
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Active Test-Time Prompt Learning in VLMs
Supplementary Material

A BROADER IMPACT

The goal of deep learning is to learn discriminative invariant feature representations. One roadblock
in that goal is that models which are trained on a particular dataset often develop a bias towards it via
overfitting which is essentially the emergence of spurious correlations. These spurious correlations
pose both technical and ethical concerns that have to be mitigated so that deep learning models can
be widely used. In the most common scenario, domain generalization helps us in eliminating these
spurious correlations by applying certain techniques before the model’s deployment. However, it is
not always possible to gather data before the model’s deployment, and thus, it becomes imperative
to instead adapt the model during inference. We do not see any immediate ethical concerns which
are raised by this paper as it does not release any specific dataset nor does it use any human as a
subject. However, as with any scientific work, it has the potential for misuse, and thus, we support
a continued assessment of methods like ours, which advocate test-time adaptation of large models
using expert advice.

B RELATED WORK

B.1 ACTIVE LEARNING

Active Learning promotes label efficiency by imposing a label budget. It can be used in a variety of
settings to gain knowledge about some aspect that is not already known and the model is uncertain
about via an oracle. The queried samples are then sent to an oracle who returns the true label. Other
than choosing on the basis of uncertainty (Lewis & Catlett, 1994; Yang & Loog, 2016; Roth & Small,
2006; Holub et al., 2008), in latest works, the model also tries to maintain diversity (Parvaneh et al.,
2022; Sener & Savarese, 2017) in its choice of samples to query. There is typically a dynamic
buffer that is maintained by the Active Learning algorithm wherein the annotated samples are put.
The buffer is enlarged as more samples which are both diverse and informative are added to it.
There have been incorporations of Active Learning into Domain Adaptation as well (Prabhu et al.,
2021). In (Wang et al., 2022; Kothandaraman et al., 2022) incorporated Active Learning into Source
Free Domain Adaptation which, while not directly dependent on the sourced data, are also not
suited for continuous data streams, unlike our TTA setting. In (Saran et al., 2023), they take up
the task of actively labelling samples in a streaming setting. However, their work significantly
differs from ours as they don’t continuously adapt their parameters as the data stream progresses.
Instead, they reinitialise their parameters to the original parameters after each new data point is
acquired. A contemporary work that is more closely related to ours is (Gui et al., 2024), where
they provide some foundational theoretical work on Active Test Time Adaptation. However, their
work is also significantly different from ours because they assume a batch setting wherein at each
timestep, a minibatch comes for inference while we only assume a single sample. They also do
multiple gradient updates in each time step while we do only one. Their labelling is also not done
in real-time but effectively postponed by placing the unlabelled samples in a buffer from which they
have to be selected for active labelling later. This may not always be possible due to privacy and
storage concerns where it may not be feasible to postpone the decision of sending a sample to an
oracle and instead retaining it. On the other hand, we make the active labelling decision in real-time
based on our dynamically adjusted threshold.

B.2 TEST TIME ADAPTATION

Adaptation of pre-trained models is necessary so that they can be used optimally for the given task at
hand. Fully Test Time Adaptation (Nado et al., 2020; Schneider et al., 2020; Sun et al., 2023; Liang
et al., 2023) is the highly realistic and practical setting wherein a pre-trained model has to optimise
and adapt its parameters to a situation that it faces during inference, that is, amidst real-time use.
A prominent example includes that of a self-driving car where the car has to adapt to unforeseen
conditions while it is being used. A popular way to achieve fully test time adaptation has been

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

to update the statistics of the Batch Normalisation layer during inference. In TENT (Wang et al.,
2020), the Batch Normalisation parameters are updated using a self-entropy objective. However,
TENT makes the batched input assumption. In MEMO (Zhang et al., 2022), they use the more
general case of a single test input by taking multiple augmentations of a single image. TPT (Shu
et al., 2022) essentially extends the MEMO philosophy to prompt tuning to make VLMs adapt at
test-time by updating prompts. Especially relevant to this paper is the newly introduced paradigm
of Active Test Time Adaptation Gui et al. (2024), where the model has the option of querying a
few samples during test time adaptation. It was found that at a some latency cost as compared to
FTTA methods, the ATTA framework provides much superior results, and thus, its use-case may not
completely overlap with that of FTTA.

B.3 PROMPT LEARNING IN VLMS

Prompt Learning has been proposed as a method of fine-tuning VLMs in compute-constrained sce-
narios due to its parameter efficiency. In CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al.,
2022a), the prompts are appended to the textual tokens and help provide context to the input of
the VLM instead of finetuning the entire VLM model. Learning good prompts has been shown to
dramatically improve the performance of the CLIP (Radford et al., 2021) model. Maple (Khattak
et al., 2023)introduced Multimodal Prompt learning where, along with the text encoder, prompts are
also learnt for the vision encoder. PromptAlign(Abdul Samadh et al., 2024) extends the multimodal
framework of MaPle to a test time setting, and adds Distribution Alignment to this by considering
Imagenet to be the proxy source dataset and calculating the alignment loss between different layers
of the encoders for each image and precomputed statistics. Prompt Learning has been extended as
a transfer learning and adaptation method in various ways and settings. Of special interest to us
is the Test Time setting (Shu et al., 2022). The Test Time scenario is highly practical given that
foundation models like VLMs are becoming more mainstream and adapting them at test time by
optimising a small parameter group like prompts is likely to be the way forward. More recently, in
(Bang et al., 2024) they introduce Active Learning to Vision Language models where it is noted that
diversity in the form of class-balancing is important for non-trivial gains in VLM performance via
Active Learning. However, our method is significantly different from theirs because it is in a test
time scenario, whereas theirs was in a supervised learning setting.

C POTENTIAL APPLICATIONS

For the sake of fair comparison with previous arts, we actively label our samples only after
evaluating them. However, it is important to note that, when it comes to practical application, we
can also reverse the order. That is, we can ask the expert for their advice and take that as the ground
truth. This is especially true because we are not restricted by our methodology to postpone the
active labelling decision but instead do so in real-time, unlike (Gui et al., 2024) where they collect
the unlabelled samples in a buffer and select which ones to query later. Our single test sample in a
time-step assumption makes our setting even more practical.

Ideal scenarios for practical application are high-risk ones like autopilot systems and medical
diagnosis, where the extra cost and latency in consulting an expert is justified by the potential
avoidance of hazards. In autopilot systems, when the system is uncertain, it can hand over control
to the pilot, who then demonstrates the correct way of handling that particular scenario. The system
then stores the pilot’s actions in memory and uses them to learn the correct way so that it does not
need human intervention in a similar scenario in future. In medical diagnosis, whenever the system
is uncertain, instead of making a wrong diagnosis, it sends the sample over to a medical practitioner
who then provides his expert opinion.

Our average inference latency per sample, when the buffer size is at its maximum, is around
0.63s, which is about 50% more than that of PromptAlign (Abdul Samadh et al., 2024), whose
latency we found to be 0.41s when averaged over all 14 datasets. However, these figures must be
contextualized in comparison to those from (Gui et al., 2024), where they observed up to almost
10x increase in latency compared to their baselines.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D ALGORITHMS

Algorithm 1 Dynamic Threshold Selection

Require: t,Nqueried, µ̂t, σ̂t

if t < Tmin then
Initially select a static threshold till Tmin number of test samples
Output:τ0

else
α is the query selection percentile
if Nqueried

t ≥ α then

Select higher value of z (zhigh) if currently over-querying

τt = µ̂+ zhighσ̂

else
Select standard value of z with respect to α otherwise τt = µ̂+ zselectionσ̂

end if
Output:τt

end if

Algorithm 2 Class Balanced Eviction from Buffer

Require: Unlabeled Dataset Du, Oracle(.) Nqueried = 0, µ̂0 = 0, σ̂0 = 0
for t = 1, 2, 3, ..., |Du| do

µ̂t, σ̂t ← µ̂t−1, σ̂t−1

τt = Dynamic Threshold Selection(t,Nqueried, µ̂t, σ̂t)
if H(x̂t) > τt then

yt = Oracle(xt)
Nqueried ← Nqueried + 1
if the buffer is full then

Select class k, the class with the most samples in Dl

m = argmax
k∈{1,2,...,K}

|ck|

if |m| = 1 then
Select sample with lowest CE loss in max class
j = argmin

i∈{1,2,...J}
LCE(xi, yi)|yi = cm

Remove (xj , yj) from Dl

else if |m| > 1 then
Select the max class with least avg CE loss

l = argmin
k∈m

L̄CE(xi, yi)|yi = ck

Select sample with lowest CE loss in the max class

j = argmin
i∈(1,2,...J)

LCE(xi, yi)|yi = cl

Remove (xj , yj) from Dl

end if
end if
Add (xt, yt) to Dl

end if
end for

16

	Broader Impact
	Related Work
	Active Learning
	Test Time Adaptation
	Prompt Learning in VLMs

	Potential Applications
	Algorithms

