
Published as a conference paper at ICLR 2025

SCALABLE DISCRETE DIFFUSION SAMPLERS: COMBI-
NATORIAL OPTIMIZATION AND STATISTICAL PHYSICS

Sebastian Sanokowski1 ∗ Wilhelm Berghammer 1 Martin Ennemoser 1

Haoyu Peter Wang 2 Sepp Hochreiter 1,3 Sebastian Lehner 1

1 ELLIS Unit Linz, LIT AI Lab, Johannes Kepler University Linz, Austria
2 Department of Electrical & Computer Engineering, Georgia Institute of Technology
3 NXAI Lab & NXAI GmbH, Linz, Austria

ABSTRACT

Learning to sample from complex unnormalized distributions over discrete do-
mains emerged as a promising research direction with applications in statistical
physics, variational inference, and combinatorial optimization. Recent work has
demonstrated the potential of diffusion models in this domain. However, exist-
ing methods face limitations in memory scaling and thus the number of attainable
diffusion steps since they require backpropagation through the entire generative
process. To overcome these limitations we introduce two novel training methods
for discrete diffusion samplers, one grounded in the policy gradient theorem and
the other one leveraging Self-Normalized Neural Importance Sampling (SN-NIS).
These methods yield memory-efficient training and achieve state-of-the-art results
in unsupervised combinatorial optimization. Numerous scientific applications ad-
ditionally require the ability of unbiased sampling. We introduce adaptations of
SN-NIS and Neural Markov Chain Monte Carlo that enable for the first time the
application of discrete diffusion models to this problem. We validate our methods
on Ising model benchmarks and find that they outperform popular autoregressive
approaches. Our work opens new avenues for applying diffusion models to a wide
range of scientific applications in discrete domains that were hitherto restricted to
exact likelihood models.

1 INTRODUCTION

Sampling from unnormalized distributions is crucial in a wide range of scientific domains, including
statistical physics, variational inference, and combinatorial optimization (CO) (Wu et al., 2019;
Shih & Ermon, 2020; Hibat-Allah et al., 2021). We refer to research on using neural networks
to learn how to sample unnormalized distributions as Neural Probabilistic Optimization (NPO). In
NPO, a target distribution is approximated using a probability distribution that is parameterized
by a neural network. Hence, the goal is to learn an approximate distribution in a setting, where
only unnormalized sample probabilities can be calculated. Importantly, no samples from the target
distribution are available, i.e. we are working in the data-free problem setting. In the following, we
consider binary state variables X ∈ {0, 1}N , where N represents the system size. The unnormalized
target distribution is typically implicitly defined by an accessible energy function H : {0, 1}N → R.
The target distribution is defined to be the corresponding Boltzmann distribution:

pB(X) =
exp (−βH(X))

Z
, where Z =

∑
X

exp (−βH(X)). (1)

∗Code available at: https://github.com/ml-jku/DIffUCO.
Correspondance to sanokowski[at]ml.jku.at

1

https://github.com/ml-jku/DIffUCO

Published as a conference paper at ICLR 2025

Here β := 1/T is the inverse temperature, andZ is the partition sum that normalizes the distribution.
An analogous formulation applies to continuous problem domains. Unbiased sampling from this
distribution is typically computationally expensive due to the exponential number (2N) of states.
Sampling techniques, such as Markov Chain Monte Carlo (Metropolis et al., 1953) are employed
with great success in applications in statistical physics. Nevertheless, their applicability is typically
limited due to issues related to Markov chains getting stuck in local minima and large autocorrelation
times (Nicoli et al., 2020; McNaughton et al., 2020). Recently, the application of deep generative
models has gained increasing attention as an approach to this problem. Initial methods in NPO relied
on exact likelihood models where qθ(X) could be efficiently evaluated. Boltzmann Generators
(Noé & Wu, 2018) are a notable example in the continuous setting, using normalizing flows to
approximate Boltzmann distributions for molecular configurations. In the discrete setting, Wu et al.
(2019); Hibat-Allah et al. (2021) use autoregressive models to approximate Boltzmann distributions
of spin systems in the context of statistical and condensed matter physics. Inspired by the success of
diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) in image generation, there is growing
interest in so-called diffusion samplers where these models are applied to NPO problems in discrete
(Sanokowski et al., 2024) and continuous settings (Zhang & Chen, 2022). Diffusion models are
particularly intriguing in the discrete setting due to the lack of viable alternatives. Normalizing
flows, which are a popular choice for continuous problems, cannot be directly applied in discrete
settings, leaving autoregressive models as the most popular alternative. However, autoregressive
approaches face significant limitations. They become computationally prohibitive as the system size
grows. There are complexity theoretical results (Lin et al., 2021) and empirical results (Sanokowski
et al., 2024) that suggest that they are less efficient distribution learners than latent variable models
like diffusion models. Consequently, we consider diffusion models as a more promising approach
to discrete NPO. However, existing diffusion-based methods for sampling on discrete domains face
two major challenges:

1. Memory Scaling: They rely on a loss that is based on the reverse Kullback–Leibler (KL) diver-
gence which necessitates that the entire diffusion trajectory is kept in memory for backpropaga-
tion (see Sec. 2.1). This linear memory scaling limits the number of applicable diffusion steps
and hence the achievable model performance. This is in sharp contrast to diffusion models in
e.g. image generation, which benefit from the capability of using a large number of diffusion
steps.

2. Unbiased Sampling: For many scientific applications, a learned distribution is only valuable if
it allows for unbiased sampling, i.e., the unbiased computation of expectation values. Autore-
gressive models allow this through importance sampling or Markov Chain Monte Carlo methods
based on their exact sample likelihoods. However, unbiased sampling with approximate likeli-
hood models on discrete domains remains so far unexplored.

We introduce our method Scalable Discrete Diffusion Sampler (SDDS) by proposing two novel
training methods in Sec. 3.1 to address the memory scaling issue and the resulting limitation on the
number of diffusion steps in NPO applications of discrete diffusion models:

1. reverse KL objective: Employs the policy gradient theorem for minimization of the reverse KL di-
vergence and integrates Reinforcement Learning (RL) techniques to mitigate the aforementioned
linear memory scaling.

2. forward KL objective: Adapts Self-Normalized Neural Importance Sampling to obtain asymptot-
ically unbiased gradient estimates for the forward KL divergence. This approach mitigates the
linear memory scaling by using Monte Carlo estimates of the objective across diffusion steps.

In Sec. 5.1, we compare our proposed objectives to previous approaches and demonstrate that the
reverse KL-based objective achieves new state-of-the-art results on 6 out of 7 unsupervised Combi-
natorial Optimization (UCO) benchmarks and is on par on one benchmark.
Secondly, to eliminate bias in the learned distribution, we extend two established methods - Self-
Normalized Neural Importance Sampling (SN-NIS) and Neural Markov Chain Monte Carlo (NM-
CMC) - to be applicable to approximate likelihood models such as diffusion models. We introduce
these methods in Sec.3.2 and validate their effectiveness using the Ising model in Sec.5.2, highlight-
ing the advantages of diffusion models over autoregressive models. Our experiments show that the
forward KL divergence-based objective excels in unbiased sampling. We hypothesize that this is
due to its mass-covering property. Our experiments show that the mass-covering property is also

2

Published as a conference paper at ICLR 2025

beneficial in UCO when sampling many solutions from the model to obtain an optimal solution.
Conversely, the reverse KL-based objective performs better in UCO contexts where only a few so-
lutions are sampled or when a good average solution quality is prioritized.

2 PRELIMINARY: NEURAL PROBABILISTIC OPTIMIZATION

The goal of NPO is to approximate a known target probability distribution pB(X) using a probabilis-
tic model parameterized by a neural network. This technique leverages the flexibility and expressive
power of neural networks to model complex distributions. The objective is to train the neural net-
work to represent a probability distribution qθ(X) that approximates the target distribution without
requiring explicit data from the target distribution. This approximation can generally be achieved
by minimizing a divergence between the two distributions. One class of divergences used for this
purpose are alpha divergences (Minka et al., 2005; Amari, 2012):

Dα(pB(X)||qθ(X)) = −
∫
pB(X)αqθ(X)1−αdX

α (1− α)

By selecting a specific value of α, this divergence can be used as a loss function for training the
model, and the choice of α influences the bias of the learned distribution. For instance, for α ≤ 0 the
resulting distribution is mode seeking, which means the model focuses on the most probable modes
of the target distribution, potentially ignoring less probable regions. Whereas, for α ≥ 1 it is mass-
covering, meaning the model spreads its probability mass to cover more of the state space, including
less probable regions. As α → 1 the divergence equals the forward Kullback-Leibler divergence
(fKL) DKL(pB(X) || qθ(X)) and as α→ 0 it equals the reverse Kullback-Leibler divergence (rKL)
DKL(qθ(X) || pB(X)) (Minka et al., 2005). The two divergences, rKL and fKL are particularly
convenient in this context due to the product rule of logarithms that we utilize in this paper to realize
diffusion models with more diffusion steps (see Sec. 3.1).

2.1 DISCRETE DIFFUSION MODELS FOR NEURAL PROBABILISTIC OPTIMIZATION

In discrete time diffusion models, a forward diffusion process transforms the target distribution
pB(X0) into a stationary distribution q(XT) through iterative sampling of a noise distribution
p(Xt|Xt−1) where t ∈ {1, T} for a total of T iterations. The diffusion model is supposed to
model the reverse process, i.e. to map samples XT ∼ q(XT) to X0 ∼ pB(X0) by iteratively
sampling qθ(Xt−1|Xt). The probability of a diffusion path X0:T = (X0, ..., XT) of the reverse
process can be calculated with qθ(X0:T) = q(XT)

∏T
t=1 qθ(Xt−1|Xt) and qθ(Xt−1|Xt) is chosen

so that samples X0:T ∼ qθ(X0:T) can be efficiently drawn. Usually, in the reverse process, the
diffusion model is explicitly conditioned on the diffusion step t, such that the distribution of the
reverse diffusion step can be written as qθ(Xt−1|Xt, t). However, in the following, we will drop
the dependence on t to simplify the notation. The unnormalized probability of a diffusion path of
the forward process can be calculated with p̂(X0:T) = p̂B(X0)

∏T
t=1 p(Xt|Xt−1). In the data-

free setting samples X0:T ∼ p(X0:T) are not available. Sanokowski et al. (2024) invoke the Data
Processing Inequality to introduce diffusion models in discrete NPO by proposing to use the rKL of
joint probabilities DKL(qθ(X0:T) || p(X0:T)) as a tractable upper bound of the rKL of the marginals
DKL(qθ(X0) || pB(X0)). They further simplify this objective to express it in the following form:

T DKL (qθ(X0:T) || p(X0:T)) = −T ·
T∑

t=1

EXt:T∼qθ(Xt:T) [S(qθ(Xt−1|Xt))]

− T ·
T∑

t=1

EXt−1:T∼qθ(Xt−1:T) [log p(Xt|Xt−1)]

+ EX0:T∼qθ(X0:T) [H(X0)] + C,

(2)

where T is the temperature, C a parameter independent constant and S(.) the Shannon entropy. In
practice, the expectation over X0:T ∼ qθ(X0:T) is estimated using M diffusion paths, where each
diffusion path corresponds to a sample of X0:T from the model. The objective is optimized using the
log-derivative trick to propagate the gradient through the expectation over qθ. Examination of Eq. 2
shows that the memory required for backpropagation scales linearly with the number of diffusion

3

Published as a conference paper at ICLR 2025

steps, since backpropagation has to be performed through the expectation values for each time step
t. Within a fixed memory budget, this results in a limitation on the number of diffusion steps and
hence the model performance. To address these issues, we propose two alternatives to this objective,
which are discussed in Sec. 3.

2.2 UNSUPERVISED COMBINATORIAL OPTIMIZATION

Sanokowski et al. (2024) apply diffusion models in UCO by reformulating it as an NPO prob-
lem. There is a wide class of CO problems that can be described in QUBO formulation (Lu-
cas, 2014; Glover et al., 2022). In this case, the CO problem is described by an energy function
HQ : {0, 1}N → R which is given by:

HQ(X) =
∑
i,j

QijXiXj , (3)

where Q ∈ RN×N is chosen according to the CO problem at hand. A table of the QUBO formula-
tions of the CO problem types studied in this paper is given in Tab. 5. In UCO the goal is to train
a conditional generative model qθ(X|Q) on problem instances Q that are drawn from a distribution
D(Q) (see Sec. 5.1 and App. A.6) for more information on D(Q)). After training the model can be
used on unseen i.i.d CO problems to obtain solutions of high quality within a short amount of time.
This can be realized by using the expectation of HQ(X) with respect to a parameterized probability
distribution which is used as a loss function and minimized with respect to network parameters θ:

L(θ) = EQ∼D(Q),X∼qθ(X|Q)[HQ(X)]. (4)

For notational convenience the conditional dependence of qθ on the problem instance Q is sup-
pressed in the following. As minimizing the expectation value of HQ(X) in Eq. 4 is prone to getting
stuck in local minima, numerous works (Hibat-Allah et al., 2021; Sun et al., 2022; Sanokowski et al.,
2023; 2024) reframe this problem as an NPO problem and minimize T DKL(qθ(X) || pB(X)) =
EX∼qθ(X)[HQ(X) + T log qθ(X)] + C instead, where C is a constant which is independent of θ.
The optimization procedure of this objective is combined with annealing, where the objective is first
optimized at high temperature, which is then gradually reduced to zero. At T = 0 this objective re-
duces to the unconditional loss in Eq. 4. Sanokowski et al. (2023) motivate this so-called variational
annealing procedure theoretically from a curriculum learning perspective and the aforementioned
works show experimentally that it yields better solution qualities.

2.3 UNBIASED SAMPLING

When a parameterized probability distribution qθ(X) is used to approximate the target distribu-
tion pB(X) the learned distribution will typically be an imperfect approximation. Consequently,
samples from qθ(X) will exhibit a bias. When the model is used to infer properties of the system
that is described by the target distribution, it is essential to correct for this bias. The following
paragraphs revisit two established unbiased sampling methods namely Self-Normalized Neural Im-
portance Sampling (SN-NIS) and Neural Markov Chain Monte Carlo (NMCMC) that can be used
to achieve this goal. These methods serve as the basis for our diffusion-based unbiased sampling
methods which are introduced in Sec. 3.2.

Self-Normalized Neural Importance Sampling: SN-NIS allows asymptotically unbiased com-
putation of expectation values of a target distribution. Given an observable O : {0, 1}N → R,
an exact likelihood model qθ(X) can be used to calculate expectation values ⟨O(X)⟩pB(X) :=

EpB(X)[O(X)] in the following way:

⟨O(X0)⟩pB(X0)
≈

M∑
i=1

w(Xi)O(Xi),

where Xi corresponds to the i-th of M samples from qθ(X). The importance weights are com-
puted with w(Xi) = ŵ(Xi)∑

j ŵ(Xj) , where ŵ(X) = p̂B(X)
qθ(X) (for a derivation we refer to App. A.2).

The probability distribution that is proportional to pB(X) |O(X)| yields the minimum-variance es-
timate of ⟨O(X)⟩pB(X) (Rubinstein & Kroese, 2016). However, in our experiments, we focus on a

4

Published as a conference paper at ICLR 2025

distribution that approximates pB(X) since this allows the computation of expectations for various
different O. An attractive feature of importance sampling is that it provides an unbiased estimator of
the partition sum Z that is given by Ẑ = 1

M

∑M
i=1 ŵ(X

i). This estimator is used in the experiment
section to estimate free energies (Sec. 5.2).

Neural Markov Chain Monte Carlo: NMCMC represents an alternative to SN-NIS which can be
realized with the Metropolis-Hastings algorithm (Metropolis et al., 1953). Here, given a starting
state X a proposal state X ′ is sampled from qθ(X

′), which is accepted with the probability

A(X ′, X) = min

(
1,

p̂(X ′)qθ(X)

p̂(X)qθ(X ′)

)
.

For more details on MCMC and Neural MCMC we refer to App. A.2.2. This process is repeated
simultaneously for a batch of states until a convergence criterion is met (see App. A.3.4). After
convergence the resulting samples can be considered to be approximately distributed as X ∼ pB(X)
and these samples can be used to estimate ⟨O(X)⟩pB(X). Since diffusion models are approximate
likelihood models, i.e. it is infeasible to compute qθ(X) exactly, neither SN-NIS nor NMCMC is
directly applicable to them. In Sec. 3.2 we propose techniques that overcome this limitation.

3 METHODS

3.1 SCALABLE DISCRETE DIFFUSION SAMPLERS

Sanokowski et al. (2024) demonstrate that increasing the number of diffusion steps in UCO improves
the solution quality of the diffusion model, as it enables the model to represent more complex dis-
tributions. However, as discussed in Sec. 2.1, the loss function in Eq. 2 used in their work inflicts
memory requirements that scale linearly with the number of diffusion steps. Given a fixed memory
budget, this limitation severely restricts the expressivity of the diffusion model. In the following
sections, we introduce training methods that mitigate this shortcoming.

Forward KL Objective: One possibility to mitigate the linear scaling issue is to use the forward
Kullback-Leibler divergence (fKL). In contrast to the objective in Eq. 2 the gradient can be pulled
into the expectation:

∇θDKL(p(X0:T)||qθ(X0:T)) = −EX0:T∼p(X0:T)[∇θ log qθ(X0:T)].

However, since in NPO samples X0:T ∼ p(X0:T) are not available, we employ SN-NIS to
rewrite the expectation with respect to X0:T ∼ qθ(X0:T). Note that this is feasible with dif-
fusion models since they do provide exact joint likelihoods. In analogy to data-based diffusion
models (Ho et al., 2020) one can now use Monte Carlo estimates of the sum over time steps
log qθ(X0:T) =

∑T
t=1 log qθ(Xt−1|Xt) to mitigate the aforementioned memory scaling issue. The

resulting gradient of the fKL objective is given by (see App. A.2.6):

∇θDKL(p(X0:T)||qθ(X0:T)) = −T
M∑
i=1

Et∼U{1,...,T}
[
w(Xi

0:T)∇θ log qθ(X
i
t−1|Xi

t)
]
,

where w(Xi
0:T) =

ŵ(Xi
0:T)∑M

j=1 ŵ(Xj
0:T)

are importance weights with ŵ(Xi
0:T) =

p̂(Xi
0:T)

qθ(Xi
0:T)

, Xi
0:T ∼

qθ(X0:T), and U{1, ..., T} is the uniform distribution over the set {1, ..., T}.
In the following, we will refer to this method as SDDS: fKL w/ MC since it realizes Scalable Discrete
Diffusion Samplers (SDDS) using an objective that is based on the fKL, where the linear memory
scaling issue is addressed with Monte Carlo estimation over diffusion steps. A pseudocode of the
optimization procedure is given in App. A.3.5.

Reverse KL Objective: The minimization of the reverse Kullback-Leibler divergence (rKL) based
objective function L(θ) introduced by Eq. 2 can be shown to be equivalent to parameter updates
using the policy gradient theorem (Sutton & Barto, 2018) (see App. A.2.5). The resulting gradient
updates are expressed as:

∇θL(θ) = −EXt∼dθ(X ,t),Xt−1∼qθ(Xt−1|Xt)

[
Qθ(Xt−1, Xt)∇θ log qθ(Xt−1|Xt)

]
, (5)

where:

5

Published as a conference paper at ICLR 2025

• t = T in the first step and t = 1 is the terminal step,
• Qθ(Xt−1, Xt) = R(Xt, Xt−1) + V θ(Xt−1),

• V θ(Xt) =
∑

Xt−1
qθ(Xt−1|Xt)Q

θ(Xt−1, Xt) where V θ(X0) = 0,

• R(Xt, Xt−1) is defined as:

R(Xt, Xt−1) :=

{
T [log p(Xt|Xt−1)− log qθ(Xt−1|Xt)] if 1 < t ≤ T

T [log p(Xt|Xt−1)− log qθ(Xt−1|Xt)]−H(Xt−1) if t = 1.

Here dθ(X , t) represents the stationary state distribution of the state (X , t) and the policy qθ in the
setting of episodic RL environments.

This formulation suggests leveraging RL techniques to optimize Eq. 5, where Qθ is the Q-function,
V θ the value function, and R(Xt, Xt−1) the reward. The usage of RL training methods addresses the
linear memory scaling issue associated with Eq. 2 as sampling from the stationary state distribution
dθ corresponds in this setting to uniformly sampling diffusion time steps t. We chose to optimize
Eq. 5 via the Proximal Policy Optimization (PPO) algorithm Schulman et al. (2017) (for details and
pseudocode see App. A.3.6). In the following, we will refer to this method as SDDS: rKL w/ RL to
emphasize that SDDSs are trained with the usage of RL methods.

3.2 UNBIASED SAMPLING WITH DISCRETE ISING MODELS

As concluded in Sec. 2.3, neither SN-NIS nor NMCMC can be applied with diffusion models. In the
following, we introduce adapted versions each of these methods that allow us to perform unbiased
sampling, i.e. unbiased computation of expectation values, with diffusion models.

Self-Normalized Neural Importance Sampling for Diffusion Models: Given a diffusion model
qθ that is trained to approximate a target distribution pB(X0), we can use this model to calculate
unbiased expectations ⟨O(X0)⟩pB(X0)

with SN-NIS in the following way (see App. A.2.1):

⟨O(X0)⟩pB(X0)
≈

M∑
i=1

[w(Xi
0:T)O(Xi

0)]

where w(Xi
0:T) =

ŵ(Xi
0:T)∑M

j=1 ŵ(Xj
0:T)

and Xi
0:T ∼ qθ(X

i
0:T) with ŵ(Xi

0:T) =
p̂(Xi

0:T)

qθ(Xi
0:T)

. Using these

importance weights the partition sum of pB(X0) can be estimated with Ẑ = 1
M

∑M
i=1 ŵ(X

i
0:T).

Neural MCMC for Diffusion Models: Starting from an initial diffusion path X0:T , we propose a
state by sampling X ′

0:T ∼ q(X ′
0:T). This diffusion path is then accepted with the probability (see

App: A.2.4):

A(X ′, X) = min

(
1,

p̂(X ′
0:T) qθ(X0:T)

p̂(X0:T) qθ(X ′
0:T)

)
This process is repeated until the Markov chain meets convergence criteria and samples X0:T are
distributed as p(X0:T) and X0 can be considered to be distributed as pB(X0). These samples can
be used to approximate expectations with ⟨O(X0)⟩X0∼pB(X0)

(see App. A.2.4).

4 RELATED WORK

Neural Optimization: Besides their predominance in supervised and unsupervised learning tasks,
neural networks become an increasingly popular choice for a wide range of data-free optimization
tasks, i.e. scenarios where an objective function can be explicitly expressed rather than implicitly
via data samples. In Physics Informed Neural Networks (Raissi et al., 2019) models are trained
to represent the solutions of differential equations. Here the loss function measures the adherence
of the solution quality. Similarly, Berzins et al. (2024) propose a neural optimization approach
for generating shapes under geometric constraints. Recently, there has been increasing interest in
using probabilistic generative models to generate solutions to neural optimization. Here the learned
models do not directly represent a solution but rather a probability distribution over the solution
space. We refer to this endeavor as Neural Probabilistic Optimization (NPO). In the following, we
discuss two important NPO application areas in discrete domains.

6

Published as a conference paper at ICLR 2025

Neural Combinatorial Optimization: Neural CO aims at generating high-quality solutions to CO
problems time-efficiently during inference time. The goal is to train a generative model to generate
solutions to a given CO problem instance on which it is conditioned. Supervised CO (Sun & Yang,
2023; Li et al., 2018; Böther et al., 2022a) typically involves training a conditional generative model
using a training dataset that includes solutions obtained from classical solvers like Gurobi (Gurobi
Optimization, LLC, 2023). However, as noted by Yehuda et al. (2020), these supervised approaches
face challenges due to expensive data generation, leading to increased interest in unsupervised CO
(UCO). In UCO the goal is to train models to solve CO problems without relying on labeled training
data but only by evaluating the quality of generated solutions Bengio et al. (2021b). These methods
often utilize exact likelihood models, such as mean-field models (Karalias & Loukas, 2020; Sun
et al., 2022; Wang & Li, 2023). The calculation of expectation values in UCO is particularly con-
venient with mean-field models due to mathematical simplification arising from their assumption
of statistical independence among modeled random variables. However, Sanokowski et al. (2023)
demonstrate that the statistical independence assumption in mean-field models limits their perfor-
mance on particularly challenging CO problems. They show that more expressive exact likelihood
models, like autoregressive models, offer performance benefits, albeit at the cost of high memory re-
quirements and longer sampling times, which slow down the training process. These limitations can
be addressed by combining autoregressive models with RL methods to reduce memory requirements
and accelerate training as it is done in Khalil et al. (2017) and Sanokowski et al. (2023). Sanokowski
et al. (2023) additionally introduce Subgraph Tokenization to mitigate slow sampling and training
in autoregressive models. Zhang et al. (2023) utilize GFlow networks (Bengio et al., 2021a), imple-
menting autoregressive solution generation in UCO. Sanokowski et al. (2024) introduce a general
framework that allows for the application of diffusion models to UCO and demonstrate their superi-
ority on a range of popular CO benchmarks.

Unbiased Sampling: In this work, unbiased sampling refers to the task of calculating unbiased
expectation values via samples from an approximation of the target distribution. Corresponding
methods rely so far primarily on exact likelihood models, i.e. models that provide exact likelihoods
for samples. Unbiased sampling plays a central role in a wide range of scientific fields, including
molecular dynamics (Noé & Wu, 2018; Dibak et al., 2022), path tracing (Müller et al., 2019), and
lattice gauge theory (Kanwar et al., 2020). These applications in continuous domains are suitable
for using exact likelihood models like normalizing flows which are a popular model class in these
domains. More recently approximate likelihood models became increasingly important in these
applications since their increased expressivity yields superior results (Dibak et al., 2022; Zhang &
Chen, 2022; Berner et al., 2022a; Jing et al., 2022; Berner et al., 2022b; Richter et al., 2023; Vargas
et al., 2023; 2024; Akhound-Sadegh et al., 2024). In discrete domains, unbiased sampling arises
as a key challenge in the study of spin glasses (Nicoli et al., 2020; McNaughton et al., 2020; Inack
et al., 2022; Białas et al., 2022; Biazzo et al., 2024), many-body quantum physics (Sharir et al.,
2020; Wu et al., 2021), and molecular biology (Cocco et al., 2018). In these settings, autoregressive
models are the predominant model class. We are not aware of works that explore the applicability
and performance of approximate likelihood models like diffusion models for unbiased sampling on
discrete problem domains.

5 EXPERIMENTS

We evaluate our methods on UCO benchmarks in Sec. 5.1 and on two benchmarks for unbiased
sampling Sec. 5.2 and in App. A.8.2. In all of our experiments, we use a time-conditioned diffusion
model qθ(Xt−1|Xt, t) that is realized either by a Graph Neural Network (GNN) (Scarselli et al.,
2009) in UCO experiments or by a U-Net architecture (Ronneberger et al., 2015) in experiments
on the Ising model (see App. A.4). In our experiments the probability distribution correspond-
ing to individual reverse diffusion steps is parametrized via a product of Bernoulli dsitributions
qθ(Xt−1|Xt, t) =

∏N
i q̂θ(Xt)

Xt−1,i

i (1−q̂θ(Xt))
1−Xt−1,i

i , where q̂θ(Xt)i := qθ(Xt−1,i = 1|Xt, t).
As a noise distribution, we use the Bernoulli noise distribution from (Sohl-Dickstein et al., 2015)
(see App. A.3.1).

5.1 UNSUPERVISED COMBINATORIAL OPTIMIZATION

In UCO the goal is to train a model to represent a distribution over solutions, which is conditioned on
individual CO problem instances (see Sec. 2.2). Since each CO problem instance corresponds to a

7

Published as a conference paper at ICLR 2025

graph it is a natural and popular choice to use GNNs for the conditioning on the CO problem instance
(Cappart et al., 2021). Our experiments in UCO compare three objectives: the original DiffUCO
objective as in Eq. 2 and the two newly proposed methods SDDS: rKL w/ RL and SDDS: fKL w/ MC.
We evaluate these methods on benchmarks across four CO problem types: Maximum Independent
Set (MIS), Maximum Clique (MaxCl), Minimum Dominating Set (MDS), and Maximum Cut (MC).
For detailed explanations of these CO problem types see App. A.5. Following Zhang et al. (2023)
and Sanokowski et al. (2024), we define the MIS and MaxCl problems on graphs generated by the
RB-model (RB) which is known for producing particularly challenging problems (Xu et al., 2005).
The MaxCut and MDS problem instances are defined on Barabasi-Albert (BA) graphs (Barabási &
Albert, 1999). For each CO problem type except MaxCl, we evaluate the methods on both small and
large graph datasets. The small datasets contain graphs with 200-300 nodes, while the large datasets
have 800-1200 nodes. Each dataset comprises 4000 graphs for training, 500 for evaluation and 1000
for testing. To ensure a fair comparison in terms of available computational resources, we maintain
a constant number of gradient update steps and a comparable training time across DiffUCO, SDDS:
rKL w/ RL and SDDS: fKL w/ MC (see App. A.7.1). In our experiments, we first evaluate DiffUCO
with fixed computational constraints. Using the same computational constraints, we then evaluate
our proposed methods SDDS: rKL w/ RL and SDDS: fKL w/ MC with twice as many diffusion steps
compared to DiffUCO. This is possible since these methods are designed to enable more diffusion
steps with the same memory budget. Compared to the original DiffUCO implementation (DiffUCO
(r), Sanokowski et al. (2024)) we also add a cosine learning rate schedule (Loshchilov & Hutter,
2017) and graph normalization layers (Cai et al., 2021) since this was found to improve the obtained
results App. A.7.2. Additionally, the computational constraints between our DiffUCO evaluation
and DiffUCO (r) are different. These two factors explain the superior performance of DiffUCO
with respect to the reported values of DiffUCO (r) in Tab. 1 and Tab. 2. Sanokowski et al. (2024)
have shown empirically that increasing the number of diffusion steps during inference improves
the solution quality in UCO. In accordance with these insights, we evaluate the performance of the
diffusion models with three times as many diffusion steps as during training.

Results: We report the average test dataset solution quality over 30 samples per CO problem in-
stance. We include results for all three objectives and also include for reference the results from the
two best-performing methods in DiffUCO (Sanokowski et al., 2024), and LTFT (Zhang et al., 2023).
Results for the MIS and MDS problems are shown in Tab. 1 and for the MaxCl and MaxCut problems
in Tab. 2. In these tables, we also show the solution quality of the classical method Gurobi, which is
- if computationally feasible - run until the optimal solution is found. These results are intended to
showcase the best possible achievable solution quality on these datasets. Since Gurobi runs on CPUs
it cannot be compared straightforwardly to the other results which were obtained under specific con-
straints for GPUs. To ensure the feasibility of solutions and to obtain better samples from a product
distribution in a deterministic way the final diffusion step is decoded with the Conditional Expec-
tation (CE) (Raghavan, 1988) algorithm (see App: A.3.2). We optionally apply this method in the
last diffusion step. However, we find that in our experiments the improvement by using Conditional
Expectation (see App: A.3.2) is much smaller than the improvements reported in Sanokowski et al.
(2024). We attribute this finding to the higher solution quality of our models. Secondly, we see that
SDDS: rKL w/ RL outperforms all other methods in terms of average solution quality significantly
in 4 out of 7 cases and insignificantly in 2 out of 7 cases. Only on MaxCut BA-large DiffUCO and
SDDS: fKL w/ MC perform insignificantly better than SDDS: rKL w/ RL. In most cases, DiffUCO
is the second best method and SDDS: fKL w/ MC performs worst. When increasing the number of
samples from 30 to 150 sampled solutions (see Tab.3) SDDS: fKL w/ MC and SDDS: rKL w/ RL are
the best-performing objectives in 6 of 7 cases and insignificantly the single best objective in 4 out of
7 cases. This finding is to be expected due to the mass-covering behavior of the fKL which allows
the distribution qθ to put probability mass on solutions where the target distribution has vanishing
probability. As a result, the fKL-based training yields a worse average solution quality but due to the
mass-covering property, the distribution covers more diverse solutions which makes it more likely
that the very best solutions are within the support of qθ. In contrast to that, DiffUCO and SDDS: rKL
w/ RL are mode seeking which tend to cover fewer solutions but exhibit a higher average solution
quality. Our experimental results in Tab. 1 and Tab. 2 show consistent improvements over the results
reported by Sanokowski et al. (2024).

8

Published as a conference paper at ICLR 2025

MIS RB-small RB-large

Method Type Size ↑ time ↓ Size ↑ time ↓
Gurobi OR 20.13± 0.03 6:29 42.51± 0.06∗ 14:19:23

LTFT (r) UL 19.18 1:04 37.48 8:44
DiffUCO (r) UL 18.88± 0.06 0:14 38.10± 0.13 0:20

DiffUCO: CE (r) UL 19.24± 0.05 1:48 38.87± 0.13 9:54

DiffUCO UL 19.42± 0.03 0:02 39.44± 0.12 0:03
SDDS: rKL w/ RL UL 19.62± 0.01 0:02 39.97± 0.08 0:03
SDDS: fKL w/ MC UL 19.27± 0.03 0:02 38.44± 0.06 0:03

DiffUCO: CE UL 19.42± 0.03 0:20 39.49± 0.09 6:38
SDDS: rKL w/ RL-CE UL 19.62± 0.01 0:20 39.99± 0.08 6:35
SDDS: fKL w/ MC-CE UL 19.27± 0.03 0:19 38.61± 0.03 6:31

MDS BA-small BA-large

Method Type Size ↓ time ↓ Size ↓ time ↓
Gurobi OR 27.84± 0.00 1:22 104.01± 0.27 3:35:15

LTFT (r) UL 28.61 4:16 110.28 1:04:24
DiffUCO (r) UL 28.30± 0.10 0:10 107.01± 0.33 0:10

DiffUCO: CE (r) UL 28.20± 0.09 1:48 106.61± 0.30 6:56

DiffUCO UL 28.10± 0.01 0:01 105.21± 0.21 0:01
SDDS: rKL w/ RL UL 28.03± 0.00 0:02 105.16± 0.21 0:02
SDDS: fKL w/ MC UL 28.34± 0.02 0:01 105.70± 0.25 0:02

DiffUCO: CE UL 28.09± 0.01 0:16 105.21± 0.21 1:45
SDDS: rKL w/ RL-CE UL 28.02± 0.01 0:16 105.15± 0.20 1:41
SDDS: fKL w/ MC-CE UL 28.33± 0.02 0:16 105.7± 0.25 1:41

Table 1: Left: Average independent set size on the test dataset of RB-small and RB-large. The
higher the better. Right: Average dominating set size on the test dataset of BA-small and BA-
large. The lower the set size the better. Left and Right: Total evaluation time is shown in h:m:s. (r)
indicates that results are reported as in Sanokowski et al. (2024). ± represents the standard error over
three independent training seeds. (CE) indicates that results are reported after applying conditional
expectation. The best neural method is marked as bold. Gurobi results with ∗ indicate that Gurobi
was run with a time limit. On MIS RB-large the time-limit is set to 120 seconds per graph.

MaxCl RB-small MaxCut BA-small BA-large

Method Type Size ↑ time ↓ Method Type Size ↑ time ↓ Size ↑ time ↓
Gurobi OR 19.06± 0.03 11:00 Gurobi (r) OR 730.87± 2.35∗ 17:00:00 2944.38± 0.86∗ 2:35:10:00

LTFT (r) UL 16.24 1:24 LTFT (r) UL 704 5:54 2864 42:40
DiffUCO (r) UL 14.51± 0.39 0:08 DiffUCO (r) UL 727.11± 2.31 0:08 2947.27± 1.50 0:08

DiffUCO: CE (r) UL 16.22± 0.09 2:00 DiffUCO: CE (r) UL 727.32± 2.33 2:00 2947.53± 1.48 7:34

DiffUCO UL 17.40± 0.02 0:02 DiffUCO UL 731.30± 0.75 0:02 2974.60± 7.73 0:02
SDDS: rKL w/ RL UL 18.89± 0.04 0:02 SDDS: rKL w/ RL UL 731.93± 0.74 0:02 2971.62± 8.15 0:02
SDDS: fKL w/ MC UL 18.40± 0.02 0:02 SDDS: fKL w/ MC UL 731.48± 0.69 0:02 2973.80± 7.57 0:02

DiffUCO: CE UL 17.40± 0.02 0:38 DiffUCO: CE UL 731.30± 0.75 0:15 2974.64± 7.74 1:13
SDDS: rKL w/ RL-CE UL 18.90± 0.04 0:38 SDDS: rKL w/ RL-CE UL 731.93± 0.74 0:14 2971.62± 8.15 1:08
SDDS: fKL w/ MC-CE UL 18.41± 0.02 0:38 SDDS: fKL w/ MC-CE UL 731.48± 0.69 0:14 2973.80± 7.57 1:08

Table 2: Left: Testset average clique size on the RB-small dataset. The larger the set size the better.
Right: Average test set cut size on the BA-small and BA-large datasets. The larger the better. Left
and Right: Total evaluation time is shown in d:h:m:s. (CE) indicates that results are reported after
applying conditional expectation. Gurobi results with ∗ indicate that Gurobi was run with a time
limit. On MDS BA-small the time limit is set to 60 and on MDS BA-large to 300 seconds per graph.

5.2 UNBIASED SAMPLING OF ISING MODELS

In the discrete domain, the Ising model is frequently studied in the context of unbiased sampling
(Nicoli et al., 2020; McNaughton et al., 2020). The Ising model is a discrete system, where the
energy function HI : {−1, 1}N → R is given by HI(σ) = −J

∑
⟨i,j⟩ σiσj , where ⟨i, j⟩ runs over

all neighboring pairs on a lattice. At temperature T the state of the system in thermal equilibrium
is described by the Boltzmann distribution from Eq. 1. Analogously to Nicoli et al. (2020), we
explore unbiased sampling using finite-size Ising models (see Sec. 2.3) on a periodic, regular 2D
grid of size L with a nearest-neighbor coupling parameter of J = 1. We experimentally validate
our unbiased sampling approach with diffusion models by comparing the estimated values of the
free energy F = − 1

β logZ , internal energy U =
∑

X pB(X)HI(X), and entropy S = β (U − F)
against the theoretical values derived by Ferdinand & Fisher (1969). We also report the effective
sample size per sample ϵeff/M := 1

M

(
∑M

i=1 wi)
2∑M

i=1 w2
i

of each method. For the best possible model,

the effective sample size per sample equals one as wi = 1/M ∀ i ∈ {1, ...,M}. For the worst
possible model ϵeff/M = 1/M as there is one weight which is equal to 1 and all others are 0.
In our experiments, we train diffusion models using 300 diffusion steps and a U-net architecture
(details in App. A.4 and App. A.7.3). Tab. 4 presents our results where each model is evaluated
over three independent sampling seeds. We compare our methods to two other methods that both
rely on the rKL objective. First, the AR models by (Wu et al., 2019) which we label as VAN (r),
and second the NIS method with AR models by (Nicoli et al., 2020) which we label as AR (r).
We also evaluate an AR reimplementation of (Nicoli et al., 2020) using the same architecture and
computational constraints as the diffusion models.

Results: We find that the diffusion model outperforms the AR baseline reported in (Nicoli et al.,
2020). Our method SDDS: fKL w/ MC yields the best performance, producing values closest to

9

Published as a conference paper at ICLR 2025

CO problem type MaxCl ↑ MaxCut ↑ MIS ↑ MDS ↓
Graph Dataset RB-small BA-small BA-large BA-small BA-large BA-small BA-large

Gurobi Set Size 19.06± 0.03 730.87± 2.35∗ 2944.38± 0.86∗ 20.14± 0.04 42.51± 0.06∗ 27.81± 0.08 104.01± 0.27
DiffUCO: CE 18.34± 0.07 732.64± 0.74 2979.09± 6.69 19.79± 0.04 41.84± 0.07 27.97± 0.02 104.36± 0.22
SDDS: rKL w/ RL-CE 19.05± 0.03 732.78± 0.74 2979.05± 6.69 20.02± 0.02 42.12± 0.06 27.89± 0.01 104.26± 0.21
SDDS: fKL w/ MC-CE 19.06± 0.04 733.06± 0.69 2979.88± 6.65 20.05± 0.03 41.23± 0.05 27.89± 0.01 104.36± 0.23

Table 3: Comparison of the best solution quality out of 150 samples for each CO problem instance
averaged over the test dataset. Arrows ↓, ↑ indicate whether higher or lower is better. Gurobi results
with ∗ indicate that Gurobi was run with a time limit (see Tab. 1 and Tab. 2).

24× 24 grid Free Energy F/L2 Internal Energy U/L2 Entropy S/L2 ϵeff/M

Optimal value −2.11215 −1.44025 0.29611 1

VAN (r) (Nicoli et al., 2020) −2.10715± 0.0000 −1.5058± 0.0001 N/A 0.26505± 0.00004 N/A

Unb. sampling Methods SN-NIS SN-NIS NMCMC SN-NIS –

AR (r) (Nicoli et al., 2020) −2.1128± 0.0008 −1.43± 0.02 −1.448± 0.007 0.299± 0.007 N/A

AR −2.09344± 0.00063 −1.65420± 0.00562 −1.68479± 0.00198 0.19357± 0.002 0.00006± 0.00002
SDDS: rKL w/ RL −2.11150± 0.00062 −1.44910± 0.01412 −1.45225± 0.00152 0.29192± 0.00615 0.00023± 0.00017
SDDS: fKL w/ MC −2.11209± 0.00008 −1.4410± 0.0008 −1.44264± 0.00187 0.29573± 0.0004 0.0102± 0.0024

Table 4: Comparison of estimated observables F/L2, U/L2, S/L2 and the effective sample size per
sample ϵeff/M of an Ising model of size 24 × 24 at critical inverse temperature βc = 0.4407 using
SN-NIS and NMCMC methods.

theoretical predictions. This aligns with expectations due to fKL’s mass-covering property, which
should improve the model’s coverage of the target distribution which is beneficial in unbiased sam-
pling. The diffusion model trained with SDDS: rKL w/ RL performs better than our AR reimple-
mentation but worse than both the SDDS: fKL w/ MC model and the reported AR baseline (AR (r)).
We do not report the performance of DiffUCO as this method suffered from severe mode-seeking
behavior in this setting, where it only predicted either +1 or −1 for every state variable, result-
ing in poor behavior for unbiased sampling. Our experiments demonstrate that discrete diffusion
models offer a promising alternative to AR models for unbiased sampling. Key advantages of dif-
fusion models include flexibility in the number of diffusion steps and forward passes, which can
be adjusted as a hyperparameter. In contrast, the number of forward passes in AR models is fixed
to the dimension of the Ising model state. Our diffusion models achieve better performance while
using only 300 diffusion steps, which are significantly fewer than the 576 forward passes required
by the AR baseline. Since (Nicoli et al., 2020) ran their experiments on different types of GPUs
it is in principle not possible to deduce from these results that AR models are inferior to diffusion
models. Therefore, we complement our experimental evaluation with our own implementation of
an AR approach. We utilize the same U-net architecture as for our diffusion models and the same
computational resources. The corresponding results (AR in Tab. 4) indicate that also under these
conditions the diffusion model approaches excel.

6 LIMITATIONS AND CONCLUSION

This work introduces Scalable Discrete Diffusion Samplers (SDDS) based on novel training methods
that enable the implementation of discrete diffusion models with an increased number of diffusion
steps in Unsupervised Combinatorial Optimization (UCO) and unbiased sampling problems. We
demonstrate that the reverse KL objective of discrete diffusion samplers can be optimized efficiently
using Reinforcement Learning (RL) methods. Additionally, we introduce an alternative training
method based on Self-Normalized Importance Sampling of the gradients of the forward KL diver-
gence. Both methods facilitate mini-batching across diffusion steps, allowing for more diffusion
steps with a given memory budget. Our methods achieve state-of-the-art on popular challenging
UCO benchmarks. For unbiased sampling in discrete domains, we extend existing importance sam-
pling and Markov Chain Monte Carlo methods to be applicable to diffusion models. Furthermore,
we show that discrete diffusion models can outperform popular autoregressive approaches in es-
timating observables of discrete distributions. Future research directions include leveraging recent
advances in discrete score matching (Lou et al., 2024) to potentially improve the performance of SN-
NIS-based objectives in UCO. While the reverse KL-based objective introduces new optimization
hyperparameters, our experiments suggest that these require minimal fine-tuning (see App. A.10).
Overall, SDDS represents a principled and efficient framework for leveraging diffusion models in
discrete optimization and sampling tasks.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by
the Federal State Upper Austria. We thank the projects INCONTROL-RL (FFG-881064), PRI-
MAL (FFG-873979), S3AI (FFG-872172), DL for GranularFlow (FFG-871302), EPILEPSIA
(FFG892171), FWF AIRI FG 9-N (10.55776/FG9), AI4GreenHeatingGrids (FFG-899943), INTE-
GRATE (FFG-892418), ELISE (H2020-ICT-2019-3 ID: 951847), Stars4Waters (HORIZON-CL6-
2021- CLIMATE-01-01). We thank NXAI GmbH, Audi.JKU Deep Learning Center, TGW LO-
GISTICS GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH, Anyline GmbH,
Google, ZF Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare
KGaA, Verbund AG, GLS (Univ. Waterloo), Software Competence Center Hagenberg GmbH, Bo-
realis AG, TÜV Austria, Frauscher Sensonic, TRUMPF and the NVIDIA Corporation. We ac-
knowledge EuroHPC Joint Undertaking for awarding us access to Meluxina, Vega, and Karolina at
IT4Innovations.

11

Published as a conference paper at ICLR 2025

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 134–
144. PMLR, 2020. URL http://proceedings.mlr.press/v119/ahn20a.html.

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
Iterated denoising energy matching for sampling from boltzmann densities. arXiv preprint
arXiv:2402.06121, 2024.

Shun-ichi Amari. Differential-geometrical methods in statistics, volume 28. Springer Science &
Business Media, 2012.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL https://www.science.
org/doi/abs/10.1126/science.286.5439.509.

Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. CoRR, abs/2111.09266, 2021a. URL https://arxiv.org/abs/
2111.09266.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021b.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arXiv:2211.01364, 2022a.

Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
generative modeling. arXiv preprint arXiv:2211.01364, 2022b.

Arturs Berzins, Andreas Radler, Sebastian Sanokowski, Sepp Hochreiter, and Johannes Brandstetter.
Geometry-informed neural networks. arXiv preprint arXiv:2402.14009, 2024.

Piotr Białas, Piotr Korcyl, and Tomasz Stebel. Hierarchical autoregressive neural networks for
statistical systems. Computer Physics Communications, 281:108502, 2022.

Indaco Biazzo, Dian Wu, and Giuseppe Carleo. Sparse autoregressive neural networks for classical
spin systems. Machine Learning: Science and Technology, 2024.

Griff L. Bilbro, Reinhold Mann, Thomas K. Miller III, Wesley E. Snyder, David E. van den
Bout, and Mark W. White. Optimization by mean field annealing. In Advances in
Neural Information Processing Systems 1, [NIPS Conference, Denver, Colorado, USA,
1988], pp. 91–98. Morgan Kaufmann, 1988. URL http://papers.nips.cc/paper/
127-optimization-by-mean-field-annealing.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022a. URL https://openreview.net/forum?id=mk0HzdqY7i1.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022b. URL https://openreview.net/forum?id=mk0HzdqY7i1.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

12

http://proceedings.mlr.press/v119/ahn20a.html
http://arxiv.org/abs/1607.06450
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2111.09266
http://papers.nips.cc/paper/127-optimization-by-mean-field-annealing
http://papers.nips.cc/paper/127-optimization-by-mean-field-annealing
https://openreview.net/forum?id=mk0HzdqY7i1
https://openreview.net/forum?id=mk0HzdqY7i1
http://github.com/google/jax
http://github.com/google/jax

Published as a conference paper at ICLR 2025

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, pp. 1204–1215. PMLR, 2021.

Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovic. Combinatorial optimization and reasoning with graph neural networks. In Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021, pp. 4348–4355. ijcai.org, 2021. doi:
10.24963/ijcai.2021/595. URL https://doi.org/10.24963/ijcai.2021/595.

Simone Ciarella, Jeanne Trinquier, Martin Weigt, and Francesco Zamponi. Machine-learning-
assisted monte carlo fails at sampling computationally hard problems. Machine Learning: Science
and Technology, 4(1):010501, 2023.

Simona Cocco, Christoph Feinauer, Matteo Figliuzzi, Rémi Monasson, and Martin Weigt. Inverse
statistical physics of protein sequences: a key issues review. Reports on Progress in Physics, 81
(3):032601, 2018.

Luca Maria Del Bono, Federico Ricci-Tersenghi, and Francesco Zamponi. Nearest-neighbours
neural network architecture for efficient sampling of statistical physics models. arXiv preprint
arXiv:2407.19483, 2024.

Manuel Dibak, Leon Klein, Andreas Krämer, and Frank Noé. Temperature steerable flows and
boltzmann generators. Physical Review Research, 4(4):L042005, 2022.

Arthur E Ferdinand and Michael E Fisher. Bounded and inhomogeneous ising models. i. specific-
heat anomaly of a finite lattice. Physical Review, 185(2):832, 1969.

Fred W. Glover, Gary A. Kochenberger, Rick Hennig, and Yu Du. Quantum bridge analyt-
ics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res., 314(1):141–
183, 2022. doi: 10.1007/S10479-022-04634-2. URL https://doi.org/10.1007/
s10479-022-04634-2.

Joseph Gomes, Keri A McKiernan, Peter Eastman, and Vijay S Pande. Classical quantum optimiza-
tion with neural network quantum states. arXiv preprint arXiv:1910.10675, 2019.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Aric Hagberg and Drew Conway. Networkx: Network analysis with python. URL: https://networkx.
github. io, 2020.

Mohamed Hibat-Allah, Estelle M. Inack, Roeland Wiersema, Roger G. Melko, and Juan Car-
rasquilla. Variational neural annealing. Nat. Mach. Intell., 3(11):952–961, 2021. doi: 10.1038/
s42256-021-00401-3. URL https://doi.org/10.1038/s42256-021-00401-3.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-
els. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Estelle M Inack, Stewart Morawetz, and Roger G Melko. Neural annealing and visualization of
autoregressive neural networks in the newman–moore model. Condensed Matter, 7(2):38, 2022.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional dif-
fusion for molecular conformer generation. Advances in Neural Information Processing Systems,
35:24240–24253, 2022.

Gurtej Kanwar, Michael S Albergo, Denis Boyda, Kyle Cranmer, Daniel C Hackett, Sébastien
Racaniere, Danilo Jimenez Rezende, and Phiala E Shanahan. Equivariant flow-based sampling
for lattice gauge theory. Physical Review Letters, 125(12):121601, 2020.

13

https://doi.org/10.24963/ijcai.2021/595
https://doi.org/10.1007/s10479-022-04634-2
https://doi.org/10.1007/s10479-022-04634-2
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1038/s42256-021-00401-3
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

Published as a conference paper at ICLR 2025

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 6348–6358, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with
graph convolutional networks and guided tree search. In Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
537–546, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R Gormley, and Jason Eisner. Limitations of au-
toregressive models and their alternatives. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pp. 5147–5173, 2021.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. URL https://openreview.net/forum?id=rkgz2aEKDr.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. stat, 1050:21, 2024.

Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2, 2014. ISSN
2296-424X. doi: 10.3389/fphy.2014.00005. URL https://www.frontiersin.org/
articles/10.3389/fphy.2014.00005.

Roman Martoňák, Giuseppe E Santoro, and Erio Tosatti. Quantum annealing by the path-integral
monte carlo method: The two-dimensional random ising model. Physical Review B, 66(9):
094203, 2002.

B. McNaughton, M. V. Milošević, A. Perali, and S. Pilati. Boosting monte carlo simulations
of spin glasses using autoregressive neural networks. Phys. Rev. E, 101:053312, May 2020.
doi: 10.1103/PhysRevE.101.053312. URL https://link.aps.org/doi/10.1103/
PhysRevE.101.053312.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

Tom Minka et al. Divergence measures and message passing. Technical report, Technical report,
Microsoft Research, 2005.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural im-
portance sampling. ACM Trans. Graph., 38(5):145:1–145:19, 2019. doi: 10.1145/3341156. URL
https://doi.org/10.1145/3341156.

Kim A. Nicoli, Shinichi Nakajima, Nils Strodthoff, Wojciech Samek, Klaus-Robert Müller, and Pan
Kessel. Asymptotically unbiased estimation of physical observables with neural samplers. Phys.
Rev. E, 101:023304, Feb 2020. doi: 10.1103/PhysRevE.101.023304. URL https://link.
aps.org/doi/10.1103/PhysRevE.101.023304.

14

https://proceedings.neurips.cc/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/49f85a9ed090b20c8bed85a5923c669f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8d3bba7425e7c98c50f52ca1b52d3735-Abstract.html
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://www.frontiersin.org/articles/10.3389/fphy.2014.00005
https://www.frontiersin.org/articles/10.3389/fphy.2014.00005
https://link.aps.org/doi/10.1103/PhysRevE.101.053312
https://link.aps.org/doi/10.1103/PhysRevE.101.053312
https://doi.org/10.1145/3341156
https://link.aps.org/doi/10.1103/PhysRevE.101.023304
https://link.aps.org/doi/10.1103/PhysRevE.101.023304

Published as a conference paper at ICLR 2025

Frank Noé and Hao Wu. Boltzmann generators - sampling equilibrium states of many-body systems
with deep learning. CoRR, abs/1812.01729, 2018. URL http://arxiv.org/abs/1812.
01729.

Art B Owen. Monte carlo theory, methods and examples, 2013.

Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: approximating packing
integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Lorenz Richter, Julius Berner, and Guan-Horng Liu. Improved sampling via learned diffusions.
arXiv preprint arXiv:2307.01198, 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/
1505.04597.

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method. John Wiley &
Sons, 2016.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Vari-
ational annealing on graphs for combinatorial optimization. In Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
c9c54ac0dd5e942b99b2b51c297544fd-Abstract-Conference.html.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization. In Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 43346–43367. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/sanokowski24a.html.

Franco Scarselli, Marco Gori, Ah Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 20:61–80, 01 2009. doi: 10.1109/TNN.2008.2005605.

Lisa Schneckenreiter, Richard Freinschlag, Florian Sestak, Johannes Brandstetter, Günter Klam-
bauer, and Andreas Mayr. Gnn-vpa: A variance-preserving aggregation strategy for graph neural
networks. arXiv preprint arXiv:2403.04747, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Or Sharir, Yoav Levine, Noam Wies, Giuseppe Carleo, and Amnon Shashua. Deep autoregressive
models for the efficient variational simulation of many-body quantum systems. Physical review
letters, 124(2):020503, 2020.

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete graphical
models. Advances in neural information processing systems, 33:4635–4646, 2020.

Semyon Sinchenko and Dmitry Bazhanov. The deep learning and statistical physics applications to
the problems of combinatorial optimization. arXiv preprint arXiv:1911.10680, 2019.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, vol-
ume 37 of JMLR Workshop and Conference Proceedings, pp. 2256–2265. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/sohl-dickstein15.html.

15

http://arxiv.org/abs/1812.01729
http://arxiv.org/abs/1812.01729
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://papers.nips.cc/paper_files/paper/2023/hash/c9c54ac0dd5e942b99b2b51c297544fd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/c9c54ac0dd5e942b99b2b51c297544fd-Abstract-Conference.html
https://proceedings.mlr.press/v235/sanokowski24a.html
https://proceedings.mlr.press/v235/sanokowski24a.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://proceedings.mlr.press/v37/sohl-dickstein15.html

Published as a conference paper at ICLR 2025

Alan D. Sokal. Monte carlo methods in statistical mechanics: Foundations and new algorithms
note to the reader. 1996. URL https://api.semanticscholar.org/CorpusID:
14817657.

Haoran Sun, Etash Kumar Guha, and Hanjun Dai. Annealed training for combinatorial optimization
on graphs. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.
URL https://openreview.net/forum?id=fo3b0XjTkU.

Zhiqing Sun and Yiming Yang. DIFUSCO: graph-based diffusion solvers for combinatorial op-
timization. CoRR, abs/2302.08224, 2023. doi: 10.48550/ARXIV.2302.08224. URL https:
//doi.org/10.48550/arXiv.2302.08224.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. arXiv
preprint arXiv:2302.13834, 2023.

Francisco Vargas, Shreyas Padhy, Denis Blessing, and N Nüsken. Transport meets variational in-
ference: Controlled monte carlo diffusions. In The Twelfth International Conference on Learning
Representations, 2024.

Haoyu Peter Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta
learning. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=-ENYHCE8zBp.

Dian Wu, Lei Wang, and Pan Zhang. Solving statistical mechanics using variational autoregressive
networks. Phys. Rev. Lett., 122:080602, Feb 2019. doi: 10.1103/PhysRevLett.122.080602. URL
https://link.aps.org/doi/10.1103/PhysRevLett.122.080602.

Dian Wu, Riccardo Rossi, and Giuseppe Carleo. Unbiased monte carlo cluster updates with autore-
gressive neural networks. Physical Review Research, 3(4):L042024, 2021.

Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. A simple model to generate
hard satisfiable instances. In IJCAI-05, Proceedings of the Nineteenth International Joint Confer-
ence on Artificial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, pp. 337–342.
Professional Book Center, 2005. URL http://ijcai.org/Proceedings/05/Papers/
0989.pdf.

Gal Yehuda, Moshe Gabel, and Assaf Schuster. It’s not what machines can learn, it’s what we can-
not teach. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 10831–10841. PMLR, 2020. URL http://proceedings.mlr.press/v119/
yehuda20a.html.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C. Courville, Yoshua Bengio, and Ling
Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. In Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
27571b74d6cd650b8eb6cf1837953ae8-Abstract-Conference.html.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: A stochastic control approach for sam-
pling. In The Tenth International Conference on Learning Representations, ICLR 2022, Vir-
tual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=_uCb2ynRu7Y.

Tianchen Zhao, Giuseppe Carleo, James Stokes, and Shravan Veerapaneni. Natural evolution strate-
gies and variational monte carlo. Machine Learning: Science and Technology, 2(2):02LT01,
2020.

16

https://api.semanticscholar.org/CorpusID:14817657
https://api.semanticscholar.org/CorpusID:14817657
https://openreview.net/forum?id=fo3b0XjTkU
https://doi.org/10.48550/arXiv.2302.08224
https://doi.org/10.48550/arXiv.2302.08224
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://openreview.net/forum?id=-ENYHCE8zBp
https://link.aps.org/doi/10.1103/PhysRevLett.122.080602
http://ijcai.org/Proceedings/05/Papers/0989.pdf
http://ijcai.org/Proceedings/05/Papers/0989.pdf
http://proceedings.mlr.press/v119/yehuda20a.html
http://proceedings.mlr.press/v119/yehuda20a.html
http://papers.nips.cc/paper_files/paper/2023/hash/27571b74d6cd650b8eb6cf1837953ae8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/27571b74d6cd650b8eb6cf1837953ae8-Abstract-Conference.html
https://openreview.net/forum?id=_uCb2ynRu7Y
https://openreview.net/forum?id=_uCb2ynRu7Y

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DERIVATIONS

A.1.1 IMPORTANCE SAMPLING AND NEURAL IMPORTANCE SAMPLING

Importance Sampling (IS) is a well-established Monte Carlo method used to estimate expectations
of observables O(X) under a target distribution p(X) when direct sampling from p is challenging.
The core idea is to use a proposal distribution q(X) which is easy to sample from and proposes
samples where p(X) or ideally p(X) |O(X)| is large. IS can be used to calculate the expectation of
an observable O(X) in the following way:

O(X) =
∑
X

p(X)O(X) =
∑
X

q(X)
p(X)

q(X)
O(X) = EX∼q(X)

[
p(X)

q(X)
O(X)

]
(6)

However, this approach makes it necessary to design a suitable proposal distribution q(X), which
is not possible in many cases. Therefore, Neural Importance Sampling can be used instead, where
a distribution qθ(X) is parameterized using a Neural Network and trained to approximate the target
distribution. By replacing q(X) in Eq. 6 with qθ(X) the Neural Importance Sampling estimator is
then given by:

O(X) = EX∼qθ(X)

[
p(X)

qθ(X)
O(X)

]

A.2 SELF-NORMALIZED NEURAL IMPORTANCE SAMPLING

In some cases, when an unnormalized target distribution is given, i.e. it is infeasible to calculate
the normalization constant Z , IS or NIS cannot straightforwardly be applied, as this requires the
computation of p(X) and thereforeZ . To mitigate this issue, Self-Normalized Importance Sampling
(SNIS) can be employed Rubinstein & Kroese (2016). The estimator is given by:

Ep(X)[O(X)] =
∑
X

p(X)O(X) ≈
N∑
i=1

w(Xi)O(Xi),

where w(Xi) =
ŵ(Xi)∑
j ŵ(Xj)

with ŵ(Xi) =
p(Xi)
q(Xi)

are the importance weights, and Xi ∼ q(X).

Derivation: When p(X) is unnormalized, i.e., p(X) = p̃(X)/Z , where p̃(X) is the unnormalized
distribution and Z is the unknown normalization constant, the weights w̃(Xi) =

p̃(Xi)
Zq(Xi)

depend on
Z , which cannot be computed. To circumvent this, Self-Normalized Importance Sampling redefines
the weights as normalized importance weights:

ŵ =
p̃(Xi)

q(Xi)
, w(Xi) =

w̃(Xi)∑N
j=1 w̃(Xj)

=
ŵ(Xi)∑N
j=1 ŵ(Xj)

.

Using these normalized weights, the expectation can be estimated as:

Ep(X)[O(X)] =
∑
X

q(X)w̃(X)O(X) =

∑
X q(X)w̃(X)O(X)∑

X q(X)w̃(X)

=
EX∼q(X)[w̃(X)O(X)]

EX∼q(X)[w̃(X)]
≈

∑N
i=0 ŵ(Xi)O(Xi)∑N

j=1 ŵ(Xj)
=

N∑
i=1

w(Xi)O(Xi),

This approach avoids the need to compute Z explicitly, as the normalization is handled by the sum
of the unnormalized weights w̃(Xi). In practice, this is particularly useful for unnormalized target
distributions or when Z is computationally expensive to estimate.

17

Published as a conference paper at ICLR 2025

When using Neural Importance Sampling, the proposal distribution q(X) is replaced with a param-
eterized distribution qθ(X), and the SNIS estimator becomes:

Ep(X)[O(X)] ≈
∑N

i=1
p̃(Xi)
qθ(Xi)

O(Xi)∑N
j=1

p̃(Xj)
qθ(Xj)

.

A.2.1 NEURAL IMPORTANCE SAMPLING WITH DIFFUSION MODELS

In the following, it will be shown that the expectation of an observable O : {0, 1}N → R can be
computed with:

⟨O(X0)⟩pB(X0)
≈

∑
i

[w(X0:T,i)O(X0,i)] (7)

where w(Xi,0:T) =
ŵ(Xi,0:T)∑
j ŵ(Xj,0:T) and Xi,0:T ∼ qθ(X0:T) with ŵ(Xi,0:T) =

p̂(Xi,0:T)
qθ(Xi,0:T) .

To show that we start with

⟨O(X0)⟩pB(X0)
:=

∑
X0

pB(X0)O(X0) =
∑
X0:T

p(X0:T)O(X0) (8)

where we introduce new variables X1:T which are distributed according to the distri-
bution p(X1:T |X0). We then used that p(X0:T) = p(X1:T |X0) pB(X0) and that∑

X1:T
p(X1:T |X0) pB(X0) = pB(X0). Finally, we estimate the right hand side of Eq. 8 with

Neural Importance Sampling by inserting 1 = qθ(X0:T)
qθ(X0:T) to arrive at

⟨O(X0)⟩pB(X0)
= EX0:T∼qθ(X0:T)

[
p(X0:T)

qθ(X0:T)
O(X0)

]
.

As pB(X0) is only known up to its normalization constant Z we employ SN-NIS (see Sec. 2.3).

A.2.2 MCMC

The Metropolis-Hastings algorithm (Metropolis et al., 1953) is a standard method to obtain unbiased
samples from a target distribution p(X). Starting from an initial state X , a proposal state X ′ is
accepted with the acceptance probability of

A(X ′, X) = min

(
1,

ω(X|X ′) p̂(X ′)

ω(X ′|X) p̂(X)

)
,

where ω(X|X ′) is the transition probability from X ′ to X and is often chosen so that it is symmetric
and satisfies ω(X|X ′) = ω(X ′|X). Here, A(X ′, X) is chosen in a way so that the detailed balance
condition A(X,X ′)ω(X|X ′) p(X) = A(X ′, X)ω(X ′|X) p(X ′) is satisfied.

A.2.3 NEURAL MCMC

This acceptance probability can be adapted to Neural MCMC by replacing ω(X|X ′) with a proba-
bility distribution that is parameterized by a neural network qθ(X), which approximates the target
distribution (Nicoli et al., 2020). The acceptance probability is then given by:

A(X ′, X) = min

(
1,

qθ(X) p̂(X ′)

qθ(X ′) p̂(X)

)
.

However, for diffusion models qθ(X) is intractable and the formulation above can therefore not be
applied to diffusion models. We will derive Neural MCMC for diffusion models in the following
section.

18

Published as a conference paper at ICLR 2025

A.2.4 NEURAL MCMC WITH DIFFUSION MODELS

We adapt NMCMC to diffusion models to obtain trajectories that are approximately distributed
according to the target distribution p(X0:T) and show that these samples can be used to compute
⟨O(X0)⟩X0∼pB(X0)

.
This process is usually repeated until a convergence criterion is met. The resulting final state is
approximately distributed according to the target distribution p. In NMCMC ω(X|X ′) is set to the
approximating distribution qθ(X), so that the acceptance probability is given by

A(X ′
0:T , X0:T) = min

(
1,

qθ(X0:T) p̂(X
′
0:T)

qθ(X ′
0:T) p̂(X0:T)

)
,

where Y is substituted with X0:T and Y ′ with X ′
0:T . Thus it becomes apparent that these updates

can be used to obtain unbiased diffusion paths X0:T ∼ p(X0:T) of which X0 ∼ pB(X0).

The resulting diffusion paths X0:T are then distributed as p(X0:T) and samples X0 can then be used
to calculate expectations ⟨O(X0)⟩X0∼pB(X0)

.

Proof. The statement follows from

⟨O(X0)⟩p(X0:T) =
∑
X0:T

p(X0:T)O(X0)

=
∑
X0

pB(X0)O(X0) = ⟨O(X0)⟩pB(X0)
,

where we have used that O(X0) does not depend on X1:T which is why
∑

X1:T
p(X1:T) = 1.

A.2.5 POLICY GRADIENT THEOREM FOR DATA PROCESSING INEQUALITY

To prove that the Data Processing Inequality (see Sec. 3.1) can be optimized with the usage of RL
we first define

V θ(Xt) =
∑
Xt−1

qθ(Xt−1|Xt)Q
θ(Xt−1, Xt) (9)

where

• t = T in the first step
• t = 1 is the terminal step
• Qθ(Xt−1, Xt) = R(Xt, Xt−1) + V θ(Xt−1)

• V θ(Xt) =
∑

Xt−1
qθ(Xt−1|Xt)Q

θ(Xt−1, Xt) where V θ(X0) = 0

• R(Xt, Xt−1) is defined as:

R(Xt, Xt−1) :=

{
T [log p(Xt|Xt−1)− log qθ(Xt−1|Xt)] if 1 < t ≤ T

T [log p(Xt|Xt−1)− log qθ(Xt−1|Xt)]−H(Xt−1) if t = 1

Then with the recursive application of Eq. 9 on −EXT∼q(XT)[V
θ(XT)] it can be shown that

−EXT∼q(XT)[V
θ(XT)] = T ·

T∑
t=1

EXt−1:T∼qθ(Xt−1:T) [log qθ(Xt−1|Xt)]

− T ·
T∑

t=1

EXt−1:T∼qθ(Xt−1:T) [log p(Xt|Xt−1)]

+ EX0:T∼qθ(X0:T) [H(X0)]

= T DKL(qθ(X0:T)||p(X0:T)) + C̃

(10)

Where Ĉ = −T EXT∼q(XT) [log q(XT)]− T logZ

19

Published as a conference paper at ICLR 2025

Proof. In the following, we will prove the first equality of Eq. 10 by induction. First show that this
equality holds for T = 1:

−EX1∼q(X1)[V
θ(X1)] = −EX1∼q(X1)[

∑
X0

qθ(X0|X1)Q
θ(X0, X1)]

= −EX1∼q(X1)[
∑
X0

qθ(X0|X1)[R(X1, X0) + V θ(X0)]]

= −EX1∼q(X1)[
∑
X0

qθ(X0|X1) [T [log p(X1|X0)− log qθ(X0|X1)]−H(X0)]

= T · EX0:1∼qθ(X0:1) [log qθ(X0|X1)]− T · EX0:1∼qθ(X0:1) [log p(X1|X0)]

+ EX0:1∼qθ(X0:1) [H(X0)]

Where it is apparent that this expression is equal to the right-hand side of Eq. 10 when T = 1.

Next, we have to show that assuming it holds for T it also holds for T + 1.

−EXT+1∼q(XT+1)[V
θ(XT+1)] = −EXT+1∼q(XT+1)[

∑
XT

qθ(XT |XT+1)[R(XT+1, XT) + V θ(XT)]]

= EXT+1∼q(XT+1)[
∑
XT

qθ(XT |XT+1)[T [log p(XT+1|XT)

− log qθ(XT |XT+1)] + V θ(XT)]]

= T ·
T+1∑
t=1

EXT+1:t−1∼qθ(XT+1:t−1) [log qθ(Xt−1|Xt)]

− T ·
T+1∑
t=1

EXT+1:t−1∼qθ(XT+1:t−1) [log p(Xt|Xt−1)]

+ EXT+1:0∼qθ(XT+1:0) [H(X0)]

Therefore we have proven the statement by induction.

As we have shown that the objective T DKL(qθ(X0:T)||p(X0:T)) can be minimized by minimiz-
ing EXT∼q(XT)[V

θ(XT)]. Applying the Policy Gradient Theorem for episodic Markov Decision
Processes (MDP) (Sutton & Barto (2018); Sec. 13.2), it can be shown that

∇θL(θ) = −∇θEXT∼q(XT)[V
θ(XT)]

= −EXt∼dθ(X ,t),Xt−1∼qθ(Xt−1|Xt)

[
Qθ(Xt−1, Xt)∇θ log qθ(Xt−1|Xt)

]
,

where dθ(X , t) is the stationary distribution for qθ under the episodic MDP. We use the PPO algo-
rithm to minimize this objective as explained in App. A.3.6.

Usually, the reward is not allowed to depend on network parameters θ, but the entropy regularization
in the form of T log qθ(X) is an exception due to the property that ∇θEX∼qθ(X) [log qθ(X)] =

EX∼qθ(X) [∇θ log qθ(X)] =
∑

X qθ(X) 1
qθ(X)∇θqθ(X) = ∇θ

∑
X qθ(X) = ∇θ1 = 0.

A.2.6 NEURAL IMPORTANCE SAMPLING GRADIENT OF FORWARD KL DIVERGENCE

In the following, we will show that the gradient of the fKL between the forward and reverse diffusion
path can be approximated with:

∇θDKL(p(X0:T)||qθ(X0:T)) = −T
∑
i

Et∼U{1,...,T}
[
w(Xi

0:T)∇θ log qθ(X
i
t−1|Xi

t)
]
,

20

Published as a conference paper at ICLR 2025

where w(Xi
0:T) =

ŵ(Xi
0:T)∑

j ŵ(Xj
0:T)

and Xi
0:T ∼ qθ(X0:T) with ŵ(Xi

0:T) =
p̂(Xi

0:T)

qθ(Xi
0:T)

.

This follows from

∇θDKL(p(X0:T)||qθ(X0:T)) = −EX0:T∼p(X0:T)[∇θ log qθ(X0:T)]

= −EX0:T∼qθ(X0:T)

[
p(X0:T)

qθ(X0:T)
∇θ log qθ(X0:T)

]
= −T EX0:T∼qθ(X0:T),t∼U({1,...,T})

[
p(X0:T)

qθ(X0:T)
∇θ log qθ(Xt−1|Xt)

]
= −T

∑
i

Et∼U{1,...,T}
[
w(Xi

0:T)∇θ log qθ(X
i
t−1|Xi

t)
]
,

where we have used in the first equality that log p(X0:T) does not depend on network parameters.
In the second equality we have insert 1 = qθ(X0:T)

qθ(X0:T) and rewrite the expectation over qθ(X0:T). In

the third equality we use that log qθ(X0:T) =
∑T

t=0 log qθ(Xt−1|Xt). We can then make a Monte
Carlo estimate of this sum with log qθ(X0:T) = T Et∼U{0,...,T}[log qθ(Xt−1|Xt)]. In the fourth
equality we apply SN-NIS so that the partition sum in p(X0:T) cancels out.

A.3 ALGORITHMS

A.3.1 NOISE DISTRIBUTION

The Bernoulli Noise Distribution is given by:

p(Xt,i|Xt−1) =

{
(1− βt)

1−Xt−1,i · βXt−1,i

t for Xt,i = 0

(1− βt)
Xt−1,i · β1−Xt−1,i

t for Xt,i = 1,

where βt is the noise parameter. Sanokowski et al. (2024) use a noise schedule of βt = 1
T−t+2 .

However, we instead use an exponential noise schedule which is given by βt =
1
2 exp (−k (1− t

T))
with k = 6 log(2). Our experiments are always conducted with this schedule.

A.3.2 CONDITIONAL EXPECTATION

Conditional Expectation (CE) is an iterative method for sampling from a product p(X) =
∏

i p(Xi)
distribution to obtain solutions of above-average quality Raghavan (1988); Karalias & Loukas
(2020). We define a vector v of Bernoulli probabilities, where each component vi = p(Xi). The CE
process involves these steps:

1. Sort the components of v in descending order to obtain a sorted probability vector p

2. Starting with i = 0, create two vectors:

• ω0: Set the i-th component to 0
• ω1: Set the i-th component to 1

Initially, ω0 = (0, p1, . . . , pN) and ω1 = (1, p1, . . . , pN).

3. Compute H(ω0) and H(ω1).

4. Update v to the configuration ωj , where j = argminl∈{0,1} H(ωl).

5. Increment i to i+ 1.

6. Repeat steps 2-5 until all vi are either 0 or 1.

This process progressively yields better-than-average values for each component of v. With the
choice of energy functions taken in App A.5 CE always removes constraint violations from gener-
ated solutions. In our experiments, we speed up the CE inference time by a large factor by providing
a fast GPU implementation that leverages jax.lax.scan (see time column in results denoted with -CE
in Tab. 2 and Tab. 1).

21

Published as a conference paper at ICLR 2025

A.3.3 ASYMPTOTICALLY UNBIASED SAMPLING

Autoregressive Asymptotically Unbiased Sampling:

While SN-NIS and NMCMC can be used to remove some of the bias, the bias cannot be com-
pletely removed when the model suffers from a lack of coverage, i.e. ∃X such that qθ(X) =
0 and pB(X)O(x) ̸= 0 (Owen, 2013). A way to mitigate this issue is to adapt the model
so that qθ(X) > 0 ∀ X . In autoregressive models qθ(X) =

∏N
i qθ(Xi|X<i) Nicoli et al.

(2020) enforce this property by adapting the parameterized autoregressive Bernoulli probability
qθ(Xi|X<i) = q̂θ(X<i)

Xi (1 − q̂θ(X<i))
1−Xi by setting q̂θ(X<i) := clip(qθ(X<i), ϵ, 1 − ϵ).

This adapted probability is then used in NMCMC and NS-NIS to ensure asymptotically unbiased
sampling. In Sec. 3.2 we will propose a way how to realize asymptotically unbiased sampling with
diffusion models which is experimentally validated in Sec. 5.2.

Asymptotically Unbiased Sampling with Diffusion Models: We propose to address asymptoti-
cally unbiased sampling with diffusion models by introducing a sampling bias ϵt at each diffusion
step t. This sampling bias is then used to smooth out the output probability of the conditional
diffusion step qθ(Xt−1|Xt) =

∏N
i qθ(Xt−1,i|Xt), where qθ(Xt−1,i|Xt) = q̂θ(Xt)

Xt−1,i

i (1 −
q̂θ(Xt)i)

(1−Xt−1,i) and q̂θ(Xt)i := clip(qθ(Xt)i, ϵt, 1 − ϵt). By choosing a sampling bias ϵt > 0
asymptotically unbiased sampling is ensured.

In practice, we have not found any ϵ for autoregressive models or diffusion models, which has
improved the model in the setting of unbiased estimation.

A.3.4 MARKOV CHAIN CONVERGENCE CRITERION

To assess the convergence of MCMC chains, we use the integrated autocorrelation time, τO, which
quantifies the correlation between samples of a chain Sokal (1996). It is defined as:

τO =

∞∑
τ=−∞

ρO(τ),

where ρO(τ) is the normalized autocorrelation function of the stochastic process generating the
chain for a quantity f . For a finite chain of length N , the normalized autocorrelation function ρO(τ)
is approximated as:

ρ̂O(τ) =
ĉO(τ)

ĉO(0)
,

where

ĉO(τ) =
1

LC − τ

LC−τ∑
l=1

(Ol − µO)(Ol+τ − µO), µO =
1

LC

LC∑
l=1

Ol

and LC is the length of the Markov chain. Rather than summing the autocorrelation estimator
ρ̂O(τ) up to LC , which introduces noise as LC is finite, we truncate the sum at K ≪ LC to balance
variance and bias. The integrated autocorrelation time τ̂O is then estimated as:

τ̂O(K) = 1 + 2

K∑
τ=1

ρ̂O(τ),

where K is chosen as K ≥ CτO for a constant C = 5, following the recommendations of Sokal
(1996).

A.3.5 FKL W/ MC ALGORITHM

The following pseudocode shows how we minimize the fKL w/ MC objective for an unconditional
generative diffusion model.

22

Published as a conference paper at ICLR 2025

Algorithm 1 Diffusion Model Training based on fKL w/ MC
1: initialize learning rate η, number of diffusion trajectories N ,
2: diffusion trajectory mini-batch size n, and mini-batch diffusion time step size τ
3: DB = ∅
4: for each epoch in epochs do
5: Sample X0:N

0:T ∼ qθ(X0:T)
6: Store (X0:N

0:T , qθ(X0:T)
0:N , {0, ..., T}0:N) in data buffer DB

7: while data buffer not empty do
8: sample {τ}0:n := {t1, ..., tτ}0:n ∼ DB w/o replacement
9: obtain corresponding (X0:n

0:T , qθold(X0:T)
0:n)

10: compute importance weights w(Xi
0:T) =

ŵ(Xi
0:T)∑

j ŵ(Xj
0:T)

with ŵ(Xi
0:T) =

p̂(Xi
0:T)

qθold (X
i
0:T)

.

11: compute loss L(θ) = −T
∑

i

∑
t∈{τ}i

[
w(Xi

0:T)∇θ log qθ(X
i
t−1|Xi

t)
]

12: Update θ ← θ − η∇θL(θ)
13: end while
14: end for

In UCO we additionally condition the generative model on the CO problem instance and the exten-
sion of this algorithm to a conditional generative diffusion model is trivial.

A.3.6 PPO ALGORITHM

The following pseudocode shows how we minimize the rKL w/ RL objective for an unconditional
generative diffusion model. In the following, 0:N denote indices of different samples so that, for
example, X0:N

0:T = (X1
0:T , ..., X

N
0:T).

In PPO, an additional set of hyperparameters is introduced: α, λ, c1, and κ. Here, α is the mov-
ing average parameter, which is used to compute the rolling average and standard deviation of the
reward. λ is the trace-decay parameter used to compute eligibility traces in the temporal differ-
ence learning algorithm, TD(λ). c1 is the relative weighting between the loss of the value func-
tion LV (θ) and the loss of the policy Lπ(θ), so that the overall loss LPPO(θ) is computed with
LPPO(θ) = (1− c1)Lπ(θ) + c1LV (θ).

The value function loss LV (θ) is defined as the squared error between the predicted value of the
state and the TD(λ)-estimated return:

LV (θ) =
1

2
Et

[
(Vθ(Xt)−Gλ

t)
2
]
,

where Vθ(Xt) is the predicted value of state Xt, and Gλ
t is the TD(λ)-estimated return, which

combines the immediate rewards and bootstrapped value estimates of future states.

The TD(λ) return Gλ
t is computed as:

Gλ
t = (1− λ)

T−t∑
n=1

λn−1G
(n)
t ,

where G
(n)
t is the n-step return defined as:

G
(n)
t = rt + γrt+1 + · · ·+ γn−1rt+n−1 + γnVθ(Xt+n),

with γ being the discount factor which we always set to 1.0.

Finally, κ is the value that is used for clipping in the policy loss function, which is given by:

Lπ(θ) = Et

[
min(rt(θ)Ât, clip(rt(θ), 1− κ, 1 + κ)Ât)

]
,

where Ât is the normalized estimator of the advantage function at time step t, and rt(θ) =
qθ(Xt−1|Xt)

qθold (Xt−1|Xt)
.

23

Published as a conference paper at ICLR 2025

The advantage function At is computed using TD(λ), and represents how much better an action is
compared to the expected value of a given state. It is given by:

At = Gλ
t − Vθ(Xt),

where Gλ
t is the TD(λ) return estimate, which is a weighted sum of multi-step returns, and Vθ(Xt)

is the value function. Ât is computed by normalizing the advantage for each batch.

Algorithm 2 Diffusion Model Training based on rKL w/ RL
1: initialize learning rate η, Number of diffusion trajectories N , mini-batch sizes n, τ
2: initialize PPO hyperparameters α, λ, c1, κ
3: DB = ∅
4: for each epoch in epochs do
5: Sample X0:N

0:T ∼ qθ(X0:T)

6: Store (X0:N
0:T , qθ(X0:T)

0:N , {0, ..., T}0:N , R0:N
0:T , V θ,0:N

0:T) in data buffer DB

7: update moving average statistics of the reward using R0:N
0:T , α and previous statistics

8: normalize reward according to moving averages
9: compute estimates of A0:N

0:T

10: compute Â0:N
0:T by normalizing A0:N

0:T
11: while data buffer not empty do
12: sample {τ}0:n := {t1, ..., tτ}0:n ∼ DB w/o replacement
13: Update θ ← θ − η∇θLPPO(θ)
14: end while
15: end for

A.4 ARCHITECTURES

A.4.1 GNN ARCHITECTURE

The architecture we employ is a simple Graph Neural Network (GNN). The process begins with a
linear transformation of each node’s input features using a layer of nh neurons. These transformed
features, now serving as node embeddings, are then multiplied by a weight matrix also consisting
of nh neurons. Following this, a variance preserving aggregation (Schneckenreiter et al., 2024) is
performed over the neighborhood of each node. After message aggregation, we apply the Graph
Normalization (Cai et al., 2021). To preserve original node information, a skip connection is in-
corporated for each node. The aggregated node data, combined with the skip connection, is then
processed through a Node Multi-Layer Perceptron. This sequence of operations constitutes a single
message passing step, which is repeated n times. After completing all message-passing steps, each
resulting node embedding is input into a final three-layer MLP. This MLP computes the probabil-
ities for each solution variable Xi. To normalize the data and improve training stability, we apply
Layer Normalization Ba et al. (2016) after every MLP layer, with the exception of the final layer in
the terminal MLP. When we train the objective using RL methods, we compute the value function
by applying an additional three-layer value network on top of a global variance-preserving graph
aggregation Schneckenreiter et al. (2024). Here, we use nh neurons, except in the last layer where
only one output neuron is used. Across all our experiments, we consistently use nh = 64 neurons
in the hidden layers.

A.4.2 U-NET ARCHITECTURE

For the experiment on the Ising model, we use a simple U-Net architecture Ronneberger et al. (2015)
with overall three convolutional blocks which consist of two convolutional layers with a kernel size
of 3× 3 each. After the first convolutional block, we apply a max pooling operation with a window
size of 2 × 2. The second convolutional block is applied to the downsampled grid. Finally, after
upsampling the last convolutional block is applied. For the diffusion model, we then apply a three-
layer neural network with 64 neurons in the first two layers on each node of the grid, which predicts
the Bernoulli probability of each state variable. For the autoregressive network, we apply a mean
aggregation on all of the nodes which we then put into a three-layer neural network to predict the
Bernoulli probability of the next state variable.

24

Published as a conference paper at ICLR 2025

A.5 CO PROBLEM TYPES

All CO problem types considered in this paper are given in Tab. 5.

Maximum Independent Set: The Maximum Independent Set problem is the problem of finding
the largest set of nodes within a graph under the constraint that neighboring nodes are not in the set.

Maximum Cut: The Maximum Cut problem is the problem of partitioning all nodes of a graph into
two sets so that the edges between these two sets are as high as possible.

Minimum Dominating Set: The Minimum Dominating Set problem is the problem of finding the
smallest set of nodes so that every node in the graph is either in the set or adjacent to at least one
node in the set.

Maximum Clique: The Maximum Clique problem is the problem of finding the largest set of nodes
within a graph so that every node within the set is connected to every other node within the set.

Problem Type Objective: minX∈{0,1}N H(X)

MIS H(X) = −A
∑N

i=1 Xi +B
∑

(i,j)∈E Xi ·Xj

MDS H(X) = A
∑N

i=1 Xi +B
∑N

i=1(1−Xi)
∏

j∈N (j)(1−Xj)

MaxCl H(X) = −A
∑N

i=1 Xi +B
∑

(i,j)/∈E Xi ·Xj

MaxCut H(σ) = −
∑

(i,j)∈E
1−σiσj

2
where σi = 2Xi − 1

Table 5: Table with energy functions of the MIS, MDS, MaxCl and MaxCut problems (Lucas, 2014).
Choosing A < B ensures that all minima of the energy function are feasible solutions. In all of our
Experiments, we chose A = 1.0 and B = 1.1. The table is taken from Sanokowski et al. (2024).

A.6 GRAPH DATASETS

RB dataset: In the RB model, each graph is generated by specifying generation parameters n, k, and
p. With n the number of cliques, i.e. a set of fully connected nodes, and with k the number of nodes
within the clique is specified. p serves as a parameter that regulates the interconnectedness between
cliques. The lower the value of p the more connections are randomly drawn between cliques. If
p = 1 there are no connections between the cliques at all. To generate the RB-100 dataset with
graphs of an average node size of 100, we generate graphs with n ∈ {9, ..., 15}, k ∈ {8, ..., 11}, and
p ∈ [0.25, ..., 1]. On the RB-small dataset k ∈ {5, ..., 12} and n ∈ {20, ..., 25} and graphs that are
smaller than 200 nodes or larger than 300 nodes are resampled. On BA-large k ∈ {20, ..., 25} and
n ∈ {40, ..., 55} and graphs that are smaller than 800 nodes or larger than 1200 nodes are resampled.
For both of these datasets p ∈ [0.3, 1].

Barabasi-Albert dataset: The BA dataset is generated using the networkx graph library Hagberg
& Conway (2020) with the generation parameter m = 4. In BA-small number of nodes within
each graph is sampled within the range {200, ..., 300}, and in BA-large number of nodes is sampled
within the range of {800, ..., 1200}.
Ultimately, the matrix Q in D(Q) can be interpreted as a weighted adjacency matrix. for each CO
problem instance, this adjacency matrix is defined by the corresponding graphs of each graph dataset
as described in App. A.6, and its weights are given by the CO problem type definition as described
in App. A.5.

A.7 EXPERIMENTS

A.7.1 UCO EXPERIMENTAL DESIGN

The experiments in Sec. 5.1 are designed to maintain consistent memory requirements, gradient up-
date steps, and training time across all objectives. For DiffUCO, we fix these requirements by setting
the batch size to nB × nG × ndiff , where nB is the number of independently sampled trajectories,
nG is the number of distinct CO problem instances, and ndiff is the number of diffusion steps in

25

Published as a conference paper at ICLR 2025

each batch. For the rKL w/ RL and fKL w/ MC objectives, we can use a minibatch of diffusion steps
n∆diff , which is not possible with DiffUCO. This allows us to increase the number of diffusion steps
by a factor of k while maintaining the same memory requirements during backpropagation. The
batch size for these methods becomes nB × nG × n∆diff , where n∆diff = ndiff/k. As the number
of diffusion steps increases by a factor of k, the training time would normally increase accordingly.
To counteract this and keep training time consistent across all objectives, we adjust the batch pa-
rameters by decreasing nB by a factor of k and increasing nG by the same factor. All computations
across the batch size are conducted in parallel, and by increasing the batch size the number of up-
dates per epoch is reduced, which reduces the training time per epoch. Therefore, these adjustments
maintain a constant overall batch size while reducing training time due to the increased nG. This
experimental design ensures that memory requirements, gradient update steps, and training time re-
main constant across all objectives. It is important to note that with DiffUCO, it is not possible to
increase the number of diffusion steps while keeping the training time constant at constant memory
requirements. This is because memory requirements would increase by a factor of k, which can only
be mitigated by reducing either nG or nB by a factor of k. Reducing nG would increase the training
time by an additional factor of k, leading to an overall increase of k2 in training time. Reducing
nB would not decrease the training time as these computations happen in parallel. Consequently,
in this case, the computational time overhead would increase by a factor of k. Across all of these
experiments, the architecture remains the same, except for the experiments with SDDS: rKL w/ RL,
where an additional variance preserving aggregation Schneckenreiter et al. (2024) on all nodes is
applied after the last message passing layer. After that, this embedding is fed into a small Value
MLP network with two layers.

In all of the UCO experiments we run on each dataset iterative hyperparameter tuning of the learning
rate η and starting temperature Tstart for a short annealing duration of Ntuning. Here, we first find
an optimal ηopt such that we find a η1 and η1 for which η1 ≤ ηopt ≤ η2 but the average solution
quality is best for ηopt. After that, we do the same for Tstart. We always chose Ntuning = 500
except for the RB-large MIS dataset, where we chose Ntuning = 200 due to higher computational
demands. After obtaining the best hyperparameters we run the final experiments on three different
seeds for NAnneal epochs (see. App.A.10).

A.7.2 ABLATION ON LEARNING RATE SCHEDULE AND GRAPH NORM LAYER

We provide an ablation on the learning rate schedule (see App. A.10) and the graph normalization
layer. The comparison is conducted on MIS on a small dataset of RB-graphs with an average graph
size 100 nodes. For each setting, we optimize iteratively first the temperature and then the learning
rate for annealing runs with 500 annealing steps as we have done in App. A.7.1. Results are shown
in Tab. 6, where we see that the cosine learning rate schedule and the Graph Normalization layer
both lead to significantly better models.

DiffUCO: CE vanilla w/ Graph Norm w/ lr schedule

RB-100 MIS ↑ 9.63± 0.05 9.71± 0.02 9.73± 0.04

Table 6: Ablation on learning rate schedule and Graph Normalization layer on the RB-100 MIS
dataset. The larger the MIS size the better. The discrete diffusion model is trained on the dataset
without the learning rate schedule (vanilla), with the learning rate schedule (w/ lr schedule), and with
the Graph Normalization layer (w/ Graph Norm). Average MIS size is shown over three independent
seeds. The standard error is calculated over two independent seeds.

A.7.3 UNBIASED SAMPLING EXPERIMENTAL DESIGN

For all of our experiments on the Ising model we follow (Nicoli et al., 2020) and use an annealing
schedule which is given by T (n) = 1

βc

1
1−0.998h(n+1) , where n is the current epoch and h is a

hyperparameter that defines how fast the temperature decays to the target temperature 1
βc

. In our
experiments on the Ising model, we keep the overall memory for each method the same. Each
experiment fits on an A100 NVIDIA GPU with 40 GB of memory. In unbiased sampling, we use
400 iterations for NMCMC with a batch size of 1200 states. In SN-NIS we estimate the observables

26

Published as a conference paper at ICLR 2025

with 480.000 states. Nicoli et al. (2020) use 500.000 states in their experiments. Error bars are
calculated over three independent SN-NIS and MCMC runs.

A.8 ADDITIONAL EXPERIMENTS

A.8.1 STUDY ON NUMBER OF DIFFUSION STEPS AND MEMORY REQUIREMENTS

We provide further experiments on the RB-small MIS problem, evaluating the relative error ϵrel :=
|Eopt−Emodel|

|Eopt| and the best relative error ϵ∗rel :=
|Eopt−E∗

model|
|Eopt| , where Eopt is the optimal set size

on this dataset and Emodel is the average and E∗
model the best-set size out of 60 states of the trained

model. We train DiffUCO, SDDS: rKL w/ RL, and SDDS: fKL w/ MC for 2000 epochs and plot
these metrics over an increasing number of diffusion steps. The results are shown in Fig. 1. We
train each method on 4, 8, 12, and 16 diffusion steps, keeping the overall batch size constant for
each method. For DiffUCO, the memory requirements scale linearly with the number of diffusion
steps, as indicated by the size of the marker in Fig. 1. In contrast, for SDDS: rKL w/ RL and SDDS:
fKL w/ MC, we keep the mini-batch size fixed at 4, so the memory requirement does not increase,
hence the marker size stays the same. Specifically, the memory requirements are here the same as
for DiffUCO with 4 diffusion steps. We observe that for DiffUCO and SDDS: rKL w/ RL of the
methods ϵrel and ϵ∗rel improved with an increasing number of diffusion steps and that SDDS: rKL
w/ RL performs better than DiffUCO in most cases. For SDDS: fKL w/ MC ϵrel does not improve
after 12 diffusion steps. We additionally show in Tab. 7 the runtime per epoch for each run in Fig. 1
which shows empirically that SDDS: rKL w/ RL enables superior trade-offs between training time
and memory requirements. For instance, SDDS: rKL w/ RL with 12 diffusion steps exhibits a better
performance than DiffUCO with 16 diffusion steps while consuming slightly less training time (see
Tab. 7) and four times less memory (see Fig. 1).

Figure 1: ϵrel (left) and ϵ∗rel (right) on the MIS RB-small dataset over an increasing amount of
diffusion steps. The marker size is proportional to the memory requirements that are needed during
training.

Method Diffusion Steps 4 8 12 16

DiffUCO Runtime (d:h:m) 0:12:46 0:22:13 1:09:53 1:21:00

SDDS: rKL w/ RL Runtime (d:h:m) 0:16:06 1:07:06 1:20:26 2:11:26

SDDS: fKL w/ MC Runtime (d:h:m) 0:16:06 1:04:06 1:22:40 2:08:06

Table 7: Comparison of training time in d:h:m for different methods across various diffusion steps
on the experiment from Fig. 1.

A.8.2 SPIN GLASS EXPERIMENTS

Unbiased Sampling:

We follow Del Bono et al. (2024) and conduct experiments on the Edwards-Anderson (EA) spin
glass model in the context of unbiased sampling. Here, this model is defined on a periodic 2-D

27

Published as a conference paper at ICLR 2025

grid, where neighboring spins interact with each other via random couplings Jij sampled from a
normal distribution with zero mean and variance of one. We consider this problem at β ≈ 1.51
as sampling from this model at this temperature is known to be particularly hard for local MCMC
samplers (Ciarella et al., 2023). Since this model cannot be solved analytically, we cannot compare
ground truth values for free energy, internal energy, or entropy. Therefore, we use the free energy
and the effective sample size as a baseline, as a lower free energy and a larger effective sample
size is generally better. We evaluate the performance of DiffUCO, SDDS: rKL w/ RL and SDDS:
fKL w/ MC under the same computational constraints. All models use a GNN architecture with 6
message passing steps (see App. A.4) to incorporate the neighboring couplings as edge features. We
train each method under the same computational budget and similar training time, which means that
we train SDDS: rKL w/ RL and SDDS: fKL w/ MC with 150 diffusion steps for 400 epochs and
DiffUCO with 50 diffusion steps and 1200 epochs. In each case, we use 200 samples during training
and evaluate the free energy and effective sample size using 480000 samples. The results of these
experiments are shown in Tab. 8, where we observe that SDDS: fKL w/ MC performs best in terms
of free energy and SDDS: rKL w/ RL performs best in terms of effective sample size.

EA 16× 16 Free Energy F/L2 ↓ ϵeff/M ↑

DiffUCO −0.329± 0.008 5.22× 10−6 ± 1.3× 10−6

SDDS: rKL w/ RL −1.09± 0.003 8.56× 10−6 ± 2.29× 10−6

SDDS: fKL w/ MC −1.165± 0.003 3.2× 10−6 ± 4× 10−7

Table 8: Free Energy per size and effective sample size per sample of different diffusion samplers
on the Edwards-Anderson model of size 16× 16.

Ground State Prediction: We also conduct experiments on the Edwards-Anderson model to pre-
dict the lowest energy configurations. Here, we follow the setting from Hibat-Allah et al. (2021)
and sample neighboring couplings from a uniform distribution [−1, 1[on a 2-D grid of size 10×10.
We train SDDS: rKL w/ RL and SDDS: fKL w/ MC at 100 diffusion steps and 25 mini-batch diffu-
sion steps. We follow Hibat-Allah et al. (2021) and train the model using 25 states and use 10000
equilibrium steps at Tstart = 1.0 and anneal the temperature down to zero. Our models use a
GNN architecture with 8 message passing steps (see App. A.4) and are trained for 4000 training
steps. We compare to the result of classical-quantum optimization (CQO) (Martoňák et al., 2002;
Gomes et al., 2019; Sinchenko & Bazhanov, 2019; Zhao et al., 2020), Variational Quantum Anneal-
ing (VQA), regularized Variational Quantum Annealing (RVQA) and Variational Neural Annealing
(VNA) as reported in Hibat-Allah et al. (2021) at the same amount of training steps. Results of the
average energy value over 200 samples are shown in Tab. 9, where we see that SDDS: rKL w/ RL
significantly outperforms all other methods.

EA 10× 10 CQO (r) VQA (r) RVQA (r) VNA (r) SDDS: rKL w/ RL SDDS: fKL w/ MC

ϵrel/L
2 ↓ 2× 10−2 ±1 × 10−2 2× 10−3 ±1 × 10−3 1× 10−3 ±1 × 10−3 2× 10−4 ±1 × 10−4 1.98× 10−5 ±4.35 ± 10−5 8.23× 10−4 ±2.47 × 10−4

Table 9: Average ground state energies of different diffusion samplers on the 2-D Edwards-Anderson
model of size 10× 10. (r) indicates that results are taken from (Hibat-Allah et al., 2021).

A.8.3 TIME MEASUREMENT

We follow Sanokowski et al. (2024) and perform all time measurements for Deep Learning-based
methods on an A100 NVIDIA GPU and perform the time measurement after the functions are com-
piled with jax.jit.

A.9 MEMORY REQUIREMENTS

The experimental setups for various datasets and models have specific GPU requirements. For the
RB-small dataset, two A100 NVIDIA GPUs with 40GB of memory each are necessary. The RB-
large MIS experiment demands four such GPUs. In contrast, the BA-small dataset can be processed
using a single A100 GPU, while the BA-large dataset requires two A100 GPUs. The Ising model
experiments can be conducted efficiently with one A100 GPU.

28

Published as a conference paper at ICLR 2025

A.10 HYPERPARAMETERS

For all of our experiments, we use one iteration of cosine learning rate (Loshchilov & Hutter,
2017) with warm restarts, where we start at a low learning rate of 10−10 and increase it linearly
to a learning rate of λmax for 2.5% of epochs. After that, the learning rate is reduced via a co-
sine schedule to λmax/10. We use Radam as an optimizer Liu et al. (2020). All hyperparame-
ters and commands to run all of our experiments can be found in the .txt files within our code in
/argparse/experiments/UCO and /argparse/experiments/Ising. In our experiments, we always use 6
diffusion steps for DiffUCO and 12 diffusion steps for SDDS: rKL w/ RL and SDDS: fKL w/ MC,
except on the BA-small MDS and BA-small MaxCut dataset where we use 7 and 14 diffusion steps
respectively. Compared to (Sanokowski et al., 2024) we use up to a factor of 4 times more diffusion
steps, as they use only between 3 and 6 diffusion steps under similar computational constraints. We
always keep PPO-related hyperparameters to the default value, except on RB-large MIS, where we
have adjusted the hyperparameter α (see App. A.3.6).

A.11 CODE

The code is written in jax (Bradbury et al., 2018).

A.12 EXTENDED TABLES

For completeness we include in Tab. 11, Tab. 10 and in Tab. 12 other baseline methods as reported
in Sanokowski et al. (2024).

MIS RB-small RB-large

Method Type Size ↑ time ↓ Size ↑ time ↓
Gurobi Gurobi Optimization, LLC (2023) OR 20.13± 0.03 6:29 42.51± 0.06∗ 14:19:23

LwtD (r) (Ahn et al., 2020) UL 19.01 2:34 32.32 15:06
INTEL (r) (Li et al., 2018) SL 18.47 26:08 34.47 40:34

DGL (r) (Böther et al., 2022b) SL 17.36 25:34 34.50 47:28
LTFT (r) (Zhang et al., 2023) UL 19.18 1:04 37.48 8:44

DiffUCO (r) (Sanokowski et al., 2024) UL 18.88± 0.06 0:14 38.10± 0.13 0:20
DiffUCO: CE (r) (Sanokowski et al., 2024) UL 19.24± 0.05 1:48 38.87± 0.13 9:54

DiffUCO UL 19.42± 0.03 0:02 39.44± 0.12 0:03
SDDS: rKL w/ RL UL 19.62± 0.01 0:02 39.97± 0.08 0:03
SDDS: fKL w/ MC UL 19.27± 0.03 0:02 38.44± 0.06 0:03

DiffUCO: CE UL 19.42± 0.03 0:20 39.49± 0.09 6:38
SDDS: rKL w/ RL-CE UL 19.62± 0.01 0:20 39.99± 0.08 6:35
SDDS: fKL w/ MC-CE UL 19.27± 0.03 0:19 38.61± 0.03 6:31

Table 10: Extended result table.Average independent set size on the whole test dataset on the RB-
small and RB-large datasets. The higher the better. The total evaluation time is shown in h:m:s. (r)
indicates that results are reported as in Sanokowski et al. (2024). ± represents the standard error over
three independent training seeds. (CE) indicates that results are reported after applying conditional
expectation. The best neural method is marked as bold. Gurobi results with ∗ indicate that Gurobi
was run with a time limit. On MIS RB-large the time-limit is set to 120 seconds per graph. In this
table, SL is for supervised learning and UL is for unsupervised learning methods.

29

Published as a conference paper at ICLR 2025

MDS BA-small BA-large

Method Type Size ↓ time ↓ Size ↓ time ↓
Gurobi Gurobi Optimization, LLC (2023) OR 27.84± 0.00 1:22 104.01± 0.27 3:35:15

Greedy (r) H 37.39 4:26 140.52 1:10:02
MFA (r) (Bilbro et al., 1988) H 36.36 5:52 126.56 1:13:02

EGN: CE (r) (Karalias & Loukas, 2020) UL 30.68 2:00 116.76 7:52
EGN-Anneal: CE (r) (Sun et al., 2022) UL 29.24 2:02 111.50 7:50

LTFT (r) (Zhang et al., 2023) UL 28.61 4:16 110.28 1:04:24
DiffUCO (r) (Sanokowski et al., 2024) UL 28.30± 0.10 0:10 107.01± 0.33 0:10

DiffUCO: CE (r) (Sanokowski et al., 2024) UL 28.20± 0.09 1:48 106.61± 0.30 6:56

DiffUCO UL 28.10± 0.01 0:01 105.21± 0.21 0:01
SDDS: rKL w/ RL UL 28.03± 0.00 0:02 105.16± 0.21 0:02
SDDS: fKL w/ MC UL 28.34± 0.02 0:01 105.70± 0.25 0:02

DiffUCO: CE UL 28.09± 0.01 0:16 105.21± 0.21 1:45
SDDS: rKL w/ RL-CE UL 28.02± 0.01 0:16 105.15± 0.20 1:41
SDDS: fKL w/ MC-CE UL 28.33± 0.02 0:16 105.7± 0.25 1:41

Table 11: Extended result table. Average dominating set size on the whole test dataset on the BA-
small and BA-large datasets. The lower the set size the better. Total evaluation time is shown
in h:m:s. (r) indicates that results are reported as in Sanokowski et al. (2024). ± represents the
standard error over three independent training seeds. (CE) indicates that results are reported after
applying conditional expectation. The best neural method is marked as bold. In this table, H stands
for heuristic, SL for supervised learning and UL for unsupervised learning methods.

MaxCl RB-small MaxCut BA-small BA-large

Method Type Size ↑ time ↓ Method Type Size ↑ time ↓ Size ↑ time ↓
Gurobi Gurobi Optimization, LLC (2023) OR 19.06± 0.03 11:00 Gurobi (r) OR 730.87± 2.35∗ 17:00:00 2944.38± 0.86∗ 2:35:10:00

Greedy (r) H 13.53 0:50 Greedy (r) H 688.31 0:26 2786.00 6:14
MFA (r) (Bilbro et al., 1988) H 14.82 1:28 MFA (r) H 704.03 3:12 2833.86 14:32

EGN: CE (r) (Karalias & Loukas, 2020) UL 12.02 1:22 EGN: CE (r) UL 693.45 1:32 2870.34 5:38
EGN-Anneal: CE (r) (Sun et al., 2022) UL 14.10 4:32 EGN-Anneal : CE (r) UL 696.73 1:30 2863.23 5:36

LTFT (r) (Zhang et al., 2023) UL 16.24 1:24 LTFT (r) UL 704 5:54 2864 42:40
DiffUCO (r) (Sanokowski et al., 2024) UL 14.51± 0.39 0:08 DiffUCO (r) UL 727.11± 2.31 0:08 2947.27± 1.50 0:08

DiffUCO: CE (r) (Sanokowski et al., 2024) UL 16.22± 0.09 2:00 DiffUCO: CE (r) UL 727.32± 2.33 2:00 2947.53± 1.48 7:34

DiffUCO UL 17.40± 0.02 0:02 DiffUCO UL 731.30± 0.75 0:02 2974.60± 7.73 0:02
SDDS: rKL w/ RL UL 18.89± 0.04 0:02 SDDS: rKL w/ RL UL 731.93± 0.74 0:02 2971.62± 8.15 0:02
SDDS: fKL w/ MC UL 18.40± 0.02 0:02 SDDS: fKL w/ MC UL 731.48± 0.69 0:02 2973.80± 7.57 0:02

DiffUCO: CE UL 17.40± 0.02 0:38 DiffUCO: CE UL 731.30± 0.75 0:15 2974.64± 7.74 1:13
SDDS: rKL w/ RL-CE UL 18.90± 0.04 0:38 SDDS: rKL w/ RL-CE UL 731.93± 0.74 0:14 2971.62± 8.15 1:08
SDDS: fKL w/ MC-CE UL 18.41± 0.02 0:38 SDDS: fKL w/ MC-CE UL 731.48± 0.69 0:14 2973.80± 7.57 1:08

Table 12: Extended result table: Left: Testset average clique size on the whole on the RB-small
dataset. The larger the set size the better. Right: Average test set cut size on the BA-small and
BA-large datasets. The larger the better. Left and Right: Total evaluation time is shown in d:h:m:s.
(r) indicates that results are reported as in Sanokowski et al. (2024). (CE) indicates that results are
reported after applying conditional expectation. Gurobi results with ∗ indicate that Gurobi was run
with a time limit. On MDS BA-small the time limit is set to 60 and on MDS BA-large to 300 seconds
per graph. The best neural method is marked as bold. In these tables, H stands for heuristic, SL for
supervised learning and UL for unsupervised learning methods.

30

	Introduction
	Preliminary: Neural Probabilistic Optimization
	Discrete Diffusion Models for Neural Probabilistic Optimization
	Unsupervised Combinatorial Optimization
	Unbiased Sampling

	Methods
	Scalable Discrete Diffusion Samplers
	Unbiased Sampling with Discrete Ising models

	Related Work
	Experiments
	Unsupervised Combinatorial Optimization
	Unbiased Sampling of Ising models

	Limitations and Conclusion
	Appendix
	Derivations
	Importance Sampling and Neural Importance Sampling

	Self-Normalized Neural Importance Sampling
	Neural Importance Sampling with Diffusion Models
	MCMC
	Neural MCMC
	Neural MCMC with Diffusion Models
	Policy Gradient Theorem for Data Processing Inequality
	Neural Importance Sampling gradient of Forward KL divergence

	Algorithms
	Noise Distribution
	Conditional Expectation
	Asymptotically unbiased sampling
	Markov Chain Convergence Criterion
	fKL w/ MC Algorithm
	PPO Algorithm

	Architectures
	GNN Architecture
	U-Net Architecture

	CO Problem Types
	Graph datasets
	Experiments
	UCO Experimental Design
	Ablation on Learning rate Schedule and Graph Norm Layer
	Unbiased Sampling Experimental Design

	Additional Experiments
	Study on number of Diffusion steps and Memory requirements
	Spin Glass Experiments
	Time Measurement

	Memory Requirements
	Hyperparameters
	Code
	Extended Tables

