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Abstract

The rapid growth of publicly available data has fueled deep learning advancements
but also raises concerns about unauthorized data usage. Unlearnable Examples
(UEs) have emerged as a data protection strategy that introduces imperceptible per-
turbations to prevent unauthorized learning. However, most existing UE methods
produce perturbations strongly tied to specific training sets, leading to a significant
drop in unlearnability when applied to unseen data or tasks. In this paper, we
argue that for broad applicability, UEs should maintain their effectiveness across
diverse application scenarios. To this end, we conduct the first comprehensive
study on the transferability of UEs across diverse and practical yet demanding
settings. Specifically, we identify key scenarios that pose significant challenges for
existing UE methods, including varying styles, out-of-distribution classes, resolu-
tions, and architectures. Moreover, we propose Versatile Transferable Generator
(VTG), a transferable generator designed to safeguard data across various condi-
tions. Specifically, VTG integrates Adversarial Domain Augmentation (ADA) into
the generator’s training process to synthesize out-of-distribution samples, thereby
improving its generalizability to unseen scenarios. Furthermore, we propose a
Perturbation-Label Coupling (PLC) mechanism that leverages contrastive learn-
ing to directly align perturbations with class labels. This approach reduces the
generator’s reliance on data semantics, allowing VTG to produce unlearnable per-
turbations in a distribution-agnostic manner. Extensive experiments demonstrate
the effectiveness and broad applicability of our approach. Code is available at
https://github.com/zhli-cs/VTG.

1 Introduction

The abundance of free internet data has facilitated the construction of numerous datasets, significantly
advancing the field of deep learning [1, 2, 3, 4]. Despite their pivotal roles, growing concerns exist
over the potential unauthorized exploitation of online personal data. To safeguard individual privacy,
Unlearnable Examples (UEs) [5, 6, 7] have gained prominence in recent years. Models trained on
unlearnable data tend to learn the correspondence between labels and perturbations instead of real
semantics, resulting in poor classification accuracy on clean test images.

However, most existing UE methods generate perturbations that are highly dependent on specific
training data, resulting in a significant performance drop when applied to unseen data or tasks.
For instance, several initial works [5, 8, 9, 10] only achieve unlearnability when both training and
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testing data are drawn from the same distribution. While some recent studies [7, 11, 12] aim to
improve the transferability of UEs across different datasets (e.g., CIFAR-10 [13] to SVHN [14]),
their effectiveness remains substantially limited in real-world scenarios, such as when generalizing to
unseen classes [7] or transferring across images with different resolutions [12].

Table 1: Comparative evaluation of existing UE
methods across diverse scenarios. Symbols “✓”,
“✓”, and “×” indicate “capable”, “capable but inef-
fective” and “incapable”, respectively.

Method Intra- Cross- Cross- Cross- Cross-
Domain Domain Task Space Architecture

EMN [5] ✓ × × × ✓
LSP [11] ✓ × × × ✓
TUE [7] ✓ ✓ × × ✓
GUE [8] ✓ ✓ × × ✓
14A [12] ✓ ✓ ✓ × ✓
Ours ✓ ✓ ✓ ✓ ✓

In this work, we argue that for UEs to be prac-
tically useful, they must retain their effective-
ness beyond their original training scenarios. To
this end, we introduce the first comprehensive
transferable evaluation framework, which identi-
fies four progressively challenging UE scenarios:
Intra-Domain, Cross-Domain, Cross-Task,
and Cross-Space. Specifically, Intra-Domain
represents the conventional setting, where the
training and test data are drawn from the same
distribution. Cross-Domain extends this by con-
sidering cases where the training and test sets
share the same classes but originate from different distributions, such as images with different styles
in domain adaptation [15, 16, 17, 18, 19, 20, 21]. Cross-Task further increases the challenge by
introducing both distribution shifts and class mismatches. For example, applying UEs generated
from CIFAR-10 to SVHN. Finally, Cross-Space is the most challenging scenario, where even the
input space differs between training and test sets, such as transferring UEs across images of different
resolutions. In addition, following [5, 8, 10, 22, 23], we also consider the Cross-Architecture
scenario, where we evaluate the generalizability of UEs across different network architectures.

To enhance the transferability of unlearnable perturbations across the aforementioned scenarios, we
propose Versatile Transferable Generator (VTG), a generator designed to improve the generaliza-
tion of unlearnability beyond specific domains or tasks. Unlike conventional methods that produce
perturbations tightly coupled with the training data, VTG incorporates Adversarial Domain Augmen-
tation (ADA) during training by synthesizing diverse worst-case out-of-distribution samples. Through
this process, VTG compels the generator to learn perturbations that remain effective beyond a fixed
data distribution and is iteratively refined to produce more transferable UEs that prevent the surrogate
model from capturing meaningful semantics. As a result, the generator becomes less dependent on
data-specific representations, improving its transferability to unseen conditions. Moreover, we also
introduce Perturbation-Label Coupling (PLC) to further enhance VTG’s transferability by directly
aligning perturbations with class labels. Specifically, we leverage the surrogate model and CLIP text
encoder to encode perturbations and labels, aligning perturbation embeddings with their correspond-
ing label embeddings through a contrastive learning paradigm. Notably, this alignment is performed
without relying on data semantics, enabling the generator to produce unlearnable perturbations in
a distribution-agnostic manner. As a result, VTG achieves improved generalization across diverse
data distributions, further strengthening its resilience to out-of-distribution variations. We note that
14A [12] also employs a generator architecture to address the transferability issue. However, its
effectiveness is not consistently satisfactory across comprehensive scenarios.

Table 1 compares VTG with various state-of-the-art methods in terms of transferability across
different scenarios. As shown, only VTG is capable of generating transferable UEs that remain
effective in all settings, which will be further validated through empirical results in Section 4.

Our main contributions are summarized as follows:
• We introduce the first comprehensive evaluation framework to analyze the transferability of

UEs across diverse practical scenarios, including Intra-Domain, Cross-Domain, Cross-Task,
Cross-Space, and Cross-Architecture.

• We propose VTG, a versatile transferable generator effective across diverse scenarios.
VTG introduces Adversarial Domain Augmentation to generate diversified samples and
compel the generator to produce perturbations beyond fixed distributions. Moreover, the
Perturbation-Label Coupling mechanism employs contrastive learning to align perturbations
with class labels, introducing unlearnability in a distribution-agnostic manner.

• We empirically validate the efficacy of our method within the proposed comprehensive
transferable setting. Extensive experiments demonstrate VTG’s superior performance and
broad applicability across diverse scenarios.
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2 Related Work

Unlearnable examples [5] refer to a type of data that hinders deep learning models from acquiring
informative knowledge. Models trained on such examples often achieve high accuracy on the training
set but exhibit significantly degraded performance on the clean test set. This task is crucial to
improving the security of machine learning, with applications in image classification [22, 24, 25, 26,
27, 28] and segmentation [29]. Implementation strategies for unlearnable examples can be broadly
categorized into three paradigms. The first paradigm concentrates on injecting perturbations into data
and creating “shortcuts” to minimize the classification loss [5, 8, 11]. The goal is to trick models
into learning correspondences between perturbations and labels instead of acquiring real semantics.
The second paradigm involves the strategic introduction of perturbations to deceive classifiers into
associating images with incorrect classes [12, 30, 31]. Consequently, models trained on perturbed
data tend to align images with false classes, thereby enhancing data protection. The last paradigm
aims to produce perturbations without the utilization of surrogate models [11, 32, 33], which crafts
unlearnable perturbations that are extremely easy to classify, such as utilizing the linearly-separable
property or employing random convolution filters to convolve images of different classes.

The transferability of unlearnable examples has attracted some researchers, particularly concerning
their generalization across different classes [7, 12] and architectures [5, 8]. However, related research
remains relatively scarce, highlighting a critical gap in the literature. In this work, we introduce a
comprehensive transferable study for unlearnable examples. We then propose a versatile perturbation
generator to craft transferable unlearnable examples based on adversarial domain augmentation and
perturbation-label coupling. Our approach effectively facilitates the transferability of unlearnable
examples across diverse practical scenarios, thereby enhancing privacy protection in various real-
world machine learning applications.

3 Proposed Method

In this section, we first present our comprehensive transfer-focused UE evaluation setting. Then, we
introduce our Versatile Transferable Generator in detail.

3.1 Transferable Unlearnable Examples

Let (x, y) be a labeled example, where x ∈ X is a data point, and y ∈ Y = {1, . . . ,K} is its
label. We denote the source training set, the target training set, and the target test set as Dsource,
Dtarget, and Dtest, respectively. A VTG G, trained exclusively on Dsource, is applied to Dtarget

to generate an unlearnable version D′
target by introducing perturbations to each example x′ =

x+ δ, where δ = G(x) represents either sample-wise or class-wise perturbations. A classifier fλ,
parameterized by λ, is then trained on D′

target, and the unlearnability of δ is evaluated by measuring
the performance degradation of fλ on Dtest. In this work, we aim to conduct a comprehensive
study on the transferability of UEs across different scenarios. Therefore, Dsource can differ from
Dtarget (and Dtest) in various ways, such as different distributions (Cross-Domain), label space Y
(Cross-Task), or even input space X (Cross-Space).

Our comprehensive transfer-focused evaluation setting is composed of five distinct scenarios: Intra-
Domain, Cross-Domain, Cross-Task, Cross-Space, and Cross-Architecture. In the Intra-Domain
scenario, the original training dataset is partitioned into two subsets: a source training set and a
target training set. The distributions of these subsets remain identical, ensuring they belong to the
same domain. The Cross-Domain scenario represents a more challenging setting, where the source
and target datasets share identical class labels but differ in their underlying data distributions, such
as variations in style across paintings, photographs, and sketches. Moreover, in the Cross-Task
scenario, the target dataset diverges from the source dataset not only in distributions but also in
class labels, introducing a shift in task objectives. Furthermore, the Cross-Space scenario is the
most complex scenario, where even the input space of the target set is different from the source
set, such as differences in image resolution. Lastly, to be consistent with prior work [5, 8], the
Cross-Architecture scenario assesses transferability when the classifiers employed for the source
and target datasets differ in architecture.
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Figure 1: Overall pipeline of the proposed approach. Our Versatile Transferable Generator (VTG)
is first optimized on the source dataset. Specifically, we leverage adversarial domain augmentation
to diversify training samples, thereby requiring VTG to generate unlearnable perturbations capable
of confusing a more generalizable classifier fθ. Then, we incorporate a perturbation-label coupling
mechanism that enhances distribution-agnostic transferability by aligning perturbations with class
labels. On the target dataset, we initially train a classifier fλ on the target training dataset that has
been perturbed by the VTG-generated perturbations, followed by validating its decreased accuracy
on the clean target test dataset.

3.2 Versatile Perturbation Generator

Overview. To generate perturbations that can generalize to various conditions, we propose a versa-
tile unlearnable example generator capable of introducing unlearnability under various real-world
scenarios. As shown in Figure 1, our VTG is primarily optimized through an alternating min-min
optimization framework, where Adversarial Domain Augmentation and CLIP-guided Perturbation-
Label Coupling are incorporated to equip the perturbation generator with transferability to diverse
distribution variations.

In the first minimization loop, the Adversarial Domain Augmentation procedure synthesizes diversi-
fied images outside original distributions to enrich the surrogate classifier with superior generalizabil-
ity. During this stage, the surrogate classifier fθ is optimized by minimizing the classification loss
while the perturbation generator G remains frozen. In the second minimization loop, the perturbation
generator produces perturbations to craft unlearnable examples, which creates shortcuts and misleads
the learning process of the surrogate classifier, preventing it from learning real semantics. Meanwhile,
the Perturbation-Label Coupling mechanism conducts cross-modal alignment between perturbations
and labels to enhance distribution-agnostic transferability. In this stage, the perturbation generator G
is optimized with the classification loss while the surrogate classifier fθ is frozen.

Adversarial Domain Augmentation. Existing UE methods generate unlearnable examples tied
to specific training datasets [5, 8, 34], which lack explicit transferable designs to promote the
unlearnability in comprehensive real-world scenarios. To address this issue, we draw insight from
domain augmentation [15, 16, 35, 36, 37, 38, 39] and learn a domain composer Cµ with parameters
µ to diversify training samples. Specifically, the domain composer generates novel domains lying
outside the original distribution. Then, we integrate both the source domain and the generated out-of-
distribution domain to train the surrogate classifier. We assume that if our perturbation generator can
effectively create shortcuts for the more generalizable surrogate classifier, it can craft unlearnable
examples that take effect across diverse scenarios.

Our domain composer has a standard encoder-decoder structure [40]. Given source images x
as input, the domain composer Cµ aims to synthesize novel domains that lie outside the original
distribution, thereby simulating diverse scenarios. To accomplish this goal, we propose to maximize
the divergence between the source distribution Pa and the generated pseudo-novel distribution Pb,
with the Wasserstein distance Wd, also known as Optimal Transport (OT) distance, as metric:

Wd (Pa,Pb) = inf
π∈Π(Pa,Pb)

Exa,xb∼π [d (xa,xb)] , (1)
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d (xa,xb) = 1− zθ (xa)
⊤
zθ (xb)

∥zθ (xa)∥2 ∥zθ (xb)∥2
, (2)

where Π(Pa,Pb) represents the set of all distributions π(xa,xb), zθ denotes the feature extractor
within classifier fθ, xa and xb indicate the original image samples and the generated samples,
respectively, d(·, ·) denotes the cost function defined by cosine distance.

The Wasserstein metric can capture high-order distributional characteristics and measure the minimal
cost required to transform the source distribution Pa into the novel distribution Pb, as demonstrated
in diffusion models [41] and domain adaptation [42]. We employ the Sinkhorn algorithm [43] to
reduce the computational complexity, as detailed below.

Wd(·, ·) = inf
M∈M

∑
i,j

[M ⊙D]i,j , (3)

where the soft-matching matrix M represents the joint distribution π in Eq. 1, D denotes the pairwise
cosine distance matrix calculated by Eq. 2.

The domain composer Cµ is optimized by maximizing the divergence measure between source images
and the synthesized images as:

argmax
µ

Laug = Wd (Cµ (x) ,x) , (4)

where µ denotes the parameters of the domain composer.

After obtaining the generated diversified images, we employ the cross-entropy loss LCE to optimize
the domain composer Cµ and the surrogate classifier fθ simultaneously, setting constraints for the
domain augmentation procedure and ensuring the classifier’s predictions are aligned with true labels.

argmin
θ,µ

[LCE (fθ (x+ δ) , y) + LCE (fθ (Cµ (x) + δ) , y)], (5)

where δ is initialized to zero at the beginning of training.

Perturbation Generator. Different from gradient-based UE approaches [5, 6] that inherently depend
on specific training samples to generate fixed perturbations, we develop a transferable generator that
can produce unlearnable perturbations for any image in a single forward pass, exhibiting superior
generalizability and applicability for practical use.

Our perturbation generator G employs an encoder-decoder structure [40]. Given the clean image xi,
the generator G produces unlearnable noise as δ = G(xi) and renders data unlearnable as x′

i = xi+δ.
The goal is to create shortcuts by minimizing the classification loss, thereby misleading the surrogate
classifier’s training process and associating labels with perturbations instead of true semantics. We
employ the cross-entropy loss LCE as the classification loss and update the generator accordingly:

argmin
δ

E(x,y)∼Dsource
LCE(fθ(x+ δ), y), (6)

where fθ denotes the surrogate classifier that remains frozen at this stage. Meanwhile, the perturbation
generator G is optimized to minimize the classification loss LCE.

To assure the imperceptibility of perturbations, we propose to constrain the magnitude of the noise δ
via a soft hinge loss on the L∞ norm, which is defined as follows:

Lhinge = Ex max (0, ∥δ∥∞ − ϵ) , (7)

where ϵ denotes the perturbation bound and is set to 8/255, in accordance with prior works [5, 8, 12].

Perturbation-Label Coupling. This procedure is designed to optimize our generator to produce
unlearnable perturbations in a distribution-agnostic manner. To achieve this, we aim to establish
a strong correlation between perturbations and labels. Specifically, we utilize the surrogate model
to extract perturbation embeddings and leverage CLIP’s fixed text encoder T [44] to extract label
embeddings. Then, we conduct cross-modal alignments [45, 46] to associate perturbations with labels
through a contrastive learning framework. This process guides the generator to directly associate
perturbations with labels without relying on the underlying image semantics. Consequently, our VTG
can produce unlearnable perturbations that remain effective under distribution shifts and resolution
variations, ensuring effectiveness across diverse practical scenarios.
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Given generated perturbations δ and text labels l, we formulate the perturbation-label coupling
procedure as follows:

P = zθ(δ);L = T (l), (8)
where P ∈ RB×Q and L ∈ RK×Q denote the extracted perturbation embeddings and label embed-
dings, respectively, B indicates the number of data samples in a mini-batch, K denotes the number
of classes in the source dataset, Q signifies the dimensionality of the feature space, The functions zθ
and T denote the feature extractor of the surrogate model fθ and CLIP’s text encoder, respectively.
We keep both of them frozen at this stage to specifically optimize the perturbation generator.

We employ contrastive learning [47] to align perturbations with text labels. The pairwise similarity
matrix S is calculated as S = P · LT . Then, we formulate the PLC loss as follows:

LPLC = − 1

B

B∑
i=1

log

(
exp(Si,yi

)∑K
k=1 exp(Si,k)

)
, (9)

where B indicates the size of each mini-batch.

Algorithm 1 Transferable Unlearnable Noise Generation

Require: Surrogate model fθ, feature extractor zθ, do-
main composer Cµ, CLIP text encoder T , training data
(x, y) ∈ Dsource, class label l, perturbation δ, per-
turbation bound ϵ, first loop training steps T , training
epochs E;

Ensure: Transferable perturbation generator G;
1: for e = 1 to E do
2: for t = 1 to T do
3: i,xi, yi = Next(x, y);
4: Input xi to Cµ to calculate Laug;
5: Update Cµ by maximizing Laug;
6: Input xi, Cµ(xi) and δ to fθ to calculate LCE;
7: Update Cµ and fθ by minimizing LCE;
8: end for
9: for xj , yj in x, y do

10: Input xj to G and get δ = G(xj);
11: Obtain unlearnable example x′

j = xj + δ;
12: Input x′

j to fθ to calculate LCE;
13: Input δ to zθ and get embedding P = zθ(δ);
14: Input l to T and get embedding L = T (l);
15: Calculate LPLC;
16: Calculate Lhinge;
17: Update G by minimizing LCE, LPLC, Lhinge;
18: end for
19: end for
20: return Transferable perturbation generator G

After PLC, perturbations crafted by
the generator directly align with CLIP-
encoded label embeddings, yield-
ing distribution-agnostic unlearnabil-
ity and thus enhancing the applicabil-
ity across diverse distributions. More-
over, benefitting from CLIP’s shared
image-text space, where label em-
beddings are closely associated with
its extensive pre-trained image cor-
pus, promoting alignments between
perturbations and text labels implic-
itly enriches VTG with semantic di-
versity and establishes latent connec-
tions to unseen target images. Con-
sequently, the perturbation generator
maintains unlearnability even when
encountering semantically related but
previously unseen classes.

Training Process. Generally, the op-
timization of our Versatile Transfer-
able Generator follows an alternating
min-min optimization scheme. Dur-
ing the first minimization loop, the do-
main composer Cµ and the surrogate
classifier fθ are optimized to generate
diversified images and minimize the
classification loss. During the second
minimization loop, the perturbation generator G is optimized to also minimize the classification loss.
The complete training procedure is delineated in Algorithm 1.

argmin
θ,µ

E(x,y)∼Dsource

[
min
δ

Lfull (fθ(x+ δ), y)

]
,

s.t. ∥δ∥∞ ≤ ϵ

(10)

Lfull = Laug + LCE + LPLC + Lhinge, (11)
where Lfull represents the final training objective.

4 Experiments

In this section, based on the comprehensive transferable UE evaluation framework introduced in
Section 3.1, we rigorously evaluate our Versatile Transferable Generator across a variety of real-world
scenarios. Moreover, we evaluate our method against several defense strategies. Finally, we conduct
ablation studies to demonstrate the role of individual components in our training framework.
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4.1 Experimental Settings

Datasets and Models. We evaluate VTG on CIFAR-10 [13], CIFAR-100 [13], SVHN [14] and
PACS [17]. The first three datasets have been widely used in the UE literature, while PACS serves as a
standard benchmark for evaluating domain shifts and consists of four domains: Art Painting, Cartoon,
Photo, and Sketch. If not specified otherwise, we use ResNet-18 [48] as the surrogate classifier and
target model both in training and testing. We utilize the classification accuracy on the clean test set as
the evaluation metric, where lower accuracy indicates stronger unlearnability and protectiveness.

Table 2: Test accuracy under the Intra-Domain and Cross-
Task scenarios, with CIFAR-10, CIFAR-100, and SVHN as
target datasets.

Source Method CIFAR-10 CIFAR-100 SVHN

Clean 94.66 76.27 96.05
Random 95.57 71.19 25.11

CIFAR-10

EMN [5] 10.16 21.80 24.72
LSP [11] 13.54 9.35 7.77
REM [6] 15.18 69.26 95.98
TUE [7] 10.03 5.10 12.93
GUE [8] 13.25 3.87 8.17
14A [12] 41.34 17.47 83.87
PUE [49] 10.62 8.46 12.01

Ours (ResNet) 9.99 0.99 9.65
Ours (ViT) 9.54 1.21 7.94

CIFAR-100

EMN [5] 27.27 3.95 9.64
LSP [11] 24.16 9.00 17.03
REM [6] 93.94 1.89 95.97
TUE [7] 94.31 1.21 96.02
GUE [8] 94.28 8.35 95.87
14A [12] 40.02 17.36 85.18
PUE [49] 11.61 2.62 18.58

Ours (ResNet) 9.85 1.14 11.07
Ours (ViT) 11.40 1.09 9.39

SVHN

EMN [5] 14.31 6.25 9.05
LSP [11] 38.50 38.51 8.00
REM [6] 94.26 69.97 49.01
TUE [7] 93.91 69.42 9.12
GUE [8] 94.31 48.37 13.70
14A [12] 39.23 15.69 83.59
PUE [49] 11.40 6.04 14.21

Ours (ResNet) 10.66 1.76 6.38
Ours (ViT) 11.16 1.65 7.41

Implementation Details. Our model
is developed with the PyTorch frame-
work and trained on a single RTX
A5000 GPU. Consistent hyperparame-
ter settings are employed across all ex-
periments. We employ the Adam opti-
mizer [50] with an initial learning rate
of 0.001. We train our model for 30
epochs on CIFAR-10 and SVHN, and
50 epochs on CIFAR-100 and PACS.
We set the first loop training step T
to 10 in all experiments. The input
image resolution is standardized to
224 × 224 for PACS, while 32 × 32
for the remaining datasets. Perturba-
tions are crafted in a class-wise man-
ner, where we first generate perturba-
tions for each sample, then we aver-
age the perturbations for each class.
To ensure imperceptibility, we set the
perturbation bound ϵ to 8/255. Re-
sults are averaged over five runs with
different random seeds.

4.2 Main Results

Intra-Domain Transferability. We
first evaluate the transferability of
VTG in the intra-domain scenario.
Specifically, we randomly extract 50% data from the original training dataset as the source training
set and utilize the remaining 50% data as the target training set. Then, we utilize VTG to generate
perturbations to make the target training set unlearnable and evaluate its impact on the clean test set.
As shown in Table 2, our VTG demonstrates superior performance compared with baseline methods
on CIFAR-10, CIFAR-100 and SVHN, achieving 9.54%, 1.09% and 6.38% test accuracy, which
approximates random guessing. Given that our method is evaluated under the more challenging
intra-domain scenario, its exceptional unlearnability and protective effects are further verified.

Table 3: Test accuracy results under the Cross-
Domain scenario on PACS.

Method Art Cartoon Photo Sketch Avg.

Clean 76.92 81.25 83.75 85.42 81.84
Random 54.33 76.79 76.88 81.77 72.44
EMN [5] 43.75 74.11 71.88 14.58 51.08
LSP [11] 49.48 59.81 65.62 80.99 63.98
TUE [7] 38.71 72.05 62.50 9.11 45.59
GUE [8] 42.71 32.81 67.19 26.56 42.32
14A [12] 27.20 29.91 45.51 20.72 30.84

Ours (ResNet) 21.63 18.30 10.00 16.41 16.59
Ours (ViT) 20.31 15.18 17.19 20.57 18.31

Cross-Domain Transferability. To evaluate the
effectiveness of VTG in transferring to images
with different domains, we conduct experiments
on the PACS dataset with the leave-one-domain-
out setting, where the perturbation generator is
trained on three domains and evaluated on the
remaining domain. As detailed in Table 3, we se-
lect EMN [5], LSP [11], TUE [7], GUE [8] and
14A [12] as representative methods. Our VTG
demonstrates clear effectiveness in transferring
unlearnability across different domains, outper-
forming GUE by 25.73% and 14A by 14.25%
in average performance. These results highlight the strong cross-domain transferability of our method,
effectively injecting unlearnability into images regardless of their diverse variations in visual styles.
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Table 4: Test accuracy under the high-to-low
Cross-Space scenario.

Source Method CIFAR-10 CIFAR-100 SVHN

Art

LSP[11] 94.16 70.49 9.23
TUE[7] 94.06 69.76 95.45
GUE[8] 91.78 39.82 92.06
14A[12] 40.13 17.62 86.50

Ours (ResNet) 10.88 1.20 7.26
Ours (ViT) 11.12 1.67 15.04

Cartoon

LSP[11] 93.92 70.72 8.35
TUE[7] 93.75 70.75 95.79
GUE[8] 87.50 49.94 94.89
14A[12] 38.89 17.65 83.68

Ours (ResNet) 9.45 1.69 15.94
Ours (ViT) 10.04 3.78 10.21

Photo

LSP[11] 94.01 69.86 13.20
TUE[7] 94.00 70.01 95.87
GUE[8] 93.53 28.75 94.32
14A[12] 40.95 16.50 84.12

Ours (ResNet) 10.03 1.01 8.52
Ours (ViT) 9.46 1.70 11.06

Sketch

LSP[11] 93.30 70.15 10.79
TUE[7] 94.25 70.36 95.94
GUE[8] 81.42 42.28 92.93
14A[12] 35.22 15.95 85.25

Ours (ResNet) 10.04 1.18 9.69
Ours (ViT) 10.00 2.16 12.65

Table 5: Test accuracy under the low-to-high
Cross-Space scenario.

Source Method Art Cartoon Photo Sketch

CIFAR-10

LSP[11] 54.69 38.02 64.06 25.00
TUE[7] 47.92 76.04 69.53 82.81
GUE[8] 50.48 27.68 66.88 15.36
14A[12] 40.87 75.95 66.67 68.84

Ours (ResNet) 11.98 10.71 11.25 4.69
Ours (ViT) 15.38 20.26 10.94 17.97

CIFAR-100

LSP[11] 48.96 70.83 70.31 18.23
TUE[7] 43.75 69.79 64.84 82.03
GUE[8] 56.73 39.29 78.75 4.43
14A[12] 38.46 73.00 68.42 70.35

Ours (ResNet) 13.94 11.16 14.37 2.34
Ours (ViT) 14.09 15.71 11.18 10.55

SVHN

LSP[11] 45.83 52.08 69.53 21.09
TUE[7] 31.77 72.40 69.53 82.81
GUE[8] 49.04 20.09 66.25 2.60
14A[12] 36.54 73.84 67.25 64.32

Ours (ResNet) 12.98 12.05 15.00 17.97
Ours (ViT) 13.56 11.61 12.50 15.36

Cross-Task Transferability. To evaluate transferability, we conduct cross-task experiments where
perturbations are generated on one dataset and tested on another with distribution and class shifts. As
shown in Table 2, methods like TUE [7] and GUE [8] perform reasonably well when transferring from
CIFAR-10, but struggle when the source is CIFAR-100 or SVHN. In contrast, our method consistently
achieves state-of-the-art results across most settings, effectively preventing semantic learning. Even
in the challenging CIFAR-10 to SVHN case, VTG reduces accuracy to near random-guessing,
demonstrating strong unlearnability.

Cross-Space Transferability. To evaluate cross-space transferability, we conduct experiments
between two dataset groups differing in domain, class, and resolution. The low-resolution group
(32 × 32) includes CIFAR-10, CIFAR-100, and SVHN, while the high-resolution group is PACS
(224× 224). As shown in Tables 4 and 5, existing methods degrade significantly under resolution
shifts, whereas VTG remains consistently effective in both high-to-low and low-to-high transfers.
Notably, in the CIFAR-10 to Art setting, our method outperforms the second-best by nearly 30%,
demonstrating its ability to generate robust unlearnable perturbations across diverse input spaces.

Table 6: Test accuracy under the Cross-
Architecture scenario on CIFAR-10, where
ResNet-18 is used as the surrogate model.

Method Network Architecture
VGG16 ResNet-50 DenseNet-121 ViT

EMN [5] 29.30 17.90 18.60 24.37
DC [22] 25.35 20.56 21.44 28.05
CG [23] — 11.30 13.40 —
SG [10] 12.32 17.35 16.59 10.64
GUE [8] 13.72 12.97 13.71 16.77

Ours 8.92 10.03 9.69 10.53

Cross-Architecture Transferability. We further as-
sess the transferability of VTG across network archi-
tectures. Using ResNet-18 as the surrogate model,
we evaluate its ability to render other models un-
learnable, including VGG16 [51], ResNet-50 [48],
DenseNet-121 [52], and ViT [53]. As shown in
Table 6, VTG consistently induces unlearnability
across all targets, outperforming prior UE methods
with an average 3% lower test accuracy. These re-
sults highlight VTG’s strong cross-architecture trans-
ferability and practical effectiveness.

4.3 Resistance to Defense Strategies

To assess the efficacy of our method against defense strategies, we train models on perturbed data with
data transformation (such as Cutout [55], CutMix [56], and Mixup [57]), Adversarial Training [58],
and UE-targeted defenses including D-VAE [59] and AN-SDA [60]. As shown in Table 7, existing
methods exhibit substantial degradation in the unlearnable effect under defense measures. Two
model-free approaches, AR [33] and OPS [54], show partial robustness against data transformation or
adversarial training, but neither maintains unlearnability against UE-targeted defenses. In contrast, our
method employs Adversarial Domain Augmentation to strengthen the perturbation generator against
diverse image transformations. Moreover, the Perturbation-Label Coupling mechanism enables VTG
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Table 7: Test accuracy of ResNet-18 against defense under the Intra-Domain scenario, where
ResNet-18 is used as the surrogate model. “AT” denotes Adversarial Training.

Method w/o Cutout CutMix Mixup AT D-VAE AN-SDA

Clean 94.66 95.10 95.50 95.01 84.99 93.29 92.76
NTGA [9] 42.46 42.07 27.16 43.03 70.05 89.21 89.00
EMN [5] 10.16 20.63 26.19 32.83 84.80 91.42 88.01
REM [6] 15.18 26.54 29.02 34.48 47.51 86.38 79.28
SG [10] 24.42 24.12 29.46 39.66 76.38 38.89 59.80
LSP[11] 13.54 19.87 20.89 26.99 84.59 91.20 64.34
AR[33] 11.75 12.36 18.02 14.59 83.17 91.77 80.20
OPS[54] 15.56 61.68 76.40 33.13 11.08 88.95 78.83

Ours 9.99 10.03 14.11 13.71 10.83 10.57 28.27

Table 8: Test accuracy of ResNet-18 with ImageNet∗ as the source dataset. Results of 14A on
Flowers, Cars, and Food are cited from the original paper, with models trained on the full ImageNet.

Source Method CIFAR-10 CIFAR-100 SVHN Art Cartoon Photo Sketch Flowers Cars Food

ImageNet∗
Clean 94.66 76.27 96.05 76.92 81.25 83.75 85.42 84.47 40.43 65.45

LSP [11] 29.04 11.32 8.90 28.12 74.48 74.22 79.95 10.13 1.95 1.16
14A [12] 39.90 11.40 80.38 35.10 69.62 67.25 66.83 15.15 6.69 16.01

Ours 15.04 5.68 7.60 27.60 24.11 12.50 15.10 9.28 1.93 9.34

to produce distribution-agnostic perturbations with reduced reliance on image semantics. As a result,
VTG ensures unlearnability while providing robust protection against various defense strategies.

4.4 More Comparison on ImageNet

To further evaluate the transferability of VTG with SOTA UE studies, such as the data-free LSP [11]
and the transfer-oriented 14A [12], we utilize the ImageNet dataset [1] as the source dataset and assess
the effectiveness of perturbations on downstream datasets. Specifically, we randomly select a subset
from the first 100 classes of ImageNet to construct a smaller ImageNet∗. The downstream datasets
include CIFAR-10, CIFAR-100 [13], SVHN [14], PACS [17], Flowers [61], Cars [62], and Food [63],
where the last three datasets are in accordance with previous work [12]. As presented in Table 8, our
method outperforms competing approaches across most target datasets. This superior performance
not only underscores the strong transferability but also highlights its remarkable adaptability, thereby
demonstrating its potential for reliable deployment in diverse and challenging environments.

4.5 Effectiveness of Different Components

Our framework incorporates several key components to facilitate the transferability of UEs, includ-
ing a vanilla Perturbation Generator, Adversarial Domain Augmentation, and Perturbation-Label
Coupling. In this section, we meticulously assess the effect of these components in rendering data
unlearnable. Table 9 illustrates the contributions of these components in both intra-domain and
cross-task scenarios. Specifically, Adversarial Domain Augmentation improves transferability by
exposing the surrogate model to diverse out-of-distribution samples, enabling the generator to craft
more generalizable perturbations. Meanwhile, the Perturbation-Label Coupling mechanism reduces
the generator’s reliance on image semantics by aligning perturbations with text labels. The synergistic
interaction between these two components substantially enhances UE’s transferability, underscoring
their essential role in our framework.

4.6 Further Analyses

Visualizations of Perturbed Images. In the task of Unlearnable Examples, the imperceptibility
of added perturbations to human eyes serves as a critical evaluation criterion, and we specifically
incorporate a soft hinge loss to constrain the norm of the generated perturbations. To provide a more
vivid demonstration, we utilize the CIFAR-10 dataset [13] as the source dataset to train our VTG,
then transfer it across various datasets and visualize the crafted unlearnable examples. The target
datasets consist of CIFAR-10 [13], CIFAR-100 [13], and PACS [17]. As illustrated in Figure 2, the
results demonstrate that the unlearnable examples generated by our VTG maintain good quality and
the perturbations are basically invisible to humans.
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Figure 2: Visualization of clean images and unlearnable examples generated by VTG. The bottom
two rows display results from PACS, which consists of four styles: Art, Cartoon, Photo, and Sketch.

Table 9: Ablation study on individual components of our versatile transferable generator. “PG”,
“ADA”, and “PLC” denote the vanilla Perturbation Generator, Adversarial Domain Augmentation,
and Perturbation-Label Coupling, respectively. All variants are trained on CIFAR-10 and evaluated
under the Intra-Domain and Cross-Task scenarios with ResNet-18.

Variant PG ADA PLC CIFAR-10 CIFAR-100 SVHN

1 ✓ 16.53 10.19 19.59
2 ✓ ✓ 10.92 3.36 15.94
3 ✓ ✓ 12.89 5.73 11.05

Ours ✓ ✓ ✓ 9.64 0.99 9.65

Table 10: Comparison of inference cost and generator param-
eters across different methods.

Method Time (ms / img) GFLOPs Parameters (M)

GUE[8] 3.7 8927.76 7.79
14A[12] 6.3 15506.28 121.13

Ours 0.4 868.99 0.09

Inference Cost Comparison. To eval-
uate the practical applicability of VTG
across various scenarios, we measure
the inference cost and compare it with
several generator-based approaches.
Specifically, we feed each generator
with a total of 3,200 images of size
224 × 224, using a batch size of 32.
To ensure reliable and fair compari-
son, we compute the average inference time over five runs. All experiments are conducted on a
consistent hardware setup comprising an Intel(R) Xeon(R) Silver 4210R CPU and an RTX A5000
GPU. As summarized in Table 10, our VTG contains fewer parameters and achieves reduced inference
time and computational cost, highlighting its efficiency and practicality for real-world deployment.

5 Conclusion

In this paper, we introduce the first comprehensive transferable study on unlearnable examples, which
encompasses five progressive scenarios: Intra-Domain, Cross-Domain, Cross-Task, Cross-Space, and
Cross-Architecture. This study establishes a new standard to rigorously assess the generalization
performance of UE methods. Moreover, we propose a novel Versatile Transferable Generator with
specialized designs to facilitate the transferability across various scenarios. Specifically, VTG
employs Adversarial Domain Augmentation and Perturbation-Label Coupling to promote a superior
transferable unlearnable example generator. Extensive experiments demonstrate the remarkable
performance of our method compared with other state-of-the-art methods.

Limitations. While our method demonstrates strong transferability and superior applicability in prac-
tice, it still requires the VTG generator to craft perturbations at test time. Compared to methods that
store fixed precomputed noises (e.g., EMN and TUE), our approach incurs marginal computational
overhead during deployment, which we have discussed in the Supplementary.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have presented the contributions and scope in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed that our method still has limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Information related to the experiment is detailed in the experiment settings
section.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Source code will be released to foster the community.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All relevant settings are described in the experimental settings section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report results averaged over five runs with different random seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the training settings for each experiment in the experimental
section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We explore some possible societal impacts of our method in the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper proposes a new data protection method, so there is no safety risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Relevant sources used in this paper are appropriately cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code will be released to foster the community.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The experiments in this paper do not include these contents.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The experiments in this article do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as
important components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix provides a comprehensive analysis and in-depth exploration of our proposed Versatile
Transferable Generator (VTG).

A Experimental Details

A.1 More Implementation Details

Implementation of VTG. For the perturbation generator and the domain composer in ADA, we
employ the Adam optimizer [50] with an initial learning rate of 0.001. For different surrogate models,
we employ the SGD [64] optimizer with an initial learning rate of 0.1 for ResNet-18 and 0.01 for ViT.

Baseline Types. We conducted a comprehensive comparison against baseline methods, including
both class-wise and sample-wise perturbation approaches, as shown in Tables 2– 5 of our paper.

• We included comparisons with the class-wise version of EMN [5] and PUE [49].
• We compared TUE [7] and LSP [11], two sample-wise methods that exhibit class-wise

characteristics in their implementations: TUE employs a Class-wise Separability Discrimi-
nant to produce transferable, linearly separable perturbations, while LSP exhibits class-wise
clustering, indicating strong class-dependent structures.

• Our comparison also covered three strict sample-wise approaches, including REM [6],
GUE [8], and 14A [12].

These comparisons enable a comprehensive and fair evaluation of VTG against both class-wise and
sample-wise baselines, where VTG consistently achieves superior performance in various scenarios.

Implementation of Baselines. Since non-generator-based baselines (e.g., LSP [11], TUE [7], and
REM [6]) generate fixed perturbations, we first resample these perturbations before applying them to
the images to ensure a fair comparison.

(1) In the Cross-Task scenario, when the number of samples differs, we generate new perturbation
samples using a uniform sampling strategy introduced by TUE [7], thereby ensuring compatibility
with the target dataset.

• If more classes are required, we interpolate two classes to create new class-wise perturbations:
δ∗ = αδi + (1− α)δj ,where yi ̸= yj . (12)

• If more samples within one class are required, we interpolate two samples to create new sample-
wise perturbations:

δ∗ = αδi + (1− α)δj ,where yi = yj . (13)

Note that δ and y denotes perturbations and class labels; The subscripts denote class indexes; the
number of newly created perturbations is controlled by varying α, which is generally set as 0.5.

(2) In the Cross-Space scenario, when a resolution mismatch occurs between the fixed perturbations
and the target dataset, we resample the perturbations to match the target resolution.

A.2 The Architecture of Perturbation Generator

In the main paper, we devise VTG to produce transferable perturbations and craft unlearnable exam-
ples. We denote our perturbation generator as G, which employs a standard encoder-decoder architec-
ture. This structure comprises three down-sampling convolution layers, four residual blocks [48], and
three transposed convolution layers. The detailed architecture is shown in Table 11.

B Additional Experimental Results

B.1 Further Analysis of Perturbations

We further conduct an in-depth analysis of the perturbations by examining their spatial dispersion and
quantitative data quality, as summarized in Table 12. The Shannon entropy of the perturbations reflects
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Table 11: The architecture of the perturbation generator.

Block Name Layer Number

Down-sampling layers

Conv
Conv (3 × 3)

× 3InstanceNorm
ReLU

Bottleneck layers

Residual

ReflectionPad

× 4

Conv (3 × 3)
BatchNorm

ReLU
ReflectionPad
Conv (3 × 3)
BatchNorm

Up-sampling layers

ConvTranspose
ConvTranspose (3 × 3)

× 2InstanceNorm
ReLU

ConvTranspose ConvTranspose (6 × 6) × 1Tanh

their spatial dispersion, where higher entropy values indicate that perturbations are more uniformly
distributed across spatial regions rather than concentrated in localized areas. Our perturbations
achieve an average entropy of 6.02 on CIFAR-10, substantially higher than those of baseline methods.
At the same time, VTG maintains comparable PSNR and SSIM values relative to other baselines,
demonstrating high data quality. This globally distributed perturbation pattern mitigates reliance
on the object shapes of individual samples and enhances the transferability of unlearnability across
diverse scenarios.

Table 12: Quantitative comparison of perturbation properties and image quality.

Metric EMN LSP TUE GUE Ours

Shannon Entropy↑ 1.47 2.22 3.13 1.96 6.02
PSNR (dB) ↑ 37.06 34.94 34.43 37.72 35.77

SSIM ↑ 0.9963 0.9930 0.9869 0.9960 0.9894

B.2 Test Accuracy Curves

In this section, we display the test accuracy curves of ResNet-18 [48] models trained on the poisoned
CIFAR-10 dataset under various unlearnable attacks, as shown in Figure 3. It can be observed that
other UE methods, particularly EMN [5], exhibit an initial accuracy peak at the start of training.
In this regard, hackers can employ early stopping to acquire semantics within the training data.
Compared with EMN [5] and GUE [8], our method successfully injects unlearnability at the first
epoch, which validates the efficacy of our perturbation generation approach. Additionally, our method
exhibits superior unlearnable effects throughout the entire training process, further highlighting the
effectiveness of our proposed VTG.

B.3 Visualization

T-SNE Visualization. To illustrate the superior transferability of our VTG, we further present the
t-SNE visualization [65], as shown in Figure 4. Our VTG exhibits notable transferability both in
Intra-Domain and Cross-Task scenarios, which leads to the misclassification of clean test samples by
the classifier. In contrast, while GUE successfully generates unlearnable perturbations within the
CIFAR-10 Intra-Domain scenario, it fails to transfer the unlearnability of generated perturbations
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Figure 3: Test accuracy curves of ResNet-18
trained on poisoned CIFAR-10 under the Intra-
Domain scenario with different unlearnable ex-
ample methods.
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Figure 4: t-SNE visualization of classifier’s last
layer features, where classifiers are trained on the
poisoned training set and tested on the clean test
set. In the first row, perturbations are trained and
tested on CIFAR-10. In the second row, perturba-
tions are trained on CIFAR-100 and transferred
to CIFAR-10.
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Figure 5: Visualization of clean images and unlearnable examples generated by VTG on MNIST,
MNIST-M, SVHN, and SYN datasets.

from CIFAR-100 to CIFAR-10 in the Cross-Task scenario, thereby compromising the protection of
real semantics in the target dataset.

Perturbed Image Visualization. Besides visualizations in Section 4.6, we provide more demon-
strations on the Digits dataset, including MNIST [64], MNIST-M [66], SVHN [14], and SYN [66].
Similarly, we utilize the CIFAR-10 dataset [13] as a source to train VTG, then transfer it to tar-
get datasets and visualize the crafted unlearnable examples. As illustrated in Figure 5, the results
demonstrate that the perturbations generated by our VTG are generally invisible to human eyes.

B.4 Cross-Space Results on Digital Dataset

We further evaluate the transfer performance of VTG on Digital datasets, including MNIST [64],
MNIST-M [66], and SYN [66]. As shown in Table 13, VTG consistently outperforms baseline meth-
ods and exhibits a substantial average improvement, further verifying its remarkable transferability.
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Table 13: Test accuracy of ResNet-18 under the Cross-Space scenario, with Digits as target datasets.

Source Dataset Method Digits
MNIST MNIST-M SYN Avg.

Clean 99.61 100.00 97.90 99.17
Random 99.60 99.01 97.65 98.75

CIFAR-10

LSP [11] 9.83 9.95 97.75 39.18
TUE [7] 33.15 27.57 10.05 23.59
GUE [8] 9.74 55.47 98.05 54.42

Ours 9.93 10.15 9.65 9.91

CIFAR-100

LSP [11] 9.80 9.28 96.25 38.44
TUE [7] 33.69 38.75 10.15 27.53
GUE [8] 21.75 99.02 97.95 72.91

Ours 9.82 10.44 10.60 10.29

SVHN

LSP [11] 9.74 10.21 95.65 38.53
TUE [7] 8.93 44.16 77.40 43.50
GUE [8] 10.28 66.60 96.70 57.86

Ours 10.28 9.74 40.45 22.92

ImageNet∗ 14A [12] 97.05 30.06 79.70 68.94
Ours 10.08 73.00 97.90 60.33

B.5 More Analyses with Defenses

Details of Defense Strategies. We conduct a series of experiments to evaluate the effectiveness
of VTG against different defense strategies. For data transformation, we employ Cutout [55],
CutMix [56], and Mixup [57]. For adversarial training, which generally enhances robustness against
adversarial perturbations [67], we utilize PGD-10 [58] with a poison radius of 4/255 and a step size
of 2/255.

Table 14: Test accuracy of ResNet-18 under the Intra-Domain scenario with our VTG. Different
defense strategies are applied, with “AT” denoting Adversarial Training.

Dataset w/o Cutout CutMix Mixup AT

CIFAR-100 1.14 1.29 1.20 2.40 1.98
SVHN 6.38 8.97 9.15 9.69 7.75

Defenses under the Intra-Domain Scenario. In our supplementary experiments, we evaluate the
robustness of our approach under the Intra-Domain scenario using CIFAR-100 and SVHN as datasets.
As shown in Table 14, our method consistently maintains a strong unlearnable effect across all
defense strategies, effectively reducing model performance to levels approaching random guessing.
This demonstrates the robustness and superiority of our approach in preserving unlearnability under
varied Intra-Domain defense strategies.

Defenses under the Cross-Task Scenario. Moreover, we assess VTG’s resilience to defenses
under the Cross-Task scenario. As illustrated in Table 15, VTG consistently induces a significant
unlearnability effect across diverse source-target pairs. For example, when CIFAR-10 is used as
the source dataset and CIFAR-100 or SVHN as the target, VTG reduces test accuracy to extremely
low levels, with similar patterns observed when CIFAR-100 and SVHN serve as sources. These
findings substantiate that, even under the more demanding Cross-Task conditions, VTG effectively
degrades model performance to levels approaching random guessing, thereby demonstrating its
superior capacity to preserve unlearnability across diverse defense strategies.

B.6 More Ablation Studies

Ablation Studies with Adversarial Training. To assess the contribution of each component of our
VTG to its robustness against adversarial training, we conducted an ablation experiment on CIFAR-10.
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Table 15: Test accuracy of ResNet-18 under the Cross-Task scenario with our VTG. Different
defense strategies are applied, with “AT” denoting Adversarial Training.

Source Dataset Target Dataset w/o Cutout CutMix Mixup AT

CIFAR-10 CIFAR-100 0.99 0.93 1.28 1.47 1.33
SVHN 9.70 15.88 9.92 6.28 9.18

CIFAR-100 CIFAR-10 9.85 10.14 10.09 13.14 11.86
SVHN 11.07 15.94 8.72 19.59 16.08

SVHN CIFAR-10 10.66 10.43 9.52 69.70 89.08
CIFAR-100 1.76 41.81 10.38 34.13 55.01

Table 16 presents the results of this study. With only the baseline PG, the test accuracy is 13.27%,
indicating a moderate unlearnability effect. The incorporation of ADA (Variant 2) improves this
effect, reducing the accuracy to 10.17%, while the inclusion of PLC (Variant 3) yields an accuracy of
11.72%. Notably, when both ADA and PLC are integrated with PG (Ours), the test accuracy further
decreases to 9.79%, demonstrating a synergistic improvement. These findings indicate that while the
baseline generator provides some robustness against adversarial training, the additional components
further enhance the unlearnability of the generated perturbations.

Table 16: Ablation study on the impact of individual components under adversarial training for
our VTG. “PG”, “ADA”, and “PLC” denote the vanilla perturbation generator, Adversarial Domain
Augmentation, and Perturbation-Label Coupling, respectively. All variants are trained on CIFAR-10
and evaluated under the Intra-Domain scenario with ResNet-18.

Variant PG ADA PLC AT Radius Accuracy

1 ✓ 4 / 255 13.27
2 ✓ ✓ 4 / 255 10.17
3 ✓ ✓ 4 / 255 11.72

Ours ✓ ✓ ✓ 4 / 255 9.79

Ablation Studies on the Strength of Perturbations. We conduct a series of ablation studies by
varying the noise strength in the Intra-Domain scenario and the Cross-Task scenario, as shown in
Table 17. Overall, unlearnability is approaching chance level as perturbation strength increases, while
the imperceptibility to human eyes correspondingly degrades.

Table 17: Ablation study on perturbation strengths, with ResNet-18 as the surrogate model.

Source Dataset Target Dataset 2 / 255 4 / 255 8 / 255 16 / 255

CIFAR-10 CIFAR-10 11.88 10.00 9.99 10.03
CIFAR-10 CIFAR-100 1.54 1.49 0.99 1.23
CIFAR-10 SVHN 9.71 15.12 9.65 6.52

Ablation Studies on ADA. To further validate the role of ADA in boosting the transferability of
perturbations, we replace ADA with commonly adopted data augmentation techniques, including
Cutout [55], Cutmix [56], and Mixup [57]. As shown in Table 18, ADA consistently outperforms
these standard augmentations, especially for cross-task transfer (e.g., CIFAR-10 to CIFAR-100), while
other augmentation strategies perform poorly in this transfer scenario. This observation highlights
the effectiveness of ADA in crafting transferable unlearnable examples across various scenarios.

Ablation Studies on Wasserstein Distance. We adopt the Wasserstein distance in ADA for its
ability to capture high-order distributional characteristics. It is efficiently computed via the Sinkhorn
algorithm with minimal overhead. In contrast, simple metrics (e.g., L2 distance) only capture point-
wise discrepancies and mean shifts, overlooking high-order information essential for quantifying
domain shifts. We report results in Table 19 and exclude PLC for better clarity.

Ablation studies on the pre-trained text encoder of PLC. To assess the sensitivity of our approach
to text encoders pretrained on different datasets in PLC, we conduct ablation studies using several
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Table 18: Ablation studies of ADA against standard data augmentation strategies under the Intra-
Domain and Cross-Task scenarios, where ResNet-18 is used as the surrogate model.

Source Dataset Target Dataset Cutout Cutmix Mixup ADA (Ours)

CIFAR-10 CIFAR-10 12.93 10.52 11.25 9.99
CIFAR-10 CIFAR-100 8.12 7.83 2.87 0.99
CIFAR-10 SVHN 19.59 16.27 10.66 9.65

CIFAR-100 CIFAR-10 19.57 13.85 13.20 9.85
CIFAR-100 CIFAR-100 3.06 14.98 4.05 1.14
CIFAR-100 SVHN 23.81 18.07 18.90 11.07

SVHN SVHN 14.68 10.48 14.79 10.66
SVHN CIFAR-100 47.06 3.31 6.96 1.76
SVHN SVHN 15.06 15.94 11.07 6.38

Table 19: Comparison of distance metrics in ADA, with ResNet-18 as the surrogate model.

Source Dataset CIFAR-10 CIFAR-100 SVHN

wo ADA CIFAR-10 16.53 10.19 9.91
L2 Distance CIFAR-10 14.33 4.56 9.93
Wasserstein CIFAR-10 10.92 3.36 7.07

CLIP variants trained on diverse corpora (YFCC-15M, CC12M, and LAION-400M). Additionally,
we include the multi-modal model BLIP for further comparison. All models are kept fixed and are
employed solely to extract label embeddings within the PLC mechanism. The results, summarized
in Table 20, show that across all settings, the generated unlearnable examples consistently reduce
model performance to near random-guessing levels. This indicates that our method is not dependent
on a specific CLIP variant or pretraining corpus but instead exploits the general semantic alignment
properties inherent to large-scale multi-modal pretraining. Consequently, the PLC mechanism is
resistant to dataset-specific artifacts and biases arising from large-scale web pretraining.

Table 20: Impact of text encoders pretrained on different datasets in PLC on unlearnable performance.

Label Encoder CIFAR-10→CIFAR-10 CIFAR-10→CIFAR-100 CIFAR-10→SVHN

CLIP (YFCC-15M) 12.72 1.03 9.21
CLIP (CC12M) 10.02 1.71 8.62

BLIP (14M) 10.54 2.03 8.62
CLIP (LAION-400M) 9.99 0.99 9.65

Ablation studies on PLC loss weightings. We conduct ablation studies on different PLC loss
weightings in the Cross-Space scenario, as shown in Table 21. The results show that removing the
PLC loss leads to the worst performance, confirming its necessity. Meanwhile, varying the PLC
weight has a relatively minor impact, indicating the stability of our method to this hyperparameter.

Ablation studies on the depth of the generator. To examine the effect of generator depth, we train
four generator variants containing 2, 4, 8, and 16 residual blocks. The source dataset is CIFAR-10,
and the target datasets are CIFAR-10, CIFAR-100, and SVHN. As shown in Table 22, all variants
reduce test accuracy to near random-guessing levels, indicating that unlearnability performance is
largely consistent across different generator depths.

B.7 Impact of Training Ratio

In the context of Intra-Domain transferability, we split the original training dataset, designating a
portion of samples as the source training dataset and the remaining samples as the target training set.
Results presented in Table 23 demonstrate that the ratio of the source training dataset to the overall
training dataset exerts an insignificant influence on the unlearnable effects of our VTG. Leveraging
the collaborative effects of Adversarial Domain Augmentation and Perturbation-Label Coupling, our
method can generate highly effective unlearnable perturbations even with limited training data, which
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Table 21: Performance with varying PLC loss weightings under the Cross-Space scenario, with
CIFAR-10 and PACS being utilized as the source and target dataset, respectively.

PLC Weight Source Dataset Art Cartoon Photo Sketch

0 CIFAR-10 22.60 22.32 16.88 20.27
1.0 CIFAR-10 11.98 10.71 11.25 4.69
2.0 CIFAR-10 9.13 18.75 10.00 4.43

Table 22: Effect of generator depth on unlearnable performance.

Depth CIFAR-10→CIFAR-10 CIFAR-10→CIFAR100 CIFAR-10→SVHN

2 11.63 1.11 9.57
4 9.99 0.99 9.65
8 10.05 1.22 9.35
16 8.11 1.22 8.69

Table 23: Ablation study on the selected portion of the source dataset in the Intra-Domain scenario.
A portion value of 0 indicates the use of random noise as input.

Portion 0 0.1 0.2 0.3 0.4

Test accuracy 95.57 10.09 10.03 10.01 9.99

Portion 0.5 0.6 0.7 0.8 0.9

Test accuracy 9.99 10.02 10.01 9.99 10.09

efficiently introduces unlearnability and prevents classification models from extracting meaningful
semantics from the protected dataset.

B.8 Training Time Comparison

Table 24: Training time comparison (s/epoch) with ResNet-18 as the surrogate model.

Method CIFAR10 Training Time SVHN Training Time

EMN 18.72 32.50
TUE 22.12 55.77
GUE 644.97 719.31
14A 1158.09 1690.09
Ours 46.60 65.72

To evaluate the training cost in practical scenarios, we report the per-epoch training time on CIFAR-10
(50,000 samples) and SVHN (73,257 samples), comparing our method with both gradient-based
baselines (EMN, TUE) and generator-based baselines (GUE, 14A). All experiments are conducted
on a single NVIDIA RTX A5000 GPU. As shown in Table 24, gradient-based methods require
less training time to obtain unlearnable perturbations; however, their applicability to new classes
and unseen samples is limited. In contrast, generator-based methods incur higher training costs but
are capable of crafting unlearnable examples for novel data, thereby exhibiting superior practical
applicability. We observe that our method incurs a moderately higher training cost than EMN [5]
and TUE [7], yet demonstrates greater transferability across diverse scenarios. Compared with GUE
(which relies on implicit gradients) and 14A (which employs a much larger generator, 121.13M vs.
0.09M parameters), our approach achieves superior efficiency and transferability.
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