
A proofs

Proof of Lemma 4.1. When H is the RKHS with kernel k

Eqt [(D(s⇡ � sqt))
>
u]�

1

2
kDuk

2
H

= Eqt [(D(s⇡ � sqt))
>
Du]�

1

2
kDuk

2
H

= hRD(s⇡�sqt)
, DuiH �

1

2
kDuk

2
H

where Rv is the Riesz representation of the linear function u ! Eqtv
>
u. Therefore a solution to (8)

is
Du = DRD(s⇡�sqt)

which can be written as

Du(x) =

Z
D(x)k(x, y)D(y)(s⇡(y)� sq(y))qt(y)dy

=

Z
k?(x, y)(s⇡(y)� sq(y))qt(y)dy

=

Z
(k?(x, y)s⇡(y) +ryk?(x, y))qt(y)dy

= Ey⇠qt(k?(x, y)s⇡(y) +ryk?(x, y))

Proof of Theorem 4.2. First, we show the components of r can be written as

ri(x) =
X

j

@jDi,j(x) = �

P
j @

2
i,jg@jg + @ig@j,jg

krgk2
+

2(rg
T
r

2
grg)@ig

krgk4
.

To this end, note that

Di,j(x) = 1�
@ig@jg

krgk2

Then by product rule, and the fact that @jkrgk
2 = 2

P
k @

2
k,jg@kg = 2[r2

grg]j

@jDi,j(x) =
�@

2
i,jg@jg � @ig@

2
jjg

krgk2
+

2@ig@jg[r2
grg]j

krgk4
.

So
X

j

@jDi,j(x) =
�
P

j @
2
i,jg@jg �

P
j @ig@

2
jjg

krgk2
+

2@ig(rg
>
r

2
grg)

krgk4
.

Comparing with the each component of

r = �
r

2
grg

krgk2
�

tr(r2
g)

krgk2
rg +

2rg
T
r

2
grg

krgk4
rg,

it is easy to see they are the same.

Next, recall the O-gradient density flow (10)

d

dt
q = �r · (�(x)q(x)) +r · (D(x)rq(x))

= �r · (�(x)q(x)) +
X

i,j

@i(Di,j(x)@jq(x))

= �r · (�(x)q(x)) +
X

i,j

@iDi,j(x)@jq(x) +
X

i,j

Di,j(x)@
2
i,jq(x)

=: �r · (�(x)q(x)) + (I).

14

Meanwhile, the FPE of the SDE follows
d

dt
q = �r · (�(x)q(x))�r · (r(x)q(x)) +

X

i,j

@
2
i,j(Di,j(x)q(x)) (18)

Then note that

(II) : = �r · (r(x)q(x)) = �

X

i

@i

0

@
X

j

@jDi,j(x)q(x)

1

A

= �

X

i,j

@
2
i,jDi,j(x)q(x)�

X

i,j

@jDi,j(x)@iq(x).

Also note that
X

i,j

@
2
i,j(Di,j(x)q(x)) =

X

i,j

@
2
i,jDi,j(x)q(x) +

X

i,j

@jDi,j(x)@iq(x)

+
X

i,j

@iDi,j(x)@jq(x) +
X

i,j

Di,j(x)@
2
i,jq(x)

= (I)� (II).

So we arrive at our first claim.

For the second claim, using rg(x)TD(x) = 0, the Ito formula indicates that

dg(Xt) = rg(Xt)
T [D(Xt)r log ⇡(Xt)�

cg(Xt)

krg(Xt)k2
rg(Xt) + r(Xt) +D(Xt)

p

2dWt]

+ tr(D(Xt)r
2
g(Xt)D(Xt))dt

= �cg(Xt)dt+rg(Xt)
T
r(Xt) + tr(D(Xt)r

2
g(Xt)D(Xt))dt.

So it suffices to show that

rg(x)T r(x) + tr(D(x)r2
g(x)D(x)) = 0.

To continue, we suppress the expression of x in below to keep formulas short. We first note that
Di,j = 1i=j � @ig@jg/krgk

2,

@jDi,j =
�@i,jg@jg � @ig@j,jg

krgk2
+

2
P

k @ig@jg@
2
j,kg@kg

krgk4

We plug this into the computation of rg
T
r =

P
i @ig@jDi,j . We note that

X

i,j

�
@ig@i,jg@jg

krgk2
=

�(rg)Tr2
grg

krgk2
.

X

i,j

�
(@ig)2@j,jg@jg

krgk2
= �tr(r2

g).

2
P

i,j

P
k @ig@ig@jg@

2
j,kg@kg

krgk4
=

P
j,k krgk

2
@jg@

2
j,kg@kg

krgk4
=

2(rg)Tr2
grg

krgk2

Therefore
X

i

@ig@jDi,j =
(rg)Tr2

grg

krgk2
� tr(r2

g)

= tr
✓
�r

2
g +r

2
g
rg(rg)T

krgk2

◆

= tr
�
�r

2
gD

�
= tr

�
�Dr

2
gD

�
, since D

2 = D.

This completes our proof.

15

For the last claim, we note that

Lf = rf
T [Dr log ⇡ �

 (g)

krgk2
rg + r] + tr(Dr

2
fD)

= rf
T [r log ⇡ �

r
2
g

krgk2
rg] + tr(Dr

2
f)

= rf
T
r log ⇡ + tr(r2

f)�
rf

T
r

2
grg

krgk2
+

rg
T
r

2
frg

krgk2

Finally, we note that rf
T
rg = 0. Take derivative of this identity we find

r
2
frg +r

2
grf = 0

Therefore
rf

T
r

2
grg = �rg

T
r

2
frg

and
Lf = rf

T
r log ⇡ + tr(r2

f)

which is the same as the generator of the Langevin diffusion.

Remark If we drop r and implementing a naive SDE:

dxt = �(x) +
p

2D(x)dwt,

the FPE of this SDE will be
d

dt
q = �r · (�(x)q(x)) +

X

i,j

@
2
i,j(Di,j(x)q(x)).

It is identical to (18) but without the term �r · (r(x)q(x)) = (II). In other words, it will not
match (10) unless (II) = 0, which happens when

P
i,j @

2
i,jDi,j =

P
j @jDi,j ⌘ 0. But it should be

pointed out that if g is an affine function, D(x) is a constant matrix, then (II) ⌘ 0, and r is safe to
be dropped out.

Proof of Proposition 5.2. We will first show that for any function f , the following holds
Z
⇡
g(z)f(x)⇡⌘,z(x)dxdz !

Z
f(x)⇡(x)dx,

when ⌘ ! 0. So (13) holds for ⇧z as the weak limit of ⇡⌘,z .

We note that

⇡⌘,z(x) =
⇡(x) exp(� 1

2⌘ (g(x)� z)2)
p
2⌘⇡Z⌘,z

where the normalizing constant is given by

Z⌘,z =
1

p
2⇡⌘

Z
⇡(x) exp(�

1

2⌘
(g(x)� z)2)dx.

Because ⇡g is the density of g(X), so for any function h:
Z

h(g(x))⇡(x)dx = EX⇠⇡[h(g(X))] =

Z
h(y)⇡g(y)dy.

We pick h(y) = exp(� 1
2⌘ (y � z)2), we obtain that

Z⌘,z =

Z
1

p
2⇡⌘

exp(�
1

2⌘
(y � z)2)⇡g(y)dy

= E⇡g(z +
p
⌘⇠) = ⇡

g(z)(1 +R(z))�1
.

16

where the |R|  2L
p
⌘ and L is the regularity constant of ⇡g . Therefore

Z
⇡
g(z)f(x)⇡⌘,z(x)dxdz

=

Z
⇡(x)f(x)

✓Z
1

p
2⇡⌘

exp(�
1

2⌘
(g(x)� z)2)

⇡
g(z)

Z⌘,z
dz

◆
dx

=

Z
⇡(x)f(x)

✓Z
1

p
2⇡⌘

exp(�
1

2⌘
(g(x)� z)2)dz

◆
dx+ ER(g(X))

=

Z
⇡(x)f(x)dx+ ER(g(X)).

Since ER(g(X))  2L
p
⌘, we find our first claim when ⌘ ! 0.

Next note that if we pick f(x) = 1|g(x)�z|�✏Z
f(x)⇡⌘,z(x)dx

=

Z
1|g(x)�z|�✏

1
p
2⇡⌘

exp(�
1

2⌘
(g(x)� z)2)

⇡(x)

Z⌘,z
dx



Z
1

p
2⇡⌘

exp(�
✏
2

2⌘
)
⇡(x)

Z⌘,z
dx =

1
p
2⇡⌘Z⌘,z

exp(�
✏
2

2⌘
).

When ⌘ ! 0, since Z⌘,z ! ⇡
g(z), and 1

p
2⌘

exp(� ✏2

2⌘) ! 0, we find that

⇧z(|g(X)� z| � ✏) = lim
⌘!0

Z
f(x)⇡⌘,z(x)dx ! 0

For the Stein equation part, note that for each ⇡⌘,z , we have the following by Stein’s identity:

E⇡⌘,z [(r log ⇡(x)�
1

2⌘
(g(x)� z)rg(x))>�(x) +r

>
�(x)] = 0.

But rg(x)>�(x) = 0 for � 2 H?. This gives
E⇡⌘,z [A⇡�] = 0, 8⌘.

Taking ⌘ ! 0 yields that E⇡z [A⇡�] = 0.

Lemma A.1. Suppose q(x), qg(z) and ⇡(x),⇡g(z),⇡z(x) are all C1 functions, then the Radon–
Nikodym derivative between qz and ⇡z can be written as

dqz

d⇡z
(x) =

⇡
g(z)q(x)

qg(z)⇡(x)
, z = g(x).

In particular,
D(sqz (x)� s⇡z (x)) = D(sq(x)� s⇡(x)).

Proof of Lemma A.1. We will show (13) holds, where dqz = dqz
d⇡z

d⇡z with our choice of RN deriva-
tive. This can be done using

Ez⇠qgEx⇠qz [f(x)] =

Z

R
dzq

g(z)

Z

Gz

fdqz

=

Z

R
dzq

g(z)

Z

Gz

⇡
g(z)q

qg(z)⇡
fd⇡z

=

Z

R
⇡
g(z)dz

Z

Gz

q

⇡
fd⇡z

= Ez⇠⇡gEy⇠⇡z [f(x)q(x)/⇡(x)]

= Ex⇠⇡[f(x)q(x)/⇡(x)] = Ex⇠q[f(x)].

Moreover
D(sqz (x)�s⇡z (x)) = D(sq(x)�s⇡(x))+D(rg(x)sqg (g(x))�rg(x)sqg (g(x))) = D(sq(x)�s⇡(x)).

17

Proof of Proposition 5.4. Note that
�����E⇧0 [f]�

Z �

��
qg(z)E⇧z [f]dz

����� 
Z �

��
qg(z) |E⇧0 [f]� E⇧z [f]| dz

 max
|z|�

|E⇧z [f]� E⇧0 [f]|.

Meanwhile

Eq[f]�

Z �

��
qg(z)E⇧z [f]dz =

Z �

��
qg(z) (Eqz [f]� E⇧z [f]) dz.

Then we note the following holds when we restrict f on Gz . We use a paramaterization of Gz with
dummy variable y and the inherited metric form Rd,

(Eqz [f]� E⇧z [f])
2 =

✓Z

Gz

⇧z(y)(
qz(y)

⇧z(y)
� 1)f(y)dy

◆2



Z

Gz

⇧z(y)(

s
qz(y)

⇧z(y)
� 1)2dy ·

Z

Gz

⇧z(y)(

s
qz(y)

⇧z(y)
+ 1)2f(y)2dy

 2

Z

Gz

⇧z(y)(

s
qz(y)

⇧z(y)
� 1)2dy ·

Z

Gz

⇧z(y)(
qz(y)

⇧z(y)
+ 1)dy

= 4

Z

Gz

⇧z(y)(

s
qz(y)

⇧z(y)
� 1)2dy

= 8(1� E⇧z

s
qz(y)

⇧z(y)
) = 8(1� b) with b = E⇧z

s
qz(y)

⇧z(y)
 1.

Then note that

var⇧z

s
qz(y)

⇧z(y)
= E⇧z [

qz(y)

⇧z(y)
]� b

2 = 1� b
2
.

Therefore by -PI, we have

1� b  (1� b
2)  

Z

Gz

⇧z(y)

�����r

s
qz(y)

⇧z(y)

�����

2

Gz

dy

= 

Z

Gz

qz(y)k(sqz (y)� s⇧z (y))k
2
Gz
dy

= 

Z

Gz

qz(y)kD(y)(sqz (y)� s⇧z (y))k
2
dy

= EqzkD(sqz � s⇧z)k
2
.

So in combination
(Eqz [f]� E⇧z [f])

2
 8EqzkD(sqz � s⇧z)k

2
.

Then by Lemma A.1 we have

Dr(log qz � log⇧z) = D(sq � s⇡).

So we find that
(Eqz [f]� E⇧z [f])

2
 4EqzkD(sq � s⇡)k

2
.

Integrating both sides with qg(z) we find our final claim.

18

Proof of Proposition 5.5. Fix a particle zt in the density of qt, we track its g-value trajectory:

d

dt
g(zt) = rg(zt)

>
vt(zt) = � (g(zt)),

we will show that g(zt)  Mt for all t (The proof for g(zt) � �Mt is identifical is omitted).
Suppose g(zt) > Mt + ✏ for some t and ✏ > 0. Let t0 = inf{t > 0, g(zt) > Mt + ✏}. Then
d
dtg(zt0) = � (Mt0 + ✏) < � (Mt0), so for a sufficiently small � > 0, g(zt0��) > Mt0��, this
contradicts the definition of t0.

For the second claim, note that

d

dt
KL(qtk⇡) = �

Z
qt(x)vt(x)

>(s⇡(x)� sqt(x))dx

= �

Z
qt(x)(v?(x) + v](x))

>(s⇡(x)� sqt(x))dx

= �F?(qt,⇡) +

Z
qt(x)

 (g(x))rg(x)>(s⇡(x)� sqt(x))

krg(x)k2
dx

= �F?(⇡, qt) +

Z
 (g(x))rg(x)>s⇡(x)

krg(x)k2
dx

+

Z
krg(x)k2 ̇(g(x)) + (g(x))�g(x)

krg(x)k2
qt(x)dx

�

Z
2 (g(x))rg(x)>r2

g(x)rg(x)

krg(x)k4
qt(x)dx

 �F?(⇡, qt) + Eqt [| ̇(g)|] + C0Eqt [| (g)|krgk
2].

Proof of Theorem 5.6. We use the notation Mt from Proposition 5.5. When we take (z) =
�↵sgn(z)z1+� , we find that for some c0 that depends on M0

d

dt
Mt = �↵|Mt|

1+�
) Mt = (↵�)�

1
� (t+ c0)

�
1
� .

Moreover, we have that for some constant C1

d

dt
KL(qtk⇡)

 �F?(qt,⇡) + ↵Eqt(1 + �)[|g|�] + ↵C0Eqt [|g|
1+�

krgk
2]

 �F?(qt,⇡) +
C1

t+ c0
+

C1

(t+ c0)1+1/�
.

Integrating both sides yields the following for some constant M↵

Z T

T/2
F?(qt,⇡)dt 

Z T

0
F?(qt,⇡)dt

 KL(q0,⇡) + C1 log
T + c0

c0
+ C1M↵.

So
min

T/2t0T
F?(qt,⇡) 

2

T
KL(q0,⇡) +

2C1

T
log

T + c0

c0
+

2

T
C1M↵.

Finally, we note that if rDq,⇡ is the Riez representation of D(s⇡ � sq)T ,

EqA⇡� = Eq(D(s⇡ � sq))
>
� = hr

D
q,⇡,�iH 

1

2
kr

D
q,⇡kH =

1

2

p
F?(q,⇡).

19

B Additional Experiments Results and Setting Details

We use NVIDIA GeForce RTX 2080 Ti for neural network experiments.

B.1 Synthetic Distribution

For both O-Langevin and O-SVGD, we use ↵ = 100 and � = 0. We set ⌘ = 0.01 and 0.5 for O-
Langevin and O-SVGD respectively. For CLangevin and CHMC, we use a python implementation 1

and tune the step size and the number of leapfrog steps. We report the best results which are achieved
at step size = 0.3 for CLangevin, and step size = 1 and number of leapfrog steps = 2 for CHMC.

We use energy distance to measure the difference between the approximated distributions by sampling
methods and the target distribution. Energy distance is a statistical distance between probability
distributions and has been used in the literature, e.g. [29, 30, 11]. Formally speaking, the energy
distance between probability distributions P and Q is defined by

D(P,Q) = 2EZ,W kZ �Wk2 � EZ,Z0 kZ � Z
0
k2 � EW,W 0 kW �W

0
k2

where Z,Z
0
⇠ P and W,W

0
⇠ Q.

Runtime Comparison We report runtime comparison in Figure 5. We did not include O-SVGD
since one iteration of it already > 5s (SVGD is known to take more time per iteration than MCMC
due to computing particle interaction). When starting on the manifold, we observe that O-Langevin
converges much faster than previous manifold sampling methods. It takes about 4s to fully converge
whereas previous methods have not fully converged after 5s. Previous methods cannot work with
initializations outside the manifold, thus we only report the runtime of O-Langevin in Figure 5b.

Effect of Hyperparameters Besides the hyperparameter step size ⌘ as in standard Langevin and
SVGD, our methods have hyperparameters ↵ > 0 and � 2 (0, 1] in (x) = ↵sign(x)|x|1+� to
control the speed of the sampler to approach the manifold and the closeness of the sampler to the
manifold after converging. In theory, as ↵ increases, the sampler approaches the manifold faster and
stays closer. As � increases, the sampler first converges faster to the manifold but stays relatively
far away after converging. We report the results of O-Langevin with varying ↵ (with fixed � = 0)
and � (with fixed ↵ = 1) when starting outside the manifold in Figure 6. We can see that the results
of MAE, which measures the closeness to the manifold, align with the theoretical analysis. The
energy distance with varying ↵ and � are similar while ↵ = 10 and � = 0 perform slightly better.
The theoretical analysis could not tell which values of hyperparameters give the fastest convergence
to the target distribution thus we still need to tune ↵ and � to achieve the optimal performance. In
practice, we recommend to set � = 0 (though our theoretical results apply to � 2 (0, 1], we find
� = 0 generally works well in practice.) and tune ↵ to achieve a desirable MAE and energy distance.

Density Estimation To compare the estimated density with the ground truth, we plot the collected
samples after 5000 epochs when starting on the manifold and 8000 epochs when starting outside the
manifold in Figure 7. The density estimation from our methods is closer to the ground truth than
previous methods, aligning with the results of the energy distance in Figure 2.

(a) (b)

Figure 5: Runtime comparison when (a) starting on the manifold and (b) starting outside the manifold.

1https://matt-graham.github.io/mici/

20

Figure 6: Effect of hyperparameters ↵ and �

(a) O-Langevin (b) O-SVGD

Ground Truth (c) CLangevin (d) CHMC

(e) O-Langevin (f) O-SVGD

Figure 7: Density estimation when (a)-(d) starting on the manifold and (e)-(f) starting outside the
manifold.

B.2 Income Classification with Fairness Constraint

The Adult Income dataset contains 30,162 training samples and 15,060 test samples. The feature
dimension is 86. Following previous work [26, 24], we obtain the training set by randomly subsam-
pling 20,000 data points from the training samples. The model is a two-layer multilayer perceptron

21

(MLP), which has 50 hidden units and RELU nonlinearities. The metric values are the mean over
all particles. For both methods, we use n = 10 particles and � = 0 . For O-Langevin, ↵ = 100 and
⌘ = 10�5. For O-SVGD, ↵ = 130 and ⌘ = 10�4. The results are averaged over 3 runs with the
standard error as the error bar.

B.3 Loan Classification with Logic Rules

The dataset2 contains loans issued through 2007-2015 of several banks. Each data point contains 28
features such as the current loan status and latest payment information. We define the logic loss to be
the binary cross-entropy loss. The metric values are the mean over all particles. For both methods,
we use n = 10 and � = 0 . For O-Langevin, ↵ = 80 and ⌘ = 10�4. For O-SVGD, ↵ = 100 and
⌘ = 10�3. The results are averaged over 3 runs with the standard error as the error bar.

B.4 Prior-Agnostic Bayesian Neural Networks

For large models, such as ResNet-18 on this task, computing second-order derivatives is slow. To
speed up our methods on large models, we ignore the second-order terms in O-Langevin and O-SVGD
and empirically find that they still perform well. We leave the theoretical analysis for future work.

Specifically, we ignore the r term in the update of O-Langevin and obtain

xt+1 = xt + ⌘ · v](xt) + Langevin
?
(xt),

where Langevin
?
(xt) = ⌘D(xt)r log ⇡(xt) +

p
2⌘D(xt)⇠t, ⇠t ⇠ N (0, I).

For O-SVGD, the update becomes

xi,t+1 = xi,t + ⌘ · (v](xi,t) + SVGDK?(xi,t)) ,

where SVGDK?(xi,t) =
1

n

nX

j=1

k?(xi,t, xj,t)rxj,t log ⇡(xj,t) + r̃xj,tk?(xi,t, xj,t)

and r̃xj,tk?(xi,t, xj,t) = D(xi,t)(D(xj,t)rxj,tk(xi,t, xj,t))

For all results, we use 200 epochs, 64 batchsize, n = 4, � = 0, ↵ = 1000 and ⌘ = 10�4. During
testing, we do Bayesian model averaging to obtain test error, ECE and AUROC.

B.5 Computational Cost Comparison

Our method is the first constraint sampling without the requirement of initialization on the manifold,
so there is essentially no baseline that can achieve the same effect. Compared to the unconstrained
Langevin and SVGD, our method additionally computes the gradient and the Hessian of the constraint
function. Compared to previous manifold sampling methods which require expensive projection
subroutines, our method has a much cheaper and faster update. For example, in the synthetic
distribution experiment, one update of O-Langevin (ours) takes 0.023s whereas the previous method
CLangevin takes 0.08s. From Figure 2a, we can see that O-Langevin also converges faster than
CLangevin in terms of the number of iterations.

B.6 Further Comparison to Previous Methods

Manifold Sampling Methods Previous manifold sampling methods assume that the initialization is
on the manifold. One may wonder if we can obtain such an initialization by optimization algorithms
so that we can still use previous methods when the sampler starts outside the manifold. This will
not work because the initialization must be exactly on the manifold whereas the solutions found by
optimization always have some intolerable error. Finding a point that is exactly on the manifold
without any prior knowledge is by itself a hard problem. Therefore, we are not able to compare our
methods with previous methods when there are no known in-domain points, such as the income, loan
and image classification tasks in Section 6.

2https://www.kaggle.com/wendykan/lending-club-loan-data

22

Moment Constraints As mentioned in the related work, sampling with moment constraints Eq[g]
cannot guarantee every sample to satisfy the constraint. To empirically show the difference between
our methods and this type of methods, we compare O-Langevin to Control+ Langevin, which is
a recently proposed moment constraint sampling method [25], on the income classification task.
We report the mean and the maximum value of the fairness loss in Figure 8. While both methods
have small mean fairness loss, the maximum value of O-Langevin is always much smaller than that
of Control+Langevin. This suggests that every sample of our method satisfies the constraint well
whereas some samples of Control+Langevin violate the constraint significantly, since the moment
constraint can only guarantee the mean value instead of the value of each sample.

Figure 8: Every sample of O-Langevin satisfies the constraint well whereas some samples of Control+
Langevin violate the constraint significantly.

23

	Introduction
	Related Work
	Preliminaries
	Main Method
	Constrained Variational Optimization
	Orthogonal-Space Gradient Flow (O-Gradient)
	Practical Algorithms

	Theoretical Analysis
	Conditioned measure and its Stein characterization
	Orthogonal-Space Fisher divergence

	Experiments
	Conclusion and Limitations
	proofs
	Additional Experiments Results and Setting Details
	Synthetic Distribution
	Income Classification with Fairness Constraint
	Loan Classification with Logic Rules
	Prior-Agnostic Bayesian Neural Networks
	Computational Cost Comparison
	Further Comparison to Previous Methods

