
A Proofs of Generalization Error (Theorems 4 and 5)

In this section, we present the stability and generalization error bounds for SGD with convex loss
functions. We first prove Theorem 4 on smooth problems and then Theorem 5 on nonsmooth prob-
lems. Recall EA denotes the expectation w.r.t. the internal randomness of A. For SGD, this means
the expectation w.r.t. {ij}j∈[t].

Proof of Theorem 4. We first investigate the uniform stability of Algorithm 1. Let S′ =
{z1, . . . , zn−1, z

′
n}, where z′n is independently drawn from ρ, and {w′

t} be produced by Algorithm
1 w.r.t. data S′. We consider two cases: i.e. the case of {it ∕= n and it−1 ∕= n} and the case of
{it = n or it−1 = n}.
If it ∕= n and it−1 ∕= n, then

--wt −w′
t

--2
2
≤

--wt−1 − ηt∇f(wt−1; zit , zit−1
)−w′

t−1 + ηt∇f(w′
t−1; z

′
it , z

′
it−1

)
--2
2

=
--wt−1 − ηt∇f(wt−1; zit , zit−1

)−w′
t−1 + ηt∇f(w′

t−1; zit , zit−1
)
--2
2

= ‖wt−1 −w′
t−1‖22 + η2t

--∇f(wt−1; zit , zit−1)−∇f(w′
t−1; zit , zit−1)

--2
2

− 2ηt〈wt−1 −w′
t−1,∇f(wt−1; zit , zit−1

)−∇f(w′
t−1; zit , zit−1

)〉

≤ ‖wt−1 −w′
t−1‖22 + η2t

--∇f(wt−1; zit , zit−1
)−∇f(w′

t−1; zit , zit−1
)
--2
2

≤ ‖wt−1 −w′
t−1‖22 + 4η2tG

2,

where the last second inequality follows from the inequality 〈wt−1−w′
t−1,∇f(wt−1; zit , zit−1

)−
∇f(w′

t−1; zit , zit−1
)〉 ≥ 0 due to the convexity of f and the last inequality follows from the

Lipschitz continuity of f . If it = n or it−1 = n, it follows from the elementary inequality
(a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 and the Lipschitz condition that

--wt −w′
t

--2
2
≤ (1 + p)‖wt−1 −w′

t−1‖22
+ (1 + 1/p)η2t

--∇f(wt−1; zit , zit−1)−∇f(w′
t−1; z

′
it , z

′
it−1

)
--2
2

≤ (1 + p)‖wt−1 −w′
t−1‖22 + 4(1 + 1/p)η2tG

2.

We can combine the above two cases together and derive
--wt −w′

t

--2
2
≤

"
‖wt−1 −w′

t−1‖22 + 4η2tG
2
#
I[it ∕=n and it−1=n]

+
"
(1 + p)‖wt−1 −w′

t−1‖22 + 4(1 + 1/p)η2tG
2
#
I[it=n or it−1=n]

≤
"
1 + pI[it=n or it−1=n]

#
‖wt−1 −w′

t−1‖22 + 4η2tG
2
"
1 + I[it=n or it−1=n]/p

#

=
"
1 + p

#I[it=n or it−1=n]‖wt−1 −w′
t−1‖22 + 4η2tG

2
"
1 + I[it=n or it−1=n]/p

#
,

where I[·] is the indicator function. We can apply the above inequality recursively and get

--wt −w′
t

--2
2
≤ 4G2

t'

k=1

η2k
"
1 + I[ik=n or ik−1=n]/p

t/

j=k+1

"
1 + p

#I[ij=n or ij−1=n]

≤ 4G2
t/

j=1

"
1 + p

#I[ij=n or ij−1=n]

t'

k=1

η2k
"
1 + I[ik=n or ik−1=n]/p

#

= 4G2η2
"
1 + p

#!t
j=1 I[ij=n or ij−1=n]

"
t+

t'

k=1

I[ik=n or ik−1=n]/p
#
,

where the last inequality follows from ηj = η.

Now, we choose p = 1/
"!t

j=1 I[ij=n or ij−1=n]

#
and use the inequality (1 + x)1/x ≤ e to derive

the following inequality

--wt −w′
t

--2
2
≤ 4eG2η2

+
t+

" t'

k=1

I[ik=n or ik−1=n]

#2,
.

13

By the inequality I[ik=n or ik−1=n] ≤ I[ik=n] + I[ik−1=n] and (a+ b)2 ≤ 2(a2 + b2) we know

EA

&" t'

k=1

I[ik=n or ik−1=n]

#2(≤ 2EA

&" t'

k=1

I[ik=n

#2(
+ 2EA

&" t'

k=1

I[ik−1=n

#2(

= 4E
&" t'

k=1

I[ik=n]

#2(≤ 4t+ 4
'

j,k∈[t]:j ∕=k

E
)
I[ij=n]I[ik=n]

*

= 4t+ 4
'

j,k∈[t]:j ∕=k

1

n2
≤ 4t+ 4t2/n2.

We can combine the above two inequalities together and derive

EA[‖wt −w′
t‖22] ≤ 4eG2η2

+
5t+

4t2

n2

,

and by the convexity of ‖ · ‖22 it follows

EA[‖w̄t − w̄′
t‖22] ≤

1

t

t'

j=1

EA[‖wj −w′
j‖22] ≤ 4eG2η2

+
5t+

4t2

n2

,
.

This establishes the uniform stability of Algorithm 1. Furthermore, for any z, z′, we have

EA[f(w̄t, z, z
′)− f(w̄′

t, z, z
′)] ≤GEA[‖w̄t − w̄′

t‖2] = GEA

&0
‖w̄t − w̄′

t‖22
(

≤G
0
EA[‖w̄t − w̄′

t‖22] ≤ 2
√
eG2η

+√
5t+

2t

n

,

where the first inequality we used the G-Lipschitz continuity of f and the second inequality we
used the Jensen’s inequality. Therefore, Algorithm 1 is 2

√
eG2η

+√
5t + 2t

n

,
-uniformly stable. By

Lemma 1 it follows
EA[F (w̄t)− FS(w̄t)] ≤ 4

√
eG2η

+√
5t+

2t

n

,
,

which gives us the desired result.

To prove Theorem 5 we require the following lemma on the nonexpansiveness of gradient map
w &→ w − η∇f(w; z, z′).
Lemma 2 (Hardt et al. 17). Assume for all z ∈ Z , the function w &→ f(w; z, z′) is convex and
L-smooth. Then for all η ≤ 2/L and z, z′ ∈ Z there holds

‖w − η∇f(w; z, z′)−w′ + η∇f(w′; z, z′)‖2 ≤ ‖w −w′‖2.

Proof of Theorem 5. Let S′ = {z1, . . . , zn−1, z
′
n}, where z′n is independently drawn from ρ. Let

{w′
t} be produced by Algorithm 1 w.r.t. S′. We consider two cases. If it ∕= n and it−1 ∕= n, then it

follows from Lemma 2 that
--wt −w′

t

--
2
≤

--wt−1 − ηt∇f(wt−1; zit , zit−1)−w′
t−1 + ηt∇f(w′

t−1; z
′
it , z

′
it−1

)
--
2

=
--wt−1 − ηt∇f(wt−1; zit , zit−1)−w′

t−1 + ηt∇f(w′
t−1; zit , zit−1)

--
2

≤ ‖wt−1 −w′
t−1‖2.

Otherwise, we know
--wt −w′

t

--
2
≤ ‖wt−1 −w′

t−1‖2 + ηt
--∇f(wt−1; zit , zit−1)−∇f(w′

t−1; z
′
it , z

′
it−1

)
--
2

≤ ‖wt−1 −w′
t−1‖2 + 2ηtG.

We can combine the above two cases together and derive the following inequality
--wt −w′

t

--
2
≤ ‖wt−1 −w′

t−1‖2I[it ∕=n and it−1 ∕=n] +
"
‖wt−1 −w′

t−1‖2 + 2ηtG
#
I[it=n or it−1=n]

= ‖wt−1 −w′
t−1‖2 + 2ηtGI[it=n or it−1=n].

14

We can apply the above inequality recursively and get

--wt −w′
t

--
2
≤ 2G

t'

j=1

ηjI[ij=n or ij−1=n] ≤ 2G

t'

j=1

ηj
"
I[ij=n] + I[ij−1=n]).

Taking expectations over both sides gives EA
)
‖wt − w′

t

--
2

*
≤ 4G

n

!t
j=1 ηj . It then follows from

the convexity of ‖ · ‖2 that

EA
)
‖w̄t − w̄′

t

--
2

*
≤ 4G

n

t'

j=1

ηj .

This establishes the uniform argument stability of Algorithm 1. Furthermore, it follows the Lipschitz
condition that

sup
z,z′

EA
)
f(w̄t; z, z

′)− f(w̄′
t; z, z

′)
*
≤ 4G2

n

t'

j=1

ηj .

The desired result then follows from Lemma 1. The proof for Theorem 5 is completed.

Finally, we consider the generalization analysis for nonconvex problems under the PL condition. To
prove Theorem 3, we first introduce a lemma motivated by the arguments in [17].

Lemma 3. Let S = {zi}i∈[n] and S′ = {z′i}i∈[n] be neighboring datasets differing by a single
example. Let {wt}t and {w′

t}t be produced by Algorithm 1 w.r.t. S and S′, respectively. Let
Assumption (A1) hold and supz,z′ f(wi, z, z

′) ≤ B. Let △t = ‖wt − w′
t‖2. Then for every

z, z′ ∈ Z and every t0 ∈ [n], there holds

E
)
|f(wT ; z, z

′)− f(w′
T ; z, z

′)|
*
≤ GE

)
△T |△t0 = 0

*
+

Bt0
n

.

Proof. Without loss of generality, we assume that S and S′ differ by the last example. Let E denote
the event △t0 = 0. Then we have

E
)
|f(wT ; z, z

′)− f(w′
T ; z, z

′)|
*
= E

)
|f(wT ; z, z

′)− f(w′
T ; z, z

′)||E
*
Pr{E}

+ E
)
|f(wT ; z, z

′)− f(w′
T ; z, z

′)||Ec
*
Pr{Ec},

where Ec denotes the complement of E . Furthermore, we know

Pr{Ec} ≤
t0'

t=1

Pr{it = n} =
t0
n
.

We can combine the above two inequalities and the Lipschitz continuity of f to derive the stated
bound, which completes the proof.

B Proofs of Optimization Error (Theorems 6-9)

In this section, we prove optimization error bounds for SGD. We first consider convex cases, and
prove convergence rates in expectation (Theorem 6) and with high probability (Theorem 7). Then,
we establish convergence rates for SGD with nonconvex loss functions (Theorem 8 and Theorem 9).

15

Proof of Theorem 6. Consider j ≥ 1. Note that f(·; z, z′) is α-strongly convex and G-Lipschitz
continuous, we have

‖wj −w‖22 ≤ ‖wj−1 − ηj∇f(wj−1; zij , zij−1)−w‖22
= ‖wj−1 −w‖22 − 2ηj〈∇f(wj−1; zij , zij−1),wj−1 −w〉+ η2j ‖∇f(wj−1; zij , zij−1)‖22
≤ (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−1; zij , zij−1

)− f(w; zij , zij−1
)] +G2η2j

= (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

+ 2ηj [f(wj−2; zij , zij−1
)− f(wj−1; zij , zij−1

)] +G2η2j

≤ (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

+ 2ηjG‖wj−1 −wj−2‖2 +G2η2j

≤ (1− ηjα)‖wj−1 −w‖22 − 2ηj [f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

+ 2G2ηjηj−1 +G2η2j , (B.1)

where the last inequality used the fact that ‖wj −wj−1‖2 = ηj‖∇f(wj ; zij , zij−1
)‖2 ≤ Gηj .

For the convex case, i.e. α = 0, we know from (B.1) that
t'

j=1

ηj [f(wj−2; zij , zij−1)− f(w; zij , zij−1)]

≤ 1

2

t'

j=1

[‖wj−1 −w‖22 − ‖wj −w‖22] +
G2

2

t'

j=1

(2ηj−1ηj + η2j)

≤ 1

2
‖w0 −w‖22 +

G2

2

t'

j=1

(2ηj−1ηj + η2j). (B.2)

Taking the expectation on both sides of the above inequality and observing that f(·; z, z′) is convex,
we get the desired estimation (5).

For the strongly-convex case, i.e. α > 0, we obtain from (B.1) that

f(wj−2; zij , zij−1)−f(w; zij , zij−1) ≤
η−1
j − α

2
‖wj−1−w‖22−

η−1
j

2
‖wj−w‖22+G2ηj−1+

G2ηj
2

.

Now, we choose ηj =
2

α(j+1) for any j, which implies that

j[f(wj−2; zij , zij−1
)− f(w; zij , zij−1

)]

≤ j(j − 1)α

4
‖wj−1 −w‖22 −

j(j + 1)α

4
‖wj −w‖22 +

2G2

α
+

G2j

α(j + 1)

≤ α

4
[j(j − 1)‖wj−1 −w‖22 − j(j + 1)‖wj −w‖22] +

3G2

α
.

Taking the summation over j implies that
t'

j=1

j[f(wj−2; zij , zij−1
)− f(w; zij , zij−1

)]

≤ 3G2t

α
+

α

4

t'

j=1

[j(j − 1)‖wj−1 −w‖22 − j(j + 1)‖wj −w‖22]

≤ 3G2t

α
+

α

4
[0− t(t+ 1)‖wt −w‖22] ≤

3G2t

α
. (B.3)

Dividing both sides of the above inequality by
!t

j=1 j yields the desired estimation in part (b).

To prove high-probability bounds, we require the following lemma on concentration inequalities of
martingales [6, 47].

16

Lemma 4. Let z̃1, . . . , z̃n be a sequence of random variables such that z̃k may depend on
the previous variables z̃1, . . . , z̃k−1 for all k = 1, . . . , n. Consider a sequence of functionals
ξk(z̃1, . . . , z̃k), k = 1, . . . , n. Let α2

n =
!n

k=1 Ez̃k

)"
ξk − Ez̃k [ξk]

#2*
be the conditional variance.

(1) Assume |ξk − Ez̃k [ξk]| ≤ bk for each k. Let δ ∈ (0, 1). With probability at least 1− δ

n'

k=1

Ez̃k [ξk]−
n'

k=1

ξk ≤
+
2

n'

k=1

b2k log
1

δ

, 1
2

. (B.4)

(2) Assume that ξk −Ez̃k [ξk] ≤ b for each k. Let ρ ∈ (0, 1] and δ ∈ (0, 1). With probability at least
1− δ we have

n'

k=1

Ez̃k [ξk]−
n'

k=1

ξk ≤ ρα2
n

b
+

b log 1
δ

ρ
. (B.5)

Proof of Theorem 7. For simplicity, we assume t is an even number. We first consider the convex
case. Let

ξj = η2j
"
f(w2j−2; zi2j , zi2j−1)− f(w; zi2j , zi2j−1)

#
, j ∈ [t/2].

It is obvious that |ξj − Ei2j ,i2j−1 [ξj]| ≤ 2Bη2j . Let z̃j = (i2j , i2j−1). It is clear that z̃j , j ∈ [t/2]
are i.i.d. random variables. Therefore, one can apply Part (a) of Lemma 4 to derive the following
inequality with probability at least 1− δ/2

t/2'

j=1

Ez̃j [ξj]−
t/2'

j=1

ξj ≤ 2B
+
2

t/2'

j=1

η22j log(2/δ)
, 1

2

.

It is clear that Ez̃j [ξj] = η2j
"
FS(w2j−2)−FS(w)

#
. Therefore, the following inequality holds with

probability at least 1− δ/2

t/2'

j=1

η2j
"
FS(w2j−2)−FS(w)−f(w2j−2; zi2j , zi2j−1)+f(w; zi2j , zi2j−1)

#
≤ 2B

+
2

t/2'

j=1

η22j log(2/δ)
, 1

2

.

In a similar way, one can derive the following inequality with probability at least 1− δ/2

t/2'

j=1

η2j−1

"
FS(w2j−3)− FS(w)− f(w2j−3; zi2j−1

, zi2j−2
)

+ f(w; zi2j−1 , zi2j−2)
#
≤ 2B

+
2

t/2'

j=1

η22j−1 log(2/δ)
, 1

2

.

We can combine the above two inequalities together and derive the following inequality with prob-
ability 1− δ

t'

j=1

ηj
"
FS(wj−2)−FS(w)−f(wj−2; zij , zij−1

)+f(w; zij , zij−1
)
#
≤ 2B

+
2

t'

j=1

η2j log(2/δ)
, 1

2

.

We can combine the above inequality and Eq. (B.2) to derive the following inequality with proba-
bility at least 1− δ

t'

j=1

ηj
"
FS(wj−2)−FS(w)

#
≤ 2B

+
2

t'

j=1

η2j log(2/δ)
, 1

2

+
1

2
‖w0−w‖22+G2

t'

j=1

"
ηj−1ηj +

η2j
2

#
.

The stated bound then follows from the convexity of FS .

We now turn to the strongly convex case. Let

ξj = 2j(f(w2j−2; zi2j , zi2j−1)− f(wS ; zi2j , zi2j−1)), j ∈ [t/2].

17

It is clear that |ξj − Ei2j ,i2j−1 [ξj]| ≤ 4jB ≤ 2tB for j ∈ [t/2]. Furthermore, the conditional
variance satisfies

Ez̃j

)"
ξj − Ez̃j [ξj]

#2* ≤ Ez̃j [ξ
2
j] ≤ 4j2G2‖w2j−2 −wS‖22

≤ 8α−1j2G2
"
FS(w2j−2)− FS(wS)

#
,

where the first inequality follows from f is G-Lipschitz continuous, and the second inequality used
the fact ∇FS(wS) = 0 and f is α-strongly convex.

Note z̃j are independent random variables and

Ez̃j [ξj] = 2j
"
FS(w2j−2)− FS(wS)

#
.

Therefore, we can apply Part (b) of Lemma 4 to derive the following inequality with probability at
least 1− δ/2

2

t/2'

j=1

j
+
FS(w2j−2)− FS(wS)− f(w2j−2; zi2j , zi2j−1) + f(wS ; zi2j , zi2j−1)

,

≤
8G2ρ

!t/2
j=1 j

2
"
FS(w2j−2)− FS(wS)

#

2tBα
+

2tB log(2/δ)

ρ
.

In a similar way, one can derive the following inequality with probability at least 1− δ/2

t/2'

j=1

(2j − 1)
+
FS(w2j−3)− FS(wS)− f(w2j−3; zi2j−1

, zi2j−2
) + f(wS ; zi2j−1

, zi2j−2
)
,

≤
2G2ρ

!t/2
j=1(2j − 1)2

"
FS(w2j−3)− FS(wS)

#

2tBα
+

2tB log(2/δ)

ρ
.

We can combine the above two inequalities together and derive the following inequality with prob-
ability at least 1− δ

t'

j=1

j
+
FS(wj−2)− FS(wS)− f(wj−2; zij , zij−1

) + f(wS ; zij , zij−1
)
,

≤
2G2ρ

!t
j=1 j

2
"
FS(wj−2)− FS(wS)

#

2tBα
+

2tB log(2/δ)

ρ
.

We can combine the above inequality and Eq. (B.3) together and derive the following inequality
with probability 1− δ

t'

j=1

j
"
FS(wj−2)− FS(wS)

#
≤ 3G2t

α
+

G2ρ
!t

j=1 j
"
FS(wj−2)− FS(wS)

#

Bα
+

2tB log(2/δ)

ρ
.

Now, we take ρ = min
1
1, Bα/(2G2)

2
and get the following inequality with probability at least

1− δ

t'

j=1

j
"
FS(wj−2)−FS(wS)

#
≤ 3G2t

α
+
1

2

t'

j=1

j
"
FS(wj−2)−FS(wS)

#
+2t log(2/δ)max

1
B, 2G2/α

2

and therefore
t'

j=1

j
"
FS(wj−2)− FS(wS)

#
≤ 14G2t log(2/δ)

α
+ 4Bt log(2/δ).

The stated bound then follows from the convexity of FS . The proof is completed.

We now turn to nonconvex problems.

18

Proof of Theorem 8. It is clear that FS is L-smooth and therefore

FS(wj) ≤ FS(wj−1) + 〈wj −wj−1,∇FS(wj−1)〉+
L

2
‖wj −wj−1‖22

= FS(wj−1)− ηj〈∇f(wj−1; zij , zij−1),∇FS(wj−1)〉+
Lη2j
2

‖∇f(wj−1; zij , zij−1)‖22

Taking expectations over both sides gives

EA[FS(wj)] ≤ EA[FS(wj−1)]− ηjEA
)
〈∇f(wj−1; zij , zij−1),∇FS(wj−1)〉

*
+

Lη2j
2

EA
)
‖∇f(wj−1; zij , zij−1)‖22

*
. (B.6)

According to the elementary inequality (a+ b)2 ≤ 2(a2 + b2) we know

EA
)
‖∇f(wj−1; zij , zij−1)‖22

*

≤ 2EA
)
‖∇f(wj−1; zij , zij−1)−∇f(wj−2; zij , zij−1)‖22

*
+ 2EA

)
‖∇f(wj−2; zij , zij−1)‖22

*

≤ 2LEA
)
‖wj−1 −wj−2‖22

*
+ 2α2

0 = 2Lη2j−1EA
)
‖∇f(wj−2; zij−1 , zij−2)‖22

*
+ 2α2

0

≤ 1

2
EA

)
‖∇f(wj−2; zij−1

, zij−2
)‖22

*
+ 2α2

0,

where we have used the L-smoothness, the assumption Eij ,ij−1

)
‖∇f(wj−2; zij , zij−1

)‖22
*
≤ α2

0

and 4Lη2j−1 ≤ 1. It is clear that EA
)
‖∇f(w0; zi1 , zi0)‖22

*
≤ α2

0. It is easy to use an induction and
the above inequality to show that

EA
)
‖∇f(wj−1; zij , zij−1)‖22

*
≤ 4α2

0, ∀j. (B.7)

Furthermore, the smoothness assumption implies that
3
∇f(wj−1; zij , zij−1),∇FS(wj−1)

4

=
3
∇f(wj−2; zij , zij−1),∇FS(wj−1)

4
+
3
∇f(wj−1; zij , zij−1)−∇f(wj−2; zij , zij−1),∇FS(wj−1)

4

=
3
∇f(wj−2; zij , zij−1

),∇FS(wj−2)
4
+
3
∇f(wj−2; zij , zij−1

),∇FS(wj−1)−∇FS(wj−2)
4
+

+
3
∇f(wj−1; zij , zij−1)−∇f(wj−2; zij , zij−1),∇FS(wj−1)

4

≥
3
∇f(wj−2; zij , zij−1),∇FS(wj−2)

4
− L‖wj−1 −wj−2‖2

"
‖∇f(wj−2; zij , zij−1)‖2 + ‖∇FS(wj−1)‖2

#
.

According to Schwartz inequality, the variance assumption and Eq. (B.7), we know

EA

&
‖wj−1 −wj−2‖2

"
‖∇f(wj−2; zij , zij−1)‖2 + ‖∇FS(wj−1)‖2

#(

≤ 1

2ηj−1
EA

)
‖wj−1 −wj−2‖22

*
+ ηj−1EA

)
‖∇f(wj−2; zij , zij−1

)‖22 + ‖∇FS(wj−1)‖22
*

=
ηj−1

2
EA

)
‖∇f(wj−2; zij−1 , zij−2)‖22

*
+ ηj−1EA

)
‖∇f(wj−2; zij , zij−1)‖22 + ‖∇FS(wj−1)‖22

*

≤ 2α2
0ηj−1 + 2α2

0ηj−1.

We can combine the above two inequalities together and get

EA
)3
∇f(wj−1; zij , zij−1),∇FS(wj−1)

4*
≥ EA

)3
∇f(wj−2; zij , zij−1),∇FS(wj−2)

4*
−4Lα2

0ηj−1.

We can combine (B.6), (B.7) and the above inequality, and get

EA[FS(wj)] ≤ EA[FS(wj−1)]− ηjEA
)3
∇f(wj−2; zij , zij−1),∇FS(wj−2)

4*
+ 4Lα2

0ηjηj−1 + 2Lη2jα
2
0

≤ EA[FS(wj−1)]− ηjEA
)
‖∇FS(wj−2)‖22

*
+ 4Lα2

0

"
ηjηj−1 + η2j

#
,

where the last inequality holds since wj−2 is independent of ij and ij−1. The above inequality can
be reformulated as

ηjEA
)
‖∇FS(wj−2)

--2
2

*
≤ EA[FS(wj−1)]− EA[FS(wj)] + 4Lα2

0

"
ηjηj−1 + η2j

#
. (B.8)

We can take a summation of the above inequality and get
t'

j=1

ηjEA
)
‖∇FS(wj−2)‖22

*
≤ FS(w0) + 4Lα2

0

t'

j=1

"
ηjηj−1 + η2j

#
.

19

Since ηj = η, we further get

t'

j=1

EA
)
‖∇FS(wj−2)‖22

*
≤ η−1FS(w0) + 8Lα2

0tη.

The proof is completed.

Proof of Theorem 9. According to the elementary inequality 1
2 (a+ b)2 ≤ a2 + b2 we know

EA
)
‖∇FS(wj−2)

--2
2

*
≥ −EA

)
‖∇FS(wj−2)−∇FS(wj−1)‖22

*
+ 2−1EA

)
‖∇FS(wj−1)‖22

*

≥ −LEA
)
‖wj−2 −wj−1‖22

*
+ 2−1EA

)
‖∇FS(wj−1)‖22

*

= −Lη2j−1EA
)
‖∇f(wj−2; zij−1 , zij−2)‖22

*
+ 2−1EA

)
‖∇FS(wj−1)‖22

*

≥ −4Lη2j−1α
2
0 + 2−1EA

)
‖∇FS(wj−1)‖22

*
,

where we have used (B.7). This together with (B.8) gives

2−1ηjEA
)
‖∇FS(wj−1)

--2
2

*
≤ 4Lηjη

2
j−1α

2
0+EA[FS(wj−1)]−EA[FS(wj)]+4Lα2

0

"
ηjηj−1+η2j

#
.

It then follows from the PL condition that

µηjEA
)
FS(wj−1)−FS(wS)

*
≤ EA[FS(wj−1)]−EA[FS(wj)]+ 4Lα2

0

"
ηjηj−1+ η2j + ηjη

2
j−1

#
.

We can reformulate the above inequality as

EA[FS(wj)− FS(wS)] ≤ (1− µηj)EA[FS(wj−1)− FS(wS)] + 4Lα2
0

"
ηjηj−1 + η2j + ηjη

2
j−1

#
.

Now, taking ηj = 2/(µ(j + 1)), we get

EA[FS(wj)− FS(wS)] ≤
j − 1

j + 1
EA[FS(wj−1)− FS(wS)] +

4Lα2
0

µ2

+ 8

j(j + 1)
+

8

j2(j + 1)µ

#
.

We can multiple both sides by j(j + 1) and get

j(j + 1)EA[FS(wj)− FS(wS)] ≤ (j − 1)jEA[FS(wj−1)− FS(wS)] +
4Lα2

0

µ2

"
8 + 8j−1µ−1

#
.

Taking a summation of the above inequality gives

t(t+ 1)EA[FS(wt)− FS(wS)] ≤
32Lα2

0

µ2

t'

j=1

"
1 + j−1µ−1

#
.

The stated bound then follows. The proof is completed.

C Proofs of Excess Generalization Error (Theorems 1-3)

In this section, we prove Theorem 1, Theorem 2 and Theorem 3 on excess generalization error
bounds.

Proof of Theorem 1. According to Theorem 4, we know

ES,A[F (w̄T)− FS(w̄T)] = O
+√

Tη +
Tη

n

,
.

Furthermore, according to Part (a) of Theorem 6 with w = w∗, we know

ES,A[FS(w̄T)− FS(w
∗)] = O

+1 + Tη2

Tη

,
. (C.1)

We can plug the above generalization error bound and optimization error bound back into the error
decomposition (2), and get (3). Taking T ≍ n2 and η ≍ T− 3

4 in Eq. (3), we immediately get
ES,A[F (w̄T)]− F (w∗) = O(1/

√
n). The desired result is proved.

20

Proof of Theorem 2. According to Theorem 5, we know

ES,A[F (w̄T)− FS(w̄T)] = O
+Tη

n

,
.

We can plug the above generalization error bound and the optimization error bound (C.1) back into
the error decomposition (2), and get (4). Taking T ≍ n2 and η ≍ T− 3

4 in Eq. (4), we immediately
get ES,A[F (w̄T)]− F (w∗) = O(1/

√
n). The proof is completed.

Proof of Theorem 3. Let S′ = {z1, . . . , zn−1, z
′
n}, where z′n is independently drawn from ρ. Let

{w′
t} be produced by Algorithm 1 w.r.t. S′. If it ∕= n and it−1 ∕= n, then

‖wt −w′
t‖2 ≤

--wt−1 − ηt∇f(wt−1; zit , zit−1)−w′
t−1 − ηt∇f(w′

t−1; zit , zit−1)
--
2

≤ ‖wt−1 −w′
t−1‖2 + ηt‖∇f(wt−1; zit , zit−1)−∇f(w′

t−1; zit , zit−1)‖2
≤ (1 + Lηt)‖wt−1 −w′

t−1‖2,
where in the last inequality we used the smoothness of f .

Otherwise, it follows from the Lipschitz condition that ‖wt − w′
t‖2 ≤ ‖wt−1 − w′

t−1‖2 + 2Gηt.
Consequently, it follows that

‖wt −w′
t‖2 ≤ (1 + Lηt)‖wt−1 −w′

t−1‖2I[it ∕=n and it−1 ∕=n]

+
"
‖wt−1 −w′

t−1‖2 + 2Gηt
#
I[it=n or it−1=n]

≤ (1 + Lηt)‖wt−1 −w′
t−1‖2 + 2GηtI[it=n or it−1=n].

We can apply the above inequality recursively and get

△t ≤ 2G

t'

k=t0+1

ηkI[ik=n or ik−1=n]

t/

k′=k+1

(1 + Lηk′) +△t0

t/

k=t0+1

(1 + Lηk).

Since △t0 = 0 implies it0 ∕= n, we have

E[△t|△t0 = 0] ≤ 2G

t'

k=t0+1

ηkE
)
I[ik=n or ik−1=n]|△t0 = 0

* t/

k′=k+1

(1 + Lηk′)

= 2G

t'

k=t0+2

ηkE
)
I[ik=n or ik−1=n]|△t0 = 0

* t/

k′=k+1

(1 + Lηk′)

= 2G

t'

k=t0+2

ηkE
)
I[ik=n or ik−1=n]

* t/

k′=k+1

(1 + Lηk′),

where we have used the independency between △t0 and it for t > t0. It then follows that

E[△t|△t0 = 0] ≤ 2G

t'

k=t0+2

ηkE
)
I[ik=n] + I[ik−1=n]

* t/

k′=k+1

(1 + Lηk′)

≤ 4G

n

t'

k=t0+2

ηk

t/

k′=k+1

exp(Lηk′) ≤ 8G

µn

t'

k=t0+2

1

k + 1
exp

+
2Lµ−1

t'

k′=k+1

1

k′ + 1

,

≤ 8G

µn

t'

k=t0+2

1

k + 1
exp

+
2Lµ−1 log(t/k)

,
=

8G

µn

t'

k=t0+2

1

k + 1

+ t

k

,2Lµ−1

≤ 8Gt2Lµ−1

µn

t'

k=t0+2

k−1−2Lµ−1

≤ 8G

µn(2Lµ−1)

+ t

t0

,2Lµ−1

.

Here we use 1 + x ≤ exp(x) and ηj =
2

µ(j+1) . We can plug the above inequality back into Lemma
3 and derive

E
)
|f(wT ; z, z

′)− f(w′
T ; z, z

′)|
*
≤ 4G2

nL

+T

t0

,2Lµ−1

+
Bt0
n

.

21

We can choose t0 ≍ T
2L

2L+µ and get the following generalization error bounds

E
)
|f(wT ; z, z

′)− f(w′
T ; z, z

′)|
*
= O

+T
2L

2L+µ

n

,
.

Lemma 1 then implies E
)
F (wT) − FS(wT)

*
= O

+
T

2L
2L+µ

n

,
. Furthermore, according to Theorem

9 we have the following optimization error bounds

EA[FS(wT)]− inf
w
[FS(w)] = O

"
1/(Tµ2)

#
.

The desired result follows by combining the above two inequalities together and using the fact
E[infw[FS(w)] ≤ E[FS(w

∗)] = F (w∗).

D Proof of Privacy and Utility Guarantees of Algorithm 3 (Theorem 10)

In this section, we present the proof of Theorem 10 on the privacy guarantee and excess generaliza-
tion bound of Algorithm 3.

To this end, we need the definition of ℓ2-sensitivity in terms of high probability and some lemmas.
The ℓ2-sensitivity definition given below corresponds to the high probability version of uniform
argument stability stated in Definition 1.
Definition 3. For any γ ∈ (0, 1), a (randomized) algorithm A has ℓ2-sensitivity of ∆ with proba-
bility at least 1− γ if for any neighboring datasets S, S′ ∈ Zn, one has ‖A(S)−A(S′)‖2 ≤ ∆.

The next lemma demonstrates that Gaussian mechanism ensures the privacy of an algorithm with
high probability ℓ2-sensitivity.
Lemma 5. Let A : Zn → Rd be a randomized algorithm with ℓ2-sensitivity of ∆ with prob-
ability at least 1 − δ/2. Then the Gaussian mechanism M(S) = A(S) + u where u ∼
N (0, (2∆2 log(2.5/δ)/ε2)Id) satisfies (ε, δ)-DP.

Proof. Let S and S′ be two neighboring datasets. Denote E as the set when A satisfies ℓ2-sensitivity
of ∆, i.e. E = {‖A(S)−A(S′)‖2 ≤ ∆}. Then we know P[E] ≥ 1−δ/2. In favor of E, by classical
results for Gaussian mechanism, we know M satisfies (ε, δ/2)-DP with σ = ∆

.
2 log(2.5/δ)/ε.

Therefore, for any ε > 0 and any event O in the output space of M, we have

P[M(S) ∈ O] =P[M(S) ∈ O|E]P[E] + P[M(S) ∈ O|Ec]P[Ec]

≤
+
eεP[M(S′) ∈ O|E] +

δ

2

,
P[E] +

δ

2

≤eεP[M(S′) ∈ O ∩ E] +
δ

2
+

δ

2
≤eεP[M(S′) ∈ O] + δ

where the first inequality is because M satisfies (ε, δ/2)-DP when E occurs and P[Ec] ≤ δ/2, the
second and third inequalities are by basic properties of probability. The proof is completed.

We need the following ChernoffâĂŹs bound for a summation of independent Bernoulli random
variables [43].
Lemma 6 (Chernoff bound for Bernoulli vector). Let X1, . . . , Xt be independent random variables
taking values in {0, 1}. Let X =

!t
j=1 Xj and µ = E[X]. Then for any γ̃ > 0, with probability at

least 1− exp
"
− µγ̃2/(2 + γ̃)

#
we have X ≤ (1 + γ̃)µ.

In order to prove the privacy guarantee and excess generalization bound for Algorithm 3, we also
need the following high probability ℓ2-sensitivity of the output of Algorithm 1.
Lemma 7. Let {w̄t} and {w̄′

t} be produced by Algorithm 1 based on the neighboring datasets S
and S′, respectively. If f is convex and L-smooth and ηt = η ≤ 2/L, then with probability at least
1− γ we have

‖w̄t − w̄′
t

--
2
≤ 4Gη

+ t

n
+ log(2/γ) +

5
t log(2/γ)

n

,
.

22

Proof. Without loss of generality, we assume the different example between S and S′ is the n-th
item. By the proof of Theorem 5, we know

--wt −w′
t

--
2
≤ 2G

t'

j=1

ηjI[ij=n or ij−1=n] ≤ 2G

t'

j=1

ηj
"
I[ij=n] + I[ij−1=n]).

Applying Lemma 6, with probability at least 1− γ there holds

t'

j=1

(I[ij=n] + I[ij−1=n]) ≤
2t

n
+ 2 log(2/γ) + 2

5
t log(2/γ)

n
.

It then follows from the convexity of ‖ · ‖2 that

‖w̄t − w̄′
t

--
2
≤ 4Gη

+ t

n
+ log(2/γ) +

5
t log(2/γ)

n

,
,

which implies the desired result.

With the above preparations, we are now ready to prove Theorem 10.

Proof of Theorem 10. We first consider the privacy guarantee of Algorithm 3. Since we run Algo-
rithm 1 for ⌈nk log(4/δ)⌉ steps for each k, by Lemma 7, we know with probability 1− δ/2

‖w̄k − w̄′
k

--
2
≤ 12Gηk log(4/δ).

Therefore, by Lemma 5, each iteration k of Algorithm 3 is (ε, δ)-DP. Since the partition of the
dataset S is disjoint, and each iteration k of Algorithm 3 we only use one subset, thus the whole
process satisfies (ε, δ)-DP.

Next we investigate the utility bound of Algorithm 3. Let w̄0 = w∗ and u0 = w0 −w∗, then

E[F (wK)− F (w∗)] =

K'

k=1

E[F (w̄k)− F (w̄k−1)] + E[F (wK)− F (w̄K)] (D.1)

Denote FSk
be the empirical objective based on sample Sk. For the first term on the RHS of (D.1),

we have

E[F (w̄k)− F (w̄k−1)]

= E[F (w̄k)− FSk
(w̄k)] + E[FSk

(w̄k)− FSk
(w̄k−1)] + E[FSk

(w̄k−1)− F (w̄k−1)]

= E[F (w̄k)− FSk
(w̄k)] + E[FSk

(w̄k)− FSk
(w̄k−1)]

≤ 8G2 log(4/δ)ηk +
+E[‖uk−1‖22]

2ηknk
+

3G2ηk
2

,
≤ E[‖uk−1‖22]

2ηknk
+ 18 log(4/δ)G2ηk,

where the second identity is because w̄k−1 is independent of Sk and the inequality follows from
Theorem 6 Part (a) and Theorem 5. Recall that by definition η ≤ Dε

12G log(4/δ)
√

2d log(2.5/δ)
, so that

for all k ≥ 0,

E[‖uk‖22] = dσ2
k = d

+4−kGη

ε

,2

≤ 16−kD2.

Plugging the above estimate into (D.1) it follows

E[F (wK)− F (w∗)] ≤
K'

k=1

8 · 16−kD2

4−k2−kηn
+ 18 log(4/δ)4−kG2η + 4−KGD

≤
K'

k=1

2−k
+8D2

ηn
+ 18 log(4/δ)G2η

,
+

GD

n2

=O
+
GD

+ 1√
n
+

√
d log

3
2 (1/δ)

εn

,,
,

23

where in the second inequality used K = ⌈log2 n⌉, and the last inequality is due to η =
D
G min{ log(4/δ)√

n
, ε

12 log(4/δ)
√

2d log(2.5/δ)
}. The desired excess generalization error bound is proved.

Finally, we investigate the gradient complexity argument. Since we run Algorithm 1 for nk at
iteration k. Therefore, the total gradient complexity is O

+!K
k=1 nk

,
= O(n log(1/δ)). The proof

is completed.

E Additional Results: Localization-Based Algorithm to Improve Theorem 1

In this section, we provide additional results on how to reduce the gradient complexity O(n2) re-
quired in Theorem 1 to O(n) for nonsmooth problems. This improvement is attained by Algorithm
4 which is motivated by the iterative localization technique [13].

Algorithm 4 Localized SGD for Pairwise Learning

1: Inputs: Dataset S = {zi : i = 1, . . . , n}, parameter ζ, initial point w0

2: Set K = ⌈log2 n⌉ and divide S into K disjoint subsets {S1, · · · , SK} such that |Sk| = nk =
2−kn

3: for k = 1 to K do
4: Set ζk = 2−kζ
5: Compute w̄k ∈ W by Algorithm 1 with step sizes ηj = ζknk

j+1 , j ∈ [Tk] and Tk ≍ nk

iterations based on the objective Fk where

Fk(w;Sk) =
1

nk(nk − 1)

'

z,z′∈Sk:z ∕=z′

f(w; z, z′) +
1

ζknk
‖w − w̄k−1‖22

6: Outputs: w̄K

The next theorem shows that the empirical risk minimization can imply models with good excess
generalization error by Algorithm 4.
Theorem E.1. Let (A1) and (A3) hold true with α = 0 and let D be the diameter of W . Let
{w̄k : k ∈ [K]} be produced by Algorithm 4 with ζ = D

G
√
n

. Then we have the following excess
generalization error bounds

E[F (w̄K)− F (w∗)] = O
+GD√

n

,

with gradient complexity O(n).

We provide two technical lemmas before we present the proof of Theorem E.1.
Lemma 8. Let (A1) and (A3) hold true with α = 0 and let ŵk = argminw Fk(w;Sk), then

E[‖w̄k − ŵk‖22] = O
"
G2ζ2knk

#
.

Proof. Note that Fk is αk = 2
ζknk

-strongly convex, by the convergence of Algorithm 1 in Theorem
6 Part (b), we know that

αk

2
E[‖w̄k − ŵk‖22] ≤ E[Fk(w̄k;Sk)− Fk(ŵk;Sk)] = O

+ G2

αknk

,

which implies
E[‖w̄k − ŵk‖22] = O

"
G2ζ2knk

#
.

The proof is completed.

Lemma 9. Let (A1) and (A3) hold true with α = 0. For any w ∈ W , we know that

E[F (ŵk)− F (w)] ≤ E[‖w̄k−1 −w‖22]
ζknk

+ 2G2ζk.

24

Proof. Let r(w; z, z′) = f(w, z, z′) + 1
ζknk

‖w − w̄k−1‖22, R(w) = Ez,z′ [r(w; z, z′)] and w∗
R =

argminw∈W R(w). By the proof of Theorem 6 in Shalev-Shwartz et al. [33] , one has that

E[F (ŵk) +
1

ζknk
‖ŵk − w̄k−1‖22 − F (w)− 1

ζknk
‖w − w̄k−1‖22]

= E[R(ŵk)−R(w)] ≤ E[R(ŵk)−R(w∗
R)] ≤ 2G2ζk,

which implies that

E[F (ŵk)− F (w)] ≤2G2ζk − 1

ζknk
E[‖ŵk − w̄k−1‖22] +

1

ζknk
E[‖w − w̄k−1‖22]

≤2G2ζk +
1

ζknk
E[‖w − w̄k−1‖22].

The proof is completed.

Proof of Theorem E.1. Let ŵ0 = w∗, we have

E[F (w̄K)]− F (w∗) =

K'

k=1

E[F (ŵk)− F (ŵk−1)] + E[F (w̄K)− F (ŵK)]. (E.1)

For the first term we have
K'

k=1

E[F (ŵk)− F (ŵk−1)] ≤
K'

k=1

+E[‖w̄k−1 − ŵk−1‖22]
ζknk

+ 2G2ζk

,

=O
+D2

ζn
+

K'

k=2

G2ζk +

K'

k=1

2−kG2ζ
,

=O
+D2

ζn
+G2ζ

,
(E.2)

where the first inequality is by Lemma 9, the second inequality is by Lemma 8 and ζ = D
G
√
n

. For
the second term we have

E[F (w̄K)− F (ŵK)] ≤GE[‖w̄K − ŵK‖2] ≤ G
0
E[‖w̄K − ŵK‖22] = O

"
G2ζK

√
nK

#

=O
+
2−2KG2ζ

√
n
,
= O

+
G2ζ

,
(E.3)

where the first inequality is by G-Lipschitz continuity of F , the second inequality is by Jensen’s
inequality, the first identity is by Lemma 8 and the second identity is by nk = 2−kn.

Now putting (E.2) and (E.3) back to (E.1) and using ζ = D
G
√
n

, we derive

E[F (w̄K)]− F (w∗) = O
+GD√

n

,
.

Finally we investigate the gradient complexity. Since Fk is 2
ζknk

-strongly convex, by Theorem
6 Part (b), we need to choose Tk ≍ nk so that Lemma 8 holds. Therefore, in total, we require
O
+!K

k=1 nk

,
= O(n) gradient complexity, which yields the desired result.

F Additional Results: Differentially Private SGD for Pairwise Learning
with Non-Smooth Losses

In this section, we propose a differentially private algorithm based on iterative localization [13] for
nonsmooth pairwise learning problems. The algorithm is presented as follows.

We are now ready to present the privacy guarantee and utility bound of Algorithm 5 in the following
theorem. The proof differs from the iterative localization algorithm in pointwise learning [13] since
we employ our high probability convergence results for non-smooth losses in pairwise learning.

25

Algorithm 5 Differentially Private Localized SGD for Pairwise Learning

1: Inputs: Dataset S = {zi : i ∈ [n]}, parameters ε, δ, and ζ, initial points w0

2: Set K=⌈log2 n⌉ and divide S into K disjoint subsets {S1, · · · , SK} where |Sk|=nk=2−kn.
3: for k = 1 to K do
4: Set ζk = 4−kζ
5: Compute w̄k ∈ W by Algorithm 1 with step sizes ηj = ζknk

j+1 on objective Fk such that with
prob 1− δ,

Fk(w̄k;Sk)− min
w∈W

Fk(w;Sk) ≤ G2ζk/nk

where Fk(w;Sk) =
1

nk(nk−1)

!
z,z′∈Sk:z ∕=z′ f(w; z, z′) + 1

ζknk
‖w −wk−1‖22

6: Set wk = w̄k + uk where uk ∼ N (0,α2
kId) with σk = 4Gζk

.
log(2.5/δ)/ε.

7: Outputs: wK

Theorem F.1. Let (A1) and (A3) hold true with α = 0 and let D be the diameter of W . Let
{wk : k ∈ [K]} be produced by Algorithm 5 with ζ = D

G min{ 4√
n
, ε

4
√

d log(1/δ)
}. Then Algorithm

5 satisfies (ε, δ)-DP. Furthermore we have the following excess generalization error bounds

E[F (wK)− F (w∗)] = O
+
GD

+ 1√
n
+

.
d log(1/δ)

εn

,,

with no more than O(n2 log(1/δ)) stochastic gradient computations.

Proof of Theorem F.1. We first consider the privacy guarantee of Algorithm 5. For any neigh-
boring datasets S = {S1, . . . , SK} and S′ = {S′

1, . . . , S
′
K} differing by one example, where S′

follows the same partition as S, and Si ∩ Sj = ∅ if i ∕= j. Let ŵk = argminw Fk(w;Sk) and
ŵ′

k = argminw Fk(w;S′
k). We first investigate the ℓ2-sensitivity of ŵk. Since Fk is αk = 2

ζknk
-

strongly convex, by Theorem 6 in Shalev-Shwartz et al. [33] we have

‖ŵk − ŵ′
k‖2 ≤ 4G

αknk
= 2Gζk,

where w̄′
k is the return from Line 5 in Algorithm 5 based on Fk(w;S′

k). By the strong convexity of
Fk again, we have with probability at least 1− δ

αk

2
‖w̄k − ŵk‖22 ≤ Fk(w̄k;Sk)− Fk(ŵk;Sk) ≤

G2ζk
nk

which implies ‖w̄k − ŵk‖2 ≤ Gζk. This further implies w̄k has ℓ2-sensitivity of 4Gζk with
probability 1 − δ. Therefore, by Lemma 5, each iteration k of Algorithm 5 is (ε, δ)-DP. Since the
partition of the dataset S is disjoint, and each iteration k of Algorithm 5 we only use one subset,
thus the whole process will still be (ε, δ)-DP.

Next we investigate the utility bound of Algorithm 5. Firstly, for any fixed w,

E[F (w̄k)− F (w)] =E[F (ŵk)− F (w)] + E[F (w̄k)− F (ŵk)]

≤E[‖wk−1 −w‖22]
ζknk

+ 3G2ζk

where we used Lemma 9 and ‖w̄k − ŵk‖2 ≤ Gζk. Denote w̄0 = w∗ and u0 = w0 −w∗, we have

E[F (wK)− F (w∗)] =

K'

k=1

E[F (w̄k)− F (w̄k−1)] + E[F (wK)− F (w̄K)]

≤
K'

k=1

+E[‖uk−1‖22]
ζknk

+ 3G2ζk

,
+GE[‖uK‖2]. (F.1)

Recall that by definition ζ ≤ Dε

4G
√

d log(2.5/δ)
, so that for all k ≥ 0, there holds

E[‖uk‖22] = dσ2
k = d

+4−kGζ

ε

,2

≤ 16−kD2.

26

Plugging the above estimate into (F.1) it follows

E[F (wK)− F (w∗)] ≤
K'

k=1

2−k
+8D2

ζn
+ 3G2ζ

,
+ 4−KGD

≤
K'

k=1

2−kGD
+ 8

n
max

6√
n,

.
d log(1/δ)

ε

7
+

1

2
√
n

,
+

GD

n2

≤9GD
+ 1√

n
+

.
d log(1/δ)

nε

,
+

GD

n2
.

This yields the desired utility bound.

Finally, we investigate the gradient complexity argument. Since Fk is 2
ζknk

-strongly convex. We
know from Theorem 7 Part (b), after Tk ≍ n2

k log(1/δ) iterations, we have with probability 1− δ

Fk(w̄k;Sk)−min
w

Fk(w;Sk) = O
+G2ζknk log(1/δ)

n2
k log(1/δ)

,
= O

+G2ζk
nk

,

which satisfies the requirement at Line 5 of Algorithm 5. Therefore, in total the gradient complexity
is of the form O

+!K
k=1 n

2
k log(1/δ)

,
= O

"
n2 log(1/δ)

#
. The proof is completed.

G Additional Experiments

In this section, we provide the experimental details and additional experiments to support our the-
oretical findings. The datasets we used are from LIBSVM website [9]. The statistics of the data is
included in Table G.1. For data with multiple classes, we convert the first half of class numbers to
be the positive class and the second half of class numbers to be the negative class.

Table G.1: Data Statistics. n is the number of samples and d is the number of features.

diabtes german ijcnn1 letter mnist usps
n 768 1,000 49,990 15,000 60,000 7,291
d 8 24 22 161 780 256

Table G.2: Average AUC score ± standard deviation across multiple datasets. Our best results are
highlighted in bold.

Algorithm diabetes german ijcnn1 letter mnist usps
Our .831± .030 .793± .021 .934± .002 .810± .007 .932± .001 .926± .006

SGDpair [27] .830± .028 .794± .023 .934± .003 .811± .008 .932± .001 .925± .006
OLP [22] .825± .028 .787± .028 .916± .003 .808± .010 .927± .003 .917± .006

OAMgra [48] .828± .026 .785± .029 .930± .003 .806± .008 .898± .002 .916± .005
OLP-RS1 .736± .074 .630± .065 .668± .026 .683± .033 .749± .045 .737± .056
OAM-RS1 .737± .069 .640± .058 .677± .014 .675± .050 .685± .042 .691± .059
SPAUC [26] .828± .031 .799± .026 .932± .002 .809± .008 .927± .002 .923± .005

For each dataset, we have used 80% of the data for training and the remaining 20% for testing.
The results are based on 25 runs of random shuffling. The generalization performance is reported
using the average AUC score and standard deviation on the test data. To determine proper hyper
parameters, we conduct 5-fold cross validation on the training sets: 1) for Algorithm 1 and SGDpair,
we select step sizes ηt = η ∈ 10[−3:3] and W diameter D ∈ 10[−3:3]; 2) for OLP we select step sizes
ηt = η/

√
t where η ∈ 10[−3:3] and W diameter D ∈ 10[−3:3]; 3) for OAMgra we select learning rate

parameter C ∈ 10[−3:3]; 4) for SPAUC we select step sizes ηt = η/
√
t where η ∈ 10[−3:3].

Firstly, Table G.2 summarizes the generalization performance of different algorithms which contains
more comparison results than Table 1. In particular, two additional results are added for comparison,
i.e. OLP-RS1 and OAM-RS1 which denote the OLP [22] and OAMgra [48] with Reservoir sampling and
the buffering set size s = 1, respectively. We can see that OLP-RS1 and OAM-RS1 are inferior to
other algorithms. This inferior performance for OLP and OAM with a small buffering set was also
observed in the experiments of [22, 48].

27

Figure G.1: More CPU running time against AUC score for the hinge loss

Secondly, we also report more plots on CPU running time against the AUC score on different
datasets. Figure G.1 contains more convergence plots for the hinge loss. For a fair comparison
of Algorithm 1 with SPAUC, the loss function is chosen as the least square loss for Algorithm 1,
SGDpair and OLP. The results are shown in Figure G.2. We can see there that SPAUC performs
very well among most of the datasets. However, this algorithm was designed very specifically for
the AUC maximization problem with the least square loss while our algorithm can handle any loss
functions and any pairwise learning problems. We can also observe that our algorithm and SGDpair
converge in a similar CPU running time. In fact, Algorithm 1 is slightly faster than SGDpair when
the number of samples gets larger. This is partly due to different sampling schemes in Algorithm
1 and SGDpair. Indeed, at each iteration SGDpair picks a random pair of examples from

"
n
2

#
pairs,

while Algorithm 1 only needs to randomly pick one example from n individual ones. Figure G.3
depicts the CPU times of these two sampling schemes versus the the number of examples n. We can
see that, when the sample size n increases, the sampling scheme used in SGDpair needs significantly
more time than our algorithm.

Figure G.2: AUC score against CPU running time for the square loss

Figure G.3: CPU running time of different sampling schemes against the sample size n

Next, we investigate our Algorithm 1 in the non-convex setting. To this end, we use the logistic link
function logit(t) = (1 + exp(−t))−1 and then the square loss surrogate function ℓ(t) = (1 − t)2.

28

Figure G.4: Convergence of Algorithm 1 for the generalized linear model

That is, the loss function for the problem of AUC maximization becomes f(w; (x, y), (x′, y′)) =
(1 − logit(w⊤(x − x′))2I[y=1∧y′=−1]. Although f is non-convex, it was shown that it satisfies
the PL condition [14]. The results are reported in Figure G.4 which shows that Algorithm 1 also
converges very quickly in this non-convex setting.

Finally, we compare our differentially private algorithm for AUC maximization (i.e. Algorithm 3)
with the logistic loss ℓ(t) = log(1+ exp(−t)) against the state-of-art algorithm DPEGD [42]. DPEGD
used gradient descent and the localization technique to guarantee privacy. Algorithm 1 was used as
non-private baseline, i.e. ε = 0. Here, δ = 1

n as suggested in the previous work [42]. We consider
the effect of different privacy budget ε’s against the generalization ability. The implementation
across all algorithms is based on fixed training size 256. Average AUC scores over 25 times repeated
experiments are listed in Table G.3 and G.4 for the datasets of diabetes and german, respectively.
These results demonstrate Algorithm 3 achieves competitive performance with DPEGD using full
gradient descent.

Table G.3: Average AUC ± standard deviation on diabetes. Non-Private result is .813± .016.

Algorithm ! = 0.2 ! = 0.5 ! = 0.8 ! = 1.0 ! = 1.5 ! = 2.0

Our .690± .094 .751± .028 .771± .016 .783± .024 .784± .018 .789± .018
DPEGD [42] .624± .109 .727± .055 .768± .027 .796± .011 .797± .017 .792± .016

Table G.4: Average AUC ± standard deviation on german. Non-Private result is .763± .016.

Algorithm ! = 0.2 ! = 0.5 ! = 0.8 ! = 1.0 ! = 1.5 ! = 2.0

Our .614± .035 .672± .064 .721± .024 .725± .032 .747± .019 .749± .021
DPEGD [42] .598± .018 .703± .039 .723± .029 .742± .028 .753± .017 .757± .018

We also report the CPU running times of Algorithm 3 and DPEGD. In this setting, we fix the privacy
budget ε = 1 and vary the training size n. The results are reported in Table G.5. These results shows
that Algorithm 3 can arrive competitive performance with DPEGD with less CPU running time.

Table G.5: Average AUC score and average CPU running time ± standard deviation.

Algorithm diabetes german
n = 100 n = 200 n = 300 n = 100 n = 200 n = 300

Our AUC .709± .051 .788± .019 .790± .021 .681± .029 .692± .032 .734± .022
Time .046± .010 .096± .019 .135± .026 .377± .097 .637± .136 .767± .151

DPEGD [42] AUC .705± .070 .772± .017 .777± .023 .687± .033 .700± .038 .755± .019
Time .421± .067 .885± .158 1.41± .248 1.00± .185 1.88± .273 2.57± .421

29

