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Reliable Attribute-missing Multi-view Clustering with
Instance-level and Feature-level Cooperative Imputation
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ABSTRACT
Multi-view clustering (MVC) constitutes a distinct approach to data
mining within the field of machine learning. Due to limitations
in the data collection process, missing attributes are frequently
encountered. However, existing MVC methods primarily focus on
missing instances, showing limited attention to missing attributes.
A small number of studies employ the reconstruction of missing
instances to address missing attributes, potentially overlooking the
synergistic effects between the instance and feature spaces, which
could lead to distorted imputation outcomes. Furthermore, current
methods uniformly treat all missing attributes as zero values, thus
failing to differentiate between real and technical zeroes, potentially
resulting in data over-imputation. To mitigate these challenges, we
introduce a novel Reliable Attribute-Missing Multi-View Clustering
method (RAM-MVC). Specifically, feature reconstruction is utilized
to address missing attributes, while similarity graphs are simul-
taneously constructed within the instance and feature spaces. By
leveraging structural information from both spaces, RAM-MVC
learns a high-quality feature reconstruction matrix during the joint
optimization process. Additionally, we introduce a reliable imputa-
tion guidance module that distinguishes between real and technical
attribute-missing events, enabling discriminative imputation. The
proposed RAM-MVC method outperforms nine baseline methods,
as evidenced by real-world experiments using single-cell multi-view
data.

CCS CONCEPTS
• Computing methodologies → Cluster analysis; • Theory of
computation → Unsupervised learning and clustering;

KEYWORDS
Multi-view Clustering, Multi-view Learning, Attribute-missing Im-
putation

1 INTRODUCTION
Multi-view clustering (MVC) represents a pivotal paradigm in ma-
chine learning, garneringwidespread attention owing to its superior
performance in uncovering data structures [7, 13, 33, 50, 54]. By
aggregating information frommultiple views, MVC offers a compre-
hensive understanding of the data and is extensively applied across
a variety of real-world scenarios [10, 16, 22, 41, 45, 57], including
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View 1

RNA

View VView 2

Chromatin Protein

Missing AttributesComplete Attributes

Figure 1: Multi-view data exhibiting missing attributes, as
exemplified in biomedical scenarios.

biomedical research, social network analysis, and recommendation
systems, etc. However, due to technical limitations of collection
equipment, complex system environments, and privacy concerns,
missing attributes in multi-view data remain a prevalent issue [1, 8].
For instance, within the public biological dataset [2], over 80% of
the collected multi-modal sequencing results for various genes are
missing, as is illustrated in Fig. 1. The missing attributes pose a
significant challenge to existing MVC analysis.

Existing MVCmethods predominantly address issues of instance-
level missingness [18, 20, 21, 23], referring to incomplete instances
within the observed view. Several studies introduce the concept
of view-level missingness [12, 25, 39, 43], which is just a specific
case of instance-level missingness that occurs when all samples
in a view are missing. These studies typically develop a mapping
function between complete and missing views to impute zero val-
ues in missing instances. For instance, Goeleven et al. developed
separate mapping functions for each of the four complete views
to impute information in target views with missing samples [11].
These mappings are constructed based on instance-level similar-
ity, neglecting feature similarity and thus overlooking potential
synergies between instance and feature spaces. Furthermore, in
real-world multi-view data, cases of missing attributes occur far
more frequently than those of missing instances. For example, in
patients undergoing physical examinations, data on respiratory
function, blood pressure, and electrocardiograms were collected,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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while urine tests were inadvertently omitted. Existing MVC meth-
ods fail to account for missing attributes and are neither effective
nor appropriate for addressing the attribute-missing issue. Merely
applying the mapping function learned in the instance space for
imputation can lead to distorted outcomes.

Furthermore, existing MVC methods address missing attributes
indiscriminately [5, 38, 48, 52, 53, 56]. However, in practical ap-
plications, there are at least two scenarios for missing attributes:
real and technical zero values. For instance, one student genuinely
scored zero points on an exam, while another earned ninety-nine
points but was assigned a score of zero due to the loss of his test
paper. Non-discriminatory restoration of zero values can result in
students who genuinely scored zero points receiving inflated scores,
deviating from actual outcomes. This problem is especially preva-
lent in biomedical contexts. Single-cell multi-view data frequently
feature a significant number of zero values [17, 26, 30]. Some of
these zero values signify expression intensities with biological sig-
nificance, whereas others stem from information loss attributable
to technical detection limitations. Indiscriminate imputation can
lead to unexpected and uninterpretable outcomes.

To address the aforementioned issues, we have developed a novel
MVC framework for handling missing attributes, named Reliable
Attribute-Missing Multi-View Clustering (RAM-MVC). This model
comprises two main modules: 1) A reliable imputation guidance
module, which assesses whether imputation should proceed based
on the confidence levels of zero values and discriminates between
real and technical zero values. 2) A bi-level cooperative imputation
module that simultaneously extracts structural information from
both feature and instance spaces, thereby enhancing the feature
reconstruction process. Fig. 2 depicts the architecture of the pro-
posed RAM-MVC framework. The contributions of this study are
summarized as follows:

• We propose a pioneering unified attribute-missing MVC
framework that seamlessly integrates bi-level imputation
with reliable guidance, ensuring both components collabo-
rate effectively to achieve accurate imputation and enhanced
clustering performance.

• The developed imputation guidancemodule effectively differ-
entiates between real and technical attribute-missing events,
thus addressing the over-imputation problem prevalent in
existing MVCmethods. Additionally, by leveraging the struc-
tural information from both the instance and feature spaces,
the Bi-level imputation module jointly optimizes the feature
reconstruction matrix and secures high-quality features.

• An effective alternative optimization algorithm is designed
to solve the proposed RAM-MVC model. Extensive exper-
imental results demonstrate the model’s superiority over
other benchmark methods.

2 RELATEDWORK
During the data collection process, a significant portion of multi-
view data often experiences the loss of specific views or values
due to technical limitations. The MVC method seeks to leverage
the consistency and complementarity of features across multiple
views to address the missing data, thus mitigating the impact of
incomplete data on clustering performance. In this section, we will

categorize and review the existing missing MVC methods into two
types: Instance-missing MVC Methods and Attribute-missing MVC
Methods.

2.1 Instance-missing MVC Methods
In terms of instance absence, Liu et al. redefined the issue of missing
instances as a challenge of completing incomplete view similarity
graphs [28], successfully yielding discriminative representations.
Zhang et al. introduced a two-step strategy that combines missing
view imputation with hidden view learning to develop an inter-
pretable model [55]. Wang et al. formulated a completion mod-
ule leveraging cross-view relation transfer to infer missing data
via graph networks [42]. Xu et al. introduced a mixed Gaussian
prior and proposed a new strategy based on variational autoen-
coders, effectively aggregating information from multiple views
and optimizing shared representation, thereby achieving improved
clustering performance [46]. Additionally, Chao et al. proposed
a novel incomplete contrastive multi-view clustering method re-
cently. They utilized an attention mechanism to fuse samples and
employed confidence levels to learn complementary information
between each view. Furthermore, an end-to-end framework was
designed to integrate multiple steps for joint optimization [6]. Liu et
al. proposed an instance-level similarity graph learning method to
enhance existing incomplete MVC methods [29]. They compressed
all instances into a shared space, constructed cross-view similarities,
and continuously optimized the constructed similarity matrix. This
approach achieved excellent results in addressing the incomplete
multi-view clustering challenge.

2.2 Attribute-missing MVC Methods
Regarding attribute absence, Peng et al. employed graph diffusion
techniques to enhance the consistency of node embeddings across
two views [35], thus facilitating attribute imputation within the
input space of graphs. However, their method remains operational
at the instance level, without the ability to modify attribute values.
Pu et al. developed an adaptive imputation layer for handling miss-
ing multi-view data [36]; the layer constructs upon the results of
soft clustering across multiple views, and is integrated with global
cluster centroids. Nonetheless, it primarily addresses missing in-
stances. Yu et al. introduced the concept of value-level missing.
They performed a simple matrix correction to allow the existing
MVC method to be applicable for incomplete MVC data, but did
not delve into further research on missing attributes [51]. Different
from these methods,Wu et al.’s team constructed a generative adver-
sarial model based on optimal transmission theory to enhance the
interpolation process [44]. This interpolation method was proven
effective, yet further exploration of the clustering framework was
not pursued. Despite these advancements, no multi-view clustering
model has been specifically designed to address missing attributes.
Furthermore, current methods neglect the potential synergistic
effects between the instance and feature spaces.

3 PROPOSED METHOD
First, we provide a brief introduction to the mathematical nota-
tions used in our manuscript. The multi-view data comprises 𝑛
instances across 𝑣 views and can be mathematically represented
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Figure 2: The framework for the proposed RAM-MVC. This model is composed of two main modules: 1) A Reliable Imputation
Guidance Module that distinguishes between real and technical missing events during the imputation process. 2) A Bi-Level
Cooperative Imputation Module that reconstructs features based on structural information from both the instance and feature
spaces.

Table 1: Symbol Appointment

Symbol Description
𝑑𝑝 The dimension in the 𝑝-th view.
𝑁 The number of the instances.
𝑧
(𝑘 )
𝑗

The zero expression rate in the 𝑘-th cluster.
𝑚

(𝑘 )
𝑗

The mean value in the 𝑘-th cluster.
𝑞
2(𝑘 )
𝑗

The variance value in the 𝑘-th cluster.
𝑙
(𝑘 )
𝑗

The confidence level of zero value.
X(𝑝 ) ∈ R𝑛×𝑑𝑝 The raw data of the 𝑝-th view.
H(𝑝 ) ∈ R𝑛×𝑑𝑝 The reliable imputation guidance matrix of the 𝑝-th view.

W(𝑝 ) ∈ R𝑑𝑝×𝑑𝑝 The feature transforming matrix of the 𝑝-th view.
S ∈ R𝑛×𝑛 The similarity matrix.
L𝑠 ∈ R𝑛×𝑛 The Laplacian matrix.

·⊤ The transpose of matrix.
| | · | |𝐹 Frobenius norm.
Tr(·) The trace of matrix.
𝛼𝑝 The weight coefficient of the 𝑝-th view.
𝜆 Regularization parameters.
𝑡 Confidence threshold.

as {X(𝑝 ) ∈ R𝑛×𝑑𝑝 }𝑣
𝑝=1, where X(𝑝 ) = {x(𝑝 )

1 ; ...; x(𝑝 )
𝑛 }, and 𝑑𝑝 de-

notes the dimension in the 𝑝-th view. The Frobenius norm of X(𝑝 )

is expressed as ∥X(𝑝 ) ∥𝐹 =

√︂∑𝑛
𝑖=1

∑𝑑𝑝
𝑗=1 (𝑥

(𝑝 )
𝑖 𝑗

)2 , while Tr(X(𝑝 ) )

and X(𝑝 )⊤ respectively represent the trace and transpose of X(𝑝 ) .
Symbols used in our paper can be referenced in Table 1.

3.1 Reliable Imputation Guidance Module
There are two potential types of attribute-missing events: 1) Real
missing events, which refer to the non-expression of features in
instances, resulting in zero values, and 2) Technical missing events,
which refer to the loss of attributes during the data collection pro-
cess due to limitations of technologies. Here, we aim to retain the
real missing events as they provide insights into real-world facts,
while recovering the technical zero values to address the informa-
tion loss.

To differentiate between these two types of attribute missingness,
confidence levels for each feature 𝑙 (𝑘 )

𝑗
are computed according to

scImpute [19]. Specifically, zero values for features exhibiting high
expression and low variability within instance clusters are con-
sidered technical zeros and require recovery. Conversely, features
that consistently exhibit low levels of expression and demonstrate
high variability are identified as real zeros, reflecting important
insight and requiring preservation. The formula for calculating the
confidence levels 𝑙 (𝑘 )

𝑗
is provided below:

𝑙
(𝑘 )
𝑗

=

(
1 − 𝑧

(𝑘 )
𝑗

)
𝑚

(𝑘 )
𝑗(

1 − 𝑧
(𝑘 )
𝑗

)
𝑚

(𝑘 )
𝑗

+ 𝑧
(𝑘 )
𝑗

𝑞
2(𝑘 )
𝑗

, (1)

where 𝑘 represents the cluster number, while 𝑧 (𝑘 )
𝑗

,𝑚 (𝑘 )
𝑗

, and 𝑞2(𝑘 )
𝑗

denote the zero expression rate, the mean value, and the variance
value, respectively.
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The reliable imputation guide matrix H is computed based on
the confidence levels 𝑙 (𝑘 )

𝑗
. The process is as follows:

ℎ𝑖 𝑗 =


1 if 𝑥𝑖 𝑗 > 0,
1 if 𝑙 (𝑘 )

𝑗
< 𝑡 ∈ (0, 1),

0 otherwise.
(2)

where 𝑡 denotes the confidence threshold established to prevent
excessive imputation. Guiding matrix H corresponds in dimensions
to the numerical matrix X, with elements populated exclusively by
values of 0 and 1. These indicate whether missing values should
be imputed at corresponding locations in X. If the confidence level
falls below 𝑡 , a value in matrix H is set to 1, thus protecting the real
zero values from imputing.

3.2 Feature-level Graph Learning
When missing features appear in the observed view, utilizing ex-
isting features to infer the missing ones represents a simple and
intuitive idea. Therefore, we propose extending the concept of self-
representation to the feature level. Specifically, we posit that each
feature can be reconstructed via a linear combination of other fea-
tures. Given the multi-view dataset X(𝑝 ) ∈ R𝑛×𝑑𝑝 , we present the
mathematical formulation as follows:

min
W(𝑝 ) ⊤W(𝑝 )=I

𝑣∑︁
𝑝=1

∥X(𝑝 ) − X(𝑝 )W(𝑝 ) ∥2𝐹 , (3)

where W(𝑝 ) ∈ R𝑑𝑝×𝑑𝑝 denotes the projection matrix for the 𝑝-th
view, used to map the original data to a new feature space. Each
row in W(𝑝 ) signifies the contribution of each feature to the re-
construction, relative to other features. In essence, this matrix can
illustrate the significance of each feature. Furthermore, orthogonal
constraints W(𝑝 )⊤W(𝑝 ) = I are applied to W(𝑝 ) to promote feature
independence, helping to eliminate redundant information among
features. Moreover, limiting the complexity of the transformation
matrix will constrain the model’s capacity, thereby mitigating the
risk of overfitting. In this study, we employ the matrix W(𝑝 ) to
facilitate the reconstruction of missing features, thus, the quality
of the reconstructed features is deeply contingent upon the quality
of W(𝑝 ) .

3.3 Instance-level Graph Learning
Numerous MVC methods focus on feature recovery by reconstruct-
ing instance-level information, with their limitations outlined in
our prior discussion. However, these limitations should not be inter-
preted as a disregard for the importance of the structural informa-
tion in the instance space. We maintain that structural information
in both instance and feature spaces is of equal importance. Their
joint optimization facilitates the capture of potential synergistic
effects across domains, enabling the model to uncover deeper in-
sights into the missing data. Therefore, in this section, we introduce
the construction of structural information at the instance level.

Leveraging the foundational principles of spectral theory and
manifold learning [9], the similarity between two instances in the
original high-dimensional space signifies their proximity within a
specific local neighborhood in that space. Consequently, this simi-
larity ought to be preserved during the dimensional reduction of

these data to a lower-dimensional space. In light of the aforemen-
tioned principles, we have devised a module to adaptively learn the
nearest neighbor graph and obtain the structural information of
the instance space, with the corresponding formula expressed as
follows:

min
S

𝑛∑︁
𝑖, 𝑗=1

∥x(𝑝 )
𝑖,: W(𝑝 ) − x(𝑝 )

𝑗,: W(𝑝 ) ∥22𝑠𝑖 𝑗 ,

s.t. 𝑠𝑖 𝑗 ≥ 0, 1⊤s:,𝑖 = 1,

(4)

where x(𝑝 )
𝑖,: denotes the i-th row of X(𝑝 ) , while x(𝑝 )

:,𝑖 denotes the
i-th column of X(𝑝 ) . The constraints 𝑠𝑖 𝑗 ≥ 0 guarantee the ra-
tionality of the constructed similarity matrix, while the column
constraints of 1⊤s:,𝑖 = 1 ensure that the elements of each column in
the similarity matrix sum to 1, preventing single data points from
disproportionately influencing the overall structure.

To facilitate a simpler solution, leveraging the properties of ma-
trix trace, Eq. (4) can be transformed into an equivalent form for
optimization:

min
S

Tr
(
W(𝑝 )⊤X(𝑝 )⊤LSX(𝑝 )W(𝑝 )

)
,

s.t. S ≥ 0, 1⊤S = 1,
(5)

where LS = I − D− 1
2 SD− 1

2 represents the Laplacian matrix, S repre-
sents the similarity matrix, and D represents the diagonal matrix
derived from S.

3.4 Bi-level Cooperative Imputation
Instance-level similarity has been extensively utilized in feature
reconstruction and has achieved widespread verification [40, 49],
whereas interpreting feature-level similarity presents challenges.
To provide an intuitive understanding, we use single-cell multi-view
data as an example, which regards genes as features and highlights
a complex network of interactions among genes.

Therefore, we posit that structural information concurrently
exists within both instance and feature spaces, and these two spaces
possess the potential for synergistic effects. To adaptively learn the
structural information from both the instance and feature spaces,
we combine Eq. (3) and Eq. (5) to construct the bi-level objective
function as follows:

min
W(𝑝 ) ,S,𝜶

𝑉∑︁
𝑝=1

∥X(𝑝 ) − X(𝑝 )W(𝑝 ) ∥2𝐹+

𝑉∑︁
𝑝=1

𝛼2𝑝 Tr
(
W(𝑝 )⊤X(𝑝 )⊤LSX(𝑝 )W(𝑝 )

)
+ 𝜆∥S∥2𝐹 ,

s.t. W(𝑝 )⊤W(𝑝 ) = I, S ≥ 0, 1⊤S = 1,𝜶 ≥ 0,𝜶⊤1 = 1,

(6)

where 𝛼𝑝 denotes the weight coefficient of the 𝑝-th view, which is
constructed to balance individual views. By optimizing Eq. (6), we
can effectively learn the structural information at both the instance
and feature levels, thus obtaining a more accurate W(𝑝 ) . As we state
in Section 3.2, the quality of the reconstructed features is deeply
contingent upon the quality of W(𝑝 ) . By enhancing the quality of
W(𝑝 ) , we ultimately obtain the high-quality reconstructed feature.
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Algorithm 1 Iterative Algorithm of RAM-MVC

Input: Attribute-miss multi-view data {X(𝑝 ) }𝑣
𝑝=1; the parameters

𝛼 and 𝜆; the threshold of imputation guidance 𝑡 .
1: Initialize {W(𝑝 ) }𝑣

𝑝=1, 𝜶 , and S.
2: Calculate H(𝑝 ) via Eq. (2).
3: while not convergent do
4: Update {W(𝑝 ) }𝑣

𝑝=1 via Algorithm 2;
5: Update S by solving Eq. (13);
6: Update 𝜶 by solving Eq. (16);
7: end while
8: Calculate {X̂(𝑝 ) }𝑣

𝑝=1 via Eq. (7);
9: Calculate Ŝ by solving Eq. (8);

Output: Perform spectral clustering on Ŝ to obtain the final results.

Algorithm 2 Algorithm of updating W(𝑝 )

1: Initialize W(𝑝 ) ∗ = W(𝑝 ) .
2: while not convergent do
3: B(𝑝 ) = 2

(
𝛾𝑚𝑎𝑥 I − A(𝑝 )

)
W(𝑝 ) ∗ + 2X(𝑝 )⊤X(𝑝 ) ;

4: Perform SVD on B(𝑝 ) as B(𝑝 ) = U⊤ΣV;
5: W(𝑝 ) ∗ = U⊤V;
6: end while
7: Output: W(𝑝 ) = W(𝑝 ) ∗.

After obtaining high-quality reconstructed features, we refrain
from directly imputing them into the corresponding missing fea-
tures. As previouslymentioned, this operation leads to over-imputation
issues. Here, we employ the guiding matrix H to perform discrimi-
natory imputation. The imputation process is computed as follows:

X̂(𝑝 ) = (1 − H(𝑝 ) ) ◦ X(𝑝 )W(𝑝 ) + X(𝑝 ) , (7)

where ◦ represents the Hadamard product, X̂(𝑝 ) represents the
data after imputation, embodying high-quality features and sub-
sequently utilized for further clustering analysis. Specifically, we
recompute the similarity as follows:

min
Ŝ

𝑉∑︁
𝑝=1

𝑛∑︁
𝑖, 𝑗=1

∥x̂(𝑝 )
𝑖,: − x̂(𝑝 )

𝑗,: ∥22𝑠𝑖 𝑗 + 𝜆∥Ŝ∥2𝐹 ,

s.t. Ŝ ≥ 0, 1⊤Ŝ = 1.

(8)

The ultimate clustering result is generated by performing spec-
tral clustering on the refined similarity matrix Ŝ, and the overall
procedure is detailed in Algorithm (1).

3.5 Optimization
The optimization problem in Eq. (6) can be solved using alternat-
ing optimization methods, where in each iteration, one variable is
fixed while the others are optimized, and this process continues
iteratively until the objective function converges.
Update W(𝑝 ) with S and 𝜶 fixed. Fixing other variables, the
subproblem concerning W(𝑝 ) can be rewritten as:

min
W(𝑝 )

𝑉∑︁
𝑝=1

∥X(𝑝 ) − X(𝑝 )W(𝑝 ) ∥2𝐹+

𝑉∑︁
𝑝=1

𝛼2𝑝 Tr
(
W(𝑝 )⊤X(𝑝 )⊤LSX(𝑝 )W(𝑝 )

)
,

s.t. W(𝑝 )⊤W(𝑝 ) = I.

(9)

By removing irrelevant terms, we independently optimize W(𝑝 )

on each view as follows:

min
W(𝑝 )

Tr
(
W(𝑝 )⊤A(𝑝 )W(𝑝 ) − 2X(𝑝 )⊤X(𝑝 )W(𝑝 )

)
,

s.t. W(𝑝 )⊤W(𝑝 ) = I,
(10)

where A(𝑝 ) =

(
X(𝑝 )⊤X(𝑝 ) + 𝛼2𝑝X(𝑝 )⊤LSX(𝑝 )

)
. The above equa-

tion can be relaxed as follows,

max
W(𝑝 )

Tr
(
W(𝑝 )⊤

(
𝛾𝑚𝑎𝑥 I − A(𝑝 )

)
W(𝑝 ) + 2X(𝑝 )⊤X(𝑝 )W(𝑝 )

)
,

s.t. W(𝑝 )⊤W(𝑝 ) = I,
(11)

where𝛾𝑚𝑎𝑥 is the largest eigenvalue ofA(𝑝 ) . According to reference
[34], Eq. (11) can be solved by optimizing the following problem
iteratively,

max
W(𝑝 )

Tr
(
W(𝑝 )⊤B(𝑝 )

)
,

s.t. W(𝑝 )⊤W(𝑝 ) = I,
(12)

where B(𝑝 ) = 2
(
𝛾𝑚𝑎𝑥 I − A(𝑝 )

)
W(𝑝 ) ∗ + 2X(𝑝 )⊤X(𝑝 ) and W(𝑝 ) ∗

denotes the optimal W(𝑝 ) in the last iteration. By performing SVD
decomposition B(𝑝 ) = U⊤ΣV, the optimal W(𝑝 ) at each iteration
is U⊤V.
Update S with W(𝑝 ) and 𝜶 fixed. Fixing other variables, the
subproblem concerning S can be rewritten as:

min
S

𝑉∑︁
𝑝=1

𝛼2𝑝 Tr
(
W(𝑝 )⊤X(𝑝 )⊤LSX(𝑝 )W(𝑝 )

)
+ 𝜆∥S∥2𝐹 ,

s.t. S ≥ 0, 1⊤S = 1.

(13)

The above function can be rewritten as follows,

min
s𝑖 𝑗

𝑉∑︁
𝑝=1

𝑛∑︁
𝑖, 𝑗=1

1
2
𝛼2𝑝 ∥x(𝑝 )

𝑖,: W(𝑝 ) − x(𝑝 )
𝑗,: W(𝑝 ) ∥22𝑠𝑖 𝑗 + 𝜆𝑠2𝑖 𝑗 ,

s.t. 𝑠𝑖 𝑗 ≥ 0,
𝑛∑︁
𝑗=1

𝑠𝑖 𝑗 = 1.

(14)

Considering that each column of S is uncorrelated with each
other. Denoting s:, 𝑗 as a vector with 𝑠𝑖 𝑗 to be the 𝑗-th element, Eq.
(14) can be optimized in column form as follows,

min
s:, 𝑗

1
2
𝜆s⊤:, 𝑗 s:, 𝑗 + e⊤:, 𝑗 s:, 𝑗 , 𝑠 .𝑡 .s𝑖 ≥ 0, s𝑖⊤1 = 1, (15)

where e𝑖, 𝑗 = 1
4𝜆

∑𝑣
𝑝=1 𝛼𝑝

2∥x(𝑝 )
𝑖,: W(𝑝 )−x(𝑝 )

𝑗,: W(𝑝 ) ∥22. Following [34],
we can easily get the closed form solution of each s(𝑝 )

𝑖
.
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Update 𝜶 with W(𝑝 ) and S fixed. Fixing other variables, the
objective function with respect to 𝜶 can be formulated as

min
𝜶

𝑣∑︁
𝑝=1

𝛼2𝑝g𝑝 , 𝑠 .𝑡 .𝜶⊤1 = 1,𝜶 ≥ 0, (16)

where g𝑝 = Tr
(
W(𝑝 )⊤X(𝑝 )⊤LSX(𝑝 )W(𝑝 )

)
. We can obtain the op-

timal 𝛼𝑝 by Cauchy-Buniakowsky-Schwarz inequality as

𝛼𝑝 =

1
g𝑝∑𝑣

𝑝=1
1

g𝑝

. (17)

3.6 Discussion
Time complexity analysis. The time complexity of our proposed
RAM-MVC is O(∑𝑣

𝑝=1 𝑛
2𝑑𝑣+

∑𝑣
𝑝=1 𝑛𝑑

2
𝑣𝜏+

∑𝑣
𝑝=1 𝑑

3
𝑣𝜏), where 𝜏 repre-

sents the number of iterations in Algorithm 2. Specifically, updating
W(𝑝 ) costs O(𝑛2𝑑𝑣 + 𝑛𝑑2𝑣𝜏 + 𝑑3𝑣𝜏) totally. Calculating A(𝑝 ) needs
O(𝑛2𝑑𝑣) and performing matrix multiplication in each iteration of
Algorithm 2 needs O(𝑛𝑑2𝑣 + 𝑑3𝑣 ). The computational complexity of
optimizing S is O(∑𝑣

𝑝=1 𝑛
2𝑑𝑣) for matrix multiplication and O(𝑛2)

for solving Eq. (15). Updating 𝜶 costs O(∑𝑣
𝑝=1 𝑛

2𝑑𝑣) for calculating
g𝑝 .
Space complexity analysis. The main matrix variables required
to be stored during the computation process of RAM-MVC include
the raw data matrix {X(𝑝 ) }𝑣

𝑝=1, the imputation guidance matrix
{H(𝑝 ) }𝑣

𝑝=1, the feature transformation matrix {W(𝑝 ) }𝑣
𝑝=1, the sim-

ilarity matrix S, and the Laplacian matrix LS. Without considering
the space occupied by vectors, the space complexity of RAM-MVC
is O(𝑛2 +∑𝑣

𝑝=1 (𝑛𝑑𝑣 + 𝑑2𝑣 )).

4 EXPERIMENTS
4.1 Experimental Settings
Benchmark Datasets. Through investigation [19, 27], we find that
single-cell multi-view data naturally encompass both technical and
real missing events. Therefore, in this study, we have chosen to
evaluate our model in a biomedical scenario. Six real-world single-
cell multi-view datasets are involved: BMNC-I, BMNC-II, PBMC,
SLN111, SMAGE-I, and SMAGE-II. Detailed information about these
datasets is provided in Table 2. The BMNC dataset was sourced
from the GEO database, which is a comprehensive archive of high-
throughput gene expression data and genomic information [3].
The PBMC, SMAGE-3K, and SMAGE-10K datasets were obtained
from the renowned biological database at www.10xgenomics.com.
SLN111 originates from the work of Yosef et al. [31].
Competitive Algorithms. We compare the proposed RAM-MVC
with the following state-of-the-art approaches, i.e., FMCNOF (Fast
Multi-View Clustering via Nonnegative and Orthogonal Factoriza-
tion) [47]; FastMICE (Fast Multi-View Clustering Via Ensembles:
Towards Scalability, Superiority, and Simplicity) [14]; RMKM (Multi-
View K-Means Clustering on Big Data) [4]; UOMVSC (Unified One-
Step Multi-View Spectral Clustering) [37]; AMGL (Parameter-Free
Auto-Weighted Multiple Graph Learning: A Framework for Multi-
view Clustering and Semi-Supervised Classification) [32]; MSGL
(Structured Graph Learning for Scalable Subspace Clustering: From
Single View to Multiview.) [15]; DCCA (Deep cross-omics cycle

Table 2: Attribute-missing multi-view datasets in our experi-
ments

Dataset Size Views Clusters Dimensions

BMNC-I 1728 2 5 1000/25
BMNC-II 1963 2 4 1000/25
PBMC 3762 2 16 1000/49
SLN111 6018 2 10 1000/112
SMAGE-I 2585 2 14 2000/2000
SMAGE-II 11020 2 12 2000/2000

attention model for joint analysis of single-cell multi-omics data)
[59]; scMDC ( Clustering of single-cell multi-omics data with a mul-
timodal deep learning method) [24]; scMVAE (Deep-joint-learning
analysis model of single cell transcriptome and open chromatin
accessibility data) [58].
Evaluation Metrics. In this study, we focus on the accuracy of
clustering results. Consequently, four widely used external cluster-
ing evaluation metrics are employed: Accuracy (ACC), Normalized
Mutual Information (NMI), Purity, and Adjusted Rand Index (ARI).
Training Settings. For all competitive algorithms, searches were
conducted within the recommended parameter space to select the
parameter combinations for optimal clustering performance. In
our study, the 𝜆 parameter values were set to [1, 10, 100, 1000],
while the threshold 𝑡 values were set to [0.1, 0.3, 0.5, 0.7, 0.9]. The
experiments were repeated multiple times to accurately determine
both the mean and the standard deviation. All trials were conducted
on a Linux workstation equipped with an Intel Core i9-12900KF
CPU and 64GB of RAM.

4.2 Performance Comparison
Table 3 presents the clustering performance of the RAM-MVC al-
gorithm alongside nine baseline methods across six benchmark
datasets. It is evident that RAM-MVC consistently achieves the op-
timal scores in most cases. In a total of 24 comparisons, RAM-MVC
won first place in 58.33% of cases and was placed in the top two in
91.67% of instances. For datasets comprising over 10,000 instances,
such as SMAGE-II, the RAM-MVC algorithm demonstrated supe-
rior performance relative to the average score, with an increase
of (26.1%, 12.68%, 12.52%, 29.04%) in the ACC, NMI, Purity, and
ARI metrics, respectively. For small datasets, such as BMNC-I and
BMNC-II, in comparison with the average score, the RAM-MVC
algorithm maintained its superior performance over comparative
algorithms, with improvements in the four metrics (29.7%, 24.73%,
17.45%, 39.93%) and (23.5%, 26.39%, 16.66%, 31.5%), respectively. This
observation highlights the RAM-MVC algorithm’s consistent excel-
lence across datasets of varying sizes. Moreover, it was found that
underperformance occurs exclusively in the Purity metric. In ana-
lyzing the potential causes, the hypothesis is that class imbalance
might be the underlying issue. For instance, assigning all instances
to a single cluster results in a Purity value of 1; yet, this outcome
does not equate to effective clustering. In terms of running time,
our method does not offer a significant advantage. The comparison
of running times of different models is detailed in Table 4.
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Table 3: Clustering performance on six benchmark datasets, the top 2 scores highlighted in bold.

Methods FMCNOF FastMICE RMKM UOMVSC AMGL MSGL DCCA scMDC scMVAE RAM-MVC

ACC(%)

BMNC-I 53.41±0.00 78.62±2.25 61.81±0.00 72.97±0.00 21.68±0.09 70.62±10.99 71.30±0.00 68.55±2.11 65.42±0.09 92.41±0.03
BMNC-II 66.02±0.00 94.95±5.48 61.90±0.00 98.42±0.00 26.08±0.13 91.61±7.14 98.93± 0.00 79.54±1.14 63.73±0.00 99.19±0.00
PBMC 35.83±0.00 66.23±1.74 71.32±0.00 70.79±0.00 8.50±0.11 65.39±2.85 64.49±0.00 70.85±3.39 61.35±0.00 71.16 ±0.51
SLN111 56.23±0.00 49.23±4.06 53.77±0.00 81.11±0.00 11.65±0.29 51.73±5.51 52.43±0.00 64.70±6.25 52.88±2.70 84.96±0.66
SMAGE-I 43.98±0.00 47.93±1.70 62.44±0.00 61.59±0.00 9.32±0.17 55.53±2.57 48.78±0.00 65.62±1.88 45.69±0.00 70.75±0.15
SMAGE-II 67.35±0.00 50.53±3.14 57.85±0.00 80.26±0.00 9.36±0.10 53.08±2.24 47.21±0.00 58.32±1.35 42.98±0.00 77.98±0.03

NMI(%)

BMNC-I 50.29±0.00 75.60±1.38 56.33±0.00 73.61±0.00 32.00±0.03 69.05±6.67 60.35±0.00 74.70±0.29 68.19±0.53 86.97±0.05
BMNC-II 55.47±0.00 75.93±1.16 70.79±0.00 93.11±0.00 0.30±0.01 84.90±5.82 94.74±0.00 74.80±1.79 71.83±0.00 95.49±0.00
PBMC 44.04±0.00 70.19±1.15 69.63±0.00 73.05±0.00 1.30±0.04 66.58±1.41 70.25±0.00 72.30±1.36 68.50±0.00 72.51 ±0.24
SLN111 41.98±0.00 65.25±2.43 67.89±0.00 79.33±0.00 0.66±0.13 60.27±3.18 66.49±0.00 71.74±3.98 66.78±0.07 81.14±0.60
SMAGE-I 38.08±0.00 56.01±1.02 60.92±0.00 60.74±0.00 1.83±0.12 52.11±1.86 53.34±0.00 61.76±0.81 53.94±0.00 62.05±0.16
SMAGE-II 46.97±0.00 57.25±1.17 60.16±0.00 68.73±0.00 0.34±0.02 54.68±1.08 54.63±0.00 59.80±0.52 54.80±0.00 63.50±0.08

Purity(%)

BMNC–I 71.53±0.00 91.13±0.61 81.31±0.00 90.97±0.00 21.81±0.14 86.65±5.15 71.30±0.00 87.30±2.00 72.66±0.09 92.41±0.03
BMNC-II 77.99±0.00 91.26±5.83 92.56±0.00 98.42±0.00 26.18±0.14 95.31±2.37 98.93±0.00 92.10±0.15 70.05±0.00 99.19±0.00
PBMC 41.23±0.00 80.19±1.73 77.17±0.00 81.63±0.00 8.73±0.12 74.98±1.76 65.39±0.00 78.30±2.81 62.17±0.00 80.80 ±0.18
SLN111 56.23±0.00 85.39±1.31 85.66±0.00 88.32±0.00 11.77±0.32 79.04±1.74 56.46±0.00 84.50±5.15 56.09±3.47 86.28±0.80
SMAGE-I 65.49±0.00 77.94±0.67 78.69±0.00 78.34±0.00 9.59±0.16 71.11±1.73 50.83±0.00 78.93±0.37 48.63±0.00 72.69±0.07
SMAGE-II 72.59±0.00 82.28±0.97 85.39±0.00 83.64±0.00 9.41±0.10 78.92±0.30 51.51±0.00 82.86±0.22 46.58±0.00 78.43±0.03

ARI(%)

BMNC-I 31.62±0.00 58.77±1.47 44.11±0.00 55.39±0.00 0.04±0.03 49.89±10.95 49.34±0.00 55.19±1.51 45.62±0.18 83.26±0.03
BMNC-II 55.45±0.00 93.67±6.54 52.02±0.00 97.36±0.00 0.06±0.01 86.61±4.37 97.93±0.00 62.44±4.18 52.62±0.00 97.96±0.00
PBMC 19.09±0.00 56.13±2.13 59.10±0.00 60.22±0.00 0.01±0.02 53.12±2.05 55.10±0.00 59.79±4.56 51.95±0.00 60.90 ±0.56
SLN111 28.42±0.00 41.50±4.52 43.82±0.00 81.98±0.00 0.05±0.05 40.99±7.48 45.50±0.00 55.79±9.04 45.61±2.09 84.40±0.76
SMAGE-I 29.56±0.00 32.44±1.65 47.11±0.00 49.57±0.00 0.02±0.02 38.77±3.28 38.17±0.00 52.02±1.28 30.08±0.00 57.52±0.38
SMAGE-II 50.52±0.00 37.38±2.97 45.57±0.00 74.24±0.00 0.01±0.00 41.23±3.19 38.81±0.00 46.52±2.57 29.59±0.00 69.47±0.05

BMNC-I SMAGE-I
0.0

0.2

0.4

0.6

0.8

1.0

A
C

C

w.o. Guidance
w.o. Instance

w.o. Feature
RAM-MVC

Figure 3: The ablation study was conducted on the proposed
three variants: 1) w.o. Feature, 2) w.o. Instance, and 3) w.o.
Guidance across the BMNC-I and SMAGE-I datasets, visual-
ized using ACC metrics. (w.o. denotes without).
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(d) RAM-MVC (92.41%)

Figure 4: Illustrations of learned similarity matrix on BMNC-
I datasets.
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Table 4: The comparison of running times (s) of different
algorithms

Datasets BMNC-I BMNC-II PBMC SLN111 SMAGE-I SMAGE-II

FMCNOF 0.20 0.19 0.40 0.48 0.66 3.03
FastMICE 2.62 2.77 3.90 5.70 7.32 15.73
RMKM 2.53 2.89 10.97 22.06 13.25 84.67

UOMVSC 0.92 1.09 8.79 27.02 4.37 129.58
AMGL 15.87 22.14 178.73 1207.77 27.80 4203.80
MSGL 3.23 4.97 9.56 38.45 21.03 59.18
DCCA 16.58 10.87 23.80 61.44 47.65 110.92
scMDC 108.15 170.60 101.46 424.02 40.67 149.78
scMVAE 296.19 262.61 28.81 363.81 72.82 178.54

RAM-MVC 13.45 15.05 98.67 441.00 52.47 3731.20

4.3 Ablation Study
To evaluate the effectiveness of the proposed module, we con-
structed three variants of RAM-MVC as follows: (1) RAM-MVC
w.o. Feature: The feature-level graph learning module was removed
from the completemodel; (2) RAM-MVCw.o. Instance: The instance-
level graph learning module was removed from the complete model;
(3) RAM-MVC w.o. Guidance: The reliable imputation guidance
module was removed from the complete model.

Fig. 3 presents the results of ablation experiments on BMNC-
I and SMAGE-I datasets. We found that the variant RAM-MVC
w.o. Guidance experienced significant performance degradation
across two datasets, illustrating that the proposed reliable guid-
ance module effectively addresses the discriminative imputation
issue, thereby enhancing the clustering performance. Additionally,
removing the instance-level and feature-level learning modules
significantly degrades the model’s performance to varying degrees,
which illustrates the effectiveness of the bi-level cooperative impu-
tation module. Fig. 4 presents the similarity matrix corresponding
to various variants, indicating that preserving all modules achieves
the highest-quality similarity matrix. To summarize, the ablation
experiments underscore the effectiveness of our proposed three
modules and highlight the superiority of the unified clustering
framework integrating reliable guidance and bi-level cooperative
imputation.

4.4 Parameter Sensitivity and Convergence
Analysis

According to the object function in Eq. (6), the regularization hy-
perparameter 𝜆 is incorporated, while the confidence threshold 𝑡
is introduced in Eq. (2). Thus, the RAM-MVC model incorporates
two hyperparameters: 𝜆 and 𝑡 . To investigate the impact of hy-
perparameters on model performance, comprehensive parameter
experiments were conducted on the BMNC-I and SMAGE-I datasets,
the result is shown in Fig. 5. It is observed that across two datasets,
fluctuations in 𝜆 significantly affect clustering performance, yet sta-
bility can be maintained within a certain range. This indicates that
RAM-MVC is sensitive to the 𝜆 parameter, requiring adjustments
within an appropriate range for optimal performance. Conversely, 𝑡
does not exhibit the same level of sensitivity as 𝜆. On the SMAGE-I
dataset, the parameter 𝑡 has a limited impact on the final perfor-
mance. However, for the BMNC-I dataset, significant performance

(a) BMNC-I (b) SMAGE-I

Figure 5: Parameter sensitive analysis of the proposed RAM-
MVC on BMNC-I and SMAGE-I datasets.

(a) BMNC-I (b) SMAGE-I

Figure 6: Objective function values at each iteration of the
RAM-MVC on BMNC-I and SMAGE-I datasets.

fluctuations were observed, demonstrating that the sensitivity of
the parameter 𝑡 is related to the dataset’s characteristics.

Furthermore, to investigate the convergence of RAM-MVC, con-
vergence curves for the BMNC-I and SMAGE-I datasets were plot-
ted, as depicted in Fig. 6. From the curves, it can be observed that
the RAM-MVC algorithm converges after multiple iterations.

5 CONCLUSIONS
In summary, we propose a novel MVCmethod tailored for attribute-
missing events, which overcomes the limitations of current methods
that indiscriminately treat all missing attributes as zero values and
neglect the contributions of bi-level structural information to fea-
ture reconstruction. The proposed RAM-MVC model seamlessly
integrates reliable guidance and bi-level imputation into a unified
learning framework. Instance-level and feature-level structural in-
formation is simultaneously leveraged to generate high-quality
reconstructed features, and the confidence of zero values is calcu-
lated to facilitate discriminatory imputation on missing informa-
tion, thereby avoiding over-interpolation. Furthermore, we have
explored the application of this method in the biomedical field,
demonstrating that it effectively completes the missing attribute
information in single-cell multi-view data and achieves enhanced
clustering performance. Experimental results from six real-world
datasets underscore RAM-MVC’s superiority over other benchmark
methods.
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