
Appendix

A Pseudocode of Saliency-Guided Features Decorrelation

In Algorithm 1, we introduce the training process of SGFD. At each step, we apply the policy model
πϕ to interact with training environments and sample a batch of transitions along with environment
labels, as described in lines 3-5. Before the sample reweighting, we assess the current classifier’s
accuracy. If the accuracy exceeds 0.9, we proceed with sample reweighting, as described in lines 6-9.
In contrast, if the accuracy is lower and t > 1e5, we update the classifier based on the cross-entropy
loss, as described in lines 9-13. In experiments, the classifier could be quickly converged. Based on
the converged classifier, SGFD uses Equation (7) to learn a set of sample weights, as described in
lines 14-17. This process also converged quickly, as only 128 parameters (the batch size) needed to
be updated. Finally, SGFD uses Equation (1) and Equation (8) to update state-action value function
Qθ and policy model πϕ based on the weighted data, as described in lines 18-20.

Algorithm 1 Saliency-Guided Features Decorrelation

1: Input: Initialize a policy model πϕ, a state-action value function Qθ, a classifier model fψ,
and a set of training environments with environment labels {e1, e2, . . . , eK}, where ek is a
K-dimensional one-hot vector and the k−th component is 1

2: Output: The learnt policy πϕ∗

3: for t = 1 to T do
4: Applying the policy model πϕ to interact with training environments
5: Sampling a batch of transitions along with environment labels (si, ai, ri, s′i, e

k
i ) ∼ D

6: for iter = 1 to 10 do
7: if t < 1e5 or the accuracy of f(s) > 0.9 then
8: Break this cycle
9: else

10: Sampling a batch of transitions along with environment labels (si, ai, ri, s′i, e
k
i ) ∼ D

11: Update the classifier model fψ by minimizing the following loss
L(ψ) = − 1

N

∑N
i=1

∑K
j=1 e

k
i,j log(fψ(si)j),

where eki,j denotes the j−th component of vector eki , fψ(si)j denotes the predicted
probability of the j−th class

12: end if
13: end for
14: Initialize a set of sample weights that can be learned w
15: for iter = 1 to 10 do
16: Update the sample weights by minimizing Equation (7)
17: end for
18: Update the state-action value function Qθ by minimizing Equation (1)
19: Update πϕ by minimizing Equation (8)
20: end for

B Implement Details

Experimental Setting Details. For task-irrelevant variations, we follow the prior work [28] to sample
several images from Kinetics [21]. In training, we create four parallel environments with different
image backgrounds. In testing, we create a new environment with an unseen image background. For
task-relevant variations, we follow the prior work [48] to revise the robot configures. The controllable
configuration contains 10 different settings for each task, e.g., the length of the robot torso. In training,
we create four parallel environments with different robot configures, where the values of configures
are sampled from a predefined distribution, i.e., a uniform distribution between 1 and 5. In testing,
we exhibit evaluations under two setups: interpolation and extrapolation. In the interpolation setup,
task-relevant features changed in a manner interpolated between those in the training environments,
whereas in the extrapolation setup, changes exceeded the range of those in the training environments,
i.e., the tenth setting with the farthest training distribution. The visualizations are illustrated in
Figure 7.
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Table 3: Architectures of SGFD.

Hyperparameter Value

Encoder architecture

Convolutional layers 4
Latent representation dimension 50
Image size (84,84)
Stacked frames 3
kernel size 3 × 3
Channels 3
stride 2 for the first layer, 4 otherswise
Activation ReLU

Policy and value function
MLP layers 2
Hidden dimension 1024
Activation ReLU

Classifier architecture
MLP layers 2
Hidden dimension 128
Activation ReLU

Table 4: Hyperparameters of SGFD.

Hyperparameter Value

Training for policy

Optimizer Adam
Learning rate 1e-3
Action repeat 2
Replay buffer capacity 1000000
Batch size 128
Target soft-update rate (τ ) 0.01
Actor update frequency 2

Training for sample reweighting

Optimizer SGD
momentum 0.9
Learning rate 1e-2
weight decay 1e-4
The number of RFFs m 5

For each experiment, we report the mean and standard deviation over 10 random seeds.

Compute. Experiments are carried out on NVIDIA GeForce RTX 3090 GPUs and NVIDIA A10
GPUs. Besides, the CPU type is Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. Each run of the
experiments spanned about 12-24 hours, depending on the algorithm and the complexity of the task.

Architectures. Following AMBS [10], we use the same encoder architecture, which consists of 4
convolutional layers. The encoder weights are shared between the policy and the state-action value
function. Each convolutional layer has a 3 × 3 kernel size and 32 channels. The first layer has a stride
of 2, and all other layer has a stride of 1. There is a ReLU activation between each convolutional layer.
The convolutional layers are followed by a trunk network with a linear layer, layer normalization, and
finally, a tanh activation. As we focus on the sample reweighting, the encoder is updated by referring
to the AMBS method.

The policy πϕ and the state-action value function Qθ are both 2-layer MLPs with a hidden dimension
of 1024. We apply ReLU activations after each layer except the last layer. The classifier is imple-
mented with 2-layer MLPs with a hidden dimension of 128. We also apply ReLU activations after
each layer except the last layer. Table 3 shows the values of the architectures for the encoder, the
policy, the value function, and the classifier.

Hyperparameters. Table 4 shows the hyperparameters used in our SGFD model.
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Figure 7: The visualization of training environments and testing environments.
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Figure 8: Pearson correlation coefficients among variables: a) on raw data, b) on weighted data, and c) on
saliency-guided weighted data. The variables S8, S9, and S10 are the ones that have been changed among the
environments.

C Additional Experimental Results

C.1 Additional Correlation Studies on the Weighted Samples

To further evaluate the decorrelation capability of our model, we implement the ‘Pushing’ task in
Causal World and allow the model to access state features that have physical meaning. We record
the Pearson correlation coefficients among features under three conditions: a) on raw data, b) on
weighted data, and c) on saliency-guided weighted data (SGFD). Among these features, we designate
the S8, S9, and S10, which represent the length, width, and height, as the features of interest for
environmental variations. Therefore, when the model is required to push an object with a new
size, the correlation between size and other features needs to be carefully considered. As shown in
Figure 8, due to limited samples and strong correlation between features, the effectiveness of directly
decorrelating all features is greatly reduced. In contrast, SGFD is capable of effectively reducing the
correlation between the size features (S8, S9, and S10) and other features.

C.2 Additional Ablation Studies

We performed additional ablation experiments to test the effect of RFF and the saliency-guided
model. As depicted in Figure 9 (a) and Figure 9 (b), when RFF is removed, the generalization
performance drops significantly. In contrast, the global decorrelation can cause over-adjusting of
samples weighting and impair the performance, as demonstrated by the reward curves in Figure 9 (c).
Due to the need to eliminate correlations between variables using limited samples, the model may
assign very low weights to certain training samples. However, this can potentially harm the efficiency
of training. Thanks to the saliency-guided model, SGFD balances both efficiency and decorrelation.

C.3 Evaluation on the Classification Model

We recorded the converge curve of the classifier during training. The classifier starts to update when
the replay buffer collects 1e5 steps. To avoid overfitting, we stopped to update the classifier when the
accuracy exceeded 0.9. As shown in Figure 10, the classifier converged quickly and achieved the
accuracy of 0.9, which means that the classifier does not take up many computing resources.
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Figure 9: Ablation studies. (a)-(b) The performance difference of ablation studies on the RFF. (c)-(d) The
performance difference of ablation studies on the saliency-guided model. The x-axis denotes the steps in the
training environments. The y-axis denotes the cumulative reward recorded in the testing environment with
background noises (walker-run) or varied robot parameters (MT-walker-walk).
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Figure 10: The accuracy of the classifier during training. The x-axis denotes the number of training steps taken
in training environments, while the y-axis indicates the accuracy. The classifier starts to update when the replay
buffer collects 1e5 steps. The red line corresponds to the 0.9 threshold, which indicates that the classifier stops
updating if its accuracy exceeds 0.9.

C.4 Saliency Maps on the Policy Models

An intuitive approach to explaining visually-based models involves identifying pixels that have a
significant impact on the final decision [1]. To determine whether the model focuses on the object or
the background during decisions, we visualize the gradient of the action with respect to the input
pixels. Experiments are conducted in environments with varying backgrounds and robot parameters,
as depicted in Figure 11. Saliency maps of the baseline models reveal that various backgrounds
draw considerable attention from the policy model while failing to make decisive contributions to
our model. Moreover, SGFD can notice the changing aspects of the robot’s body that other baseline
models overlook. As a result, the saliency maps demonstrate that the decorrelation benefits the
model’s generalization in both task-relevant and task-irrelevant situations.

C.5 Additional Visualization of the Weighted Samples

In this experiment, we significantly expanded the dataset to include 300 state instances, which is
substantially larger than the 20 states mentioned in Section 5.3. The identified states were also sorted
into three groups in each environment, each consisting of multiple similar state instances. Moreover,
we carefully analyzed the distribution of these states within each group, and the corresponding
proportions are visually depicted in Figure 12. As illustrated in Figure 12 (a), the green dotted
boxes indicate that 50% of the states in environment A and 35.4% of the states in environment B
exhibited similarities. After the reweighting process, both environments A and B had approximately
42% similar states, effectively neutralizing the correlation between background and body posture.
A similar outcome was observed in Figure 12 (b), wherein the reweighting process endeavored to
balance the number of states in each group across environments with varied body lengths.
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Figure 11: Visualization of saliency maps produced by the SGFD and other baselines when the robot with
different backgrounds and robot parameters. The brighter the pixel is, the more contributions it makes to the
decision.

C.6 Evaluation on the Generalization of SGFD

Evaluation on Changed Task-Irrelevant Features. We report the training curves of SGFD in
environments with different task-irrelevant features, where the end points of the curves correspond to
the results in Table 1. As illustrated in Figure 13, our model achieved superior performance compared
to other baselines in previously unseen background environments. As the task becomes difficult
(Figure 13 (b) and Figure 13 (d)), the advantage of SGFD achieves more significance. The results
demonstrate that the decorrelation is suitable for RL tasks with different task-irrelevant features, and
SGFD exhibits strong generalization capabilities to new values of task-irrelevant features.

Evaluation on Changed Task-Relevant Features. We also report the training curves of SGFD in
environments with different task-relevant features, where the end points of the curves correspond to the
results in Table 2. As shown in Figure 14, the reward curve exhibited a consistent positive correlation
between the number of training steps and the average reward in the testing environment under
both interpolation and extrapolation setups. Generally speaking, the extrapolation setting is more
challenging for generalization because it requires the model to fully understand how changed features
affect optimal decisions. Benefiting from decorrelation, our model achieved superior performance
compared to other baselines, where the gaps were more significant under the extrapolation setting,
as illustrated in Figure 14 (f). Our results demonstrate that the decorrelation facilitates our model’s
understanding of the true associations between changed features and decisions, leading to strong
generalization on new values of task-relevant features.
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Figure 12: Visualization of weighted samples obtained from different environments with background noises and
robot parameters. States that belong to the same dotted box with a specific color are considered semantically
similar. SGFD balances the weights of samples to eliminate the correlations between changed features and other
features. As shown in (a), the walker agents in Env A and Env B have different backgrounds, entangled with
different distributions of the body posture. SGFD reduces the weighting of states with backgrounds and enhances
the weighting of states without backgrounds, effectively neutralizing the correlation between background and
body posture. A comparable result was observed in (b), where the reweighting process aimed to equalize the
number of states in each group across environments with different body lengths.
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Figure 13: Generalization to changed task-irrelevant features. The x-axis denotes the number of training steps
taken in training environments, while the y-axis indicates the average reward in the testing environment under
different backgrounds. The reward curve demonstrates that our SGFD model generalizes well to new values of
task-irrelevant features.
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Figure 14: Generalization to changed task-relevant features. The x-axis denotes the number of training steps
taken in training environments, while the y-axis represents the average reward in the testing environment with
different robot parameters. We consider two setups for evaluation: an interpolation setup ((a)-(e)) and an
extrapolation setup ((f)-(j)), where the changes in the task-relevant features are interpolations and extrapolations
between the changes in the training environments, respectively. The reward curve shows that our SGFD
generalizes well to the new values of task-relevant features.
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