is to say, it is a simple vector field with a large state, rather than a
complicated vector field with a small state.

22

Under review as a conference paper at ICLR 2021

The predictor was taken to be a neural CDE/neural ODE encoder/decoder pair. Both had a hidden
state of size 32, and vector fields parameterised as feedforward neural network with 2 hidden layers
of width 32, with softplus activations and final tanh activation. 32 dimensions were used at the
encoder/decoder interface.

The learning rate used was 10−4 for both models, for every dataset and generative model considered,
with the one exception of CTFP on Beijing Air Quality, where we observed divergent training of the
classifier; the learning rate was reduced to 10−5 for this case only.

In all cases they were trained for 50 epochs using Adam, with early stopping if the model failed to
improve its training loss over 20 epochs.

The classifier took an 80%/20% train/test split of the dataset given by combining the underlying
dataset and model-generated samples of equal size.

C.2 STOCKS

Each sample is of length 100.

The batch size was 2048 for every model.

For the neural SDE, the discriminator received 1 epoch of training before the main training (of
both generator and discriminator simultaneously) commenced. The weight averaging (over both
generator and discriminator) was over every training epoch. The Brownian motion from which
noise was sampled had 3 dimensions.

The prediction metric was based on using the first 80% of the input to predict the last 20%.

C.3 WEIGHTS

Each sample is of length 100.

The batch size was 4096 for the neural SDE and latent ODE. This was reduced to 1024 for the CTFP,
which we found to be a very memory intensive model on this problem.

For the neural SDE, the discriminator received 10 epochs of training before the main training (of
both generator and discriminator simultaneously) commenced. The weight averaging (over both
generator and discriminator) was over every training epoch. The Brownian motion from which
noise was sampled had 3 dimensions.

The prediction metric was based on using the first 80% of the input to predict the last 20%.

C.4 BEIJING AIR QUALITY

Each sample is of length 24.

The data was normalised to have zero mean and unit variance.

The batch size was 1024 for every model.

For the neural SDE, the discriminator received 10 epochs of training before the main training (of
both generator and discriminator simultaneously) commenced. The weight averaging (over both
generator and discriminator) was over the final 40 epochs of training. (We realised that this was an
obvious improvement over averaging every epoch, as was done for the previous two experiments.)
The Brownian motion from which noise was sampled had 10 dimensions.

The prediction metric was based on using the first 50% of the input to predict the last 50%. (An
accidental change from the 80%/20% split used in the other experiments; this was kept as it is fair,
as it is the same for all models on this dataset.)

23

