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Learning Cross-Spectral Prior for Image Super-Resolution

Anonymous Authors

ABSTRACT

With the rising interest in multi-camera cross-spectral sys-
tems, cross-spectral images have been widely used in com-
puter vision and image processing. Therefore, an effective
super-resolution (SR) method is significant in providing high-
resolution (HR) cross-spectral images for different research
and applications. However, existing SR methods rarely con-
sider utilizing cross-spectral information to assist the SR of
visible images and cannot handle the complex degradation
(noise, high brightness, low light) and misalignment problem
in low-resolution (LR) cross-spectral images. Here, we first
explore the potential of using near-infrared (NIR) image guid-
ance for better SR, based on the observation that NIR images
can preserve valuable information for recovering adequate
image details. To take full advantage of the cross-spectral
prior, we propose a novel Cross-Spectral Prior guided image
SR approach (CSPSR). Concretely, we design a cross-view
matching (CVM) module and a dynamic multi-modal fusion
(DMF) module to enhance the spatial correlation between
cross-spectral images and to bridge the multi-modal fea-
ture gap, respectively. The DMF module facilitates adaptive
feature adaptation and effective information transmission
through a dynamic convolution and a cross-spectral feature
transfer (CSFT) unit. Extensive experiments demonstrate
the effectiveness of our CSPSR, which can exploit the promi-
nent cross-spectral information to produce state-of-the-art
results.
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1 INTRODUCTION

Nowadays, the multi-camera cross-spectral system is embed-
ded in many modern RGBD devices, such as the RGB-NIR
camera in Kinect and iPhone X, and has become increasingly
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(b) Pixel intensity distribution of NIR-VIS images in three testsets.
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(a) Frequency difference between the cross-spectral images.
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Figure 1: Cross-spectral images and their SR result-
s. (a) A pair of LR cross-spectral images (an NIR
image and an RGB image in different views), the
cross-spectral disparity, and the ground truth (GT)
VIS image. (b) Comparison with the state-of-the-art
SR methods (NLSN [59], ENLCN [47], HAT [3]) for
the ×4 SR. The proposed approach can effectively
use the NIR image as guidance to restore a better
high-resolution VIS image with clear details and fine
structure.

popular. Cross-spectral images receive wide attention in the
computer vision field and provide strong benefits for numer-
ous practical applications, such as scene parsing [5], person
re-identification [11, 29], face recognition [4, 13–15], objec-
t detection [12, 25, 39]. These applications always require
high-resolution (HR) images. Therefore, the super-resolution
of cross-spectral images (CSSR), producing high-resolution
(HR) images from their low-resolution (LR) versions, is signif-
icant. However, real-world cross-spectral images always suffer
from complex degradation, such as noise, high brightness,
and low light, making the CSSR challenging. Existing SR
methods (NLSN [59], ENLCN [47], HAT [3]) cannot perform
well on cross-spectral images (see Figure 1).

The near-infrared (NIR) image and the visible (VIS) RG-
B image of the cross-spectral images in Figure 2 present
different inherent characteristics. Compared with the VIS
image, the NIR image retains better brightness contrast and
richer texture details in some overexposed or dark areas and
provides clearer boundaries of the texts, as it is robust to the
change of colour and is sensitive to the change of illumina-
tion. In addition, the NIR image can resist the disturbance
of bad imaging conditions, such as low illumination, and fog.
Therefore, the NIR image is able to preserve some valuable
information for recovering adequate VIS image details and
to provide many benefits for the VIS image SR.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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The above analysis inspires us to propose a cross-spectral
prior guided super-resolution (CSPSR) approach by introduc-
ing the NIR guidance into the SR of the VIS image. Figure 1
(a) demonstrates a pair of LR cross-spectral images and the
disparity between them. The multi-modal feature gap and
cross-view pixel misalignment make the CSPSR challenging.
To our knowledge, most current SR methods mainly work
on images of single-modal or single-view and rarely exploit
the cross-spectral image information (e.g., NIR) to guide the
(VIS) image SR. Therefore, it is suboptimal to directly apply
existing SR methods to the CSPSR.

How to bridge the multi-modal feature gap and enhance
the cross-view sub-pixel correspondence are prominent in-
sights of this paper. The proposed CSPSR approach can
restore accurate HR images by taking full advantage of the
cross-spectral and cross-view image information. Specifically,
we enhance the pixel-level correspondence between differen-
t views through a cross-view matching (CVM) module to
provide more appropriate NIR guidance for the VIS image.
To fully fuse multi-modal features of cross-spectral images,
we design a dynamic multi-modal fusion (DMF) module,
composed of a dynamic convolution and a confidence-based
cross-spectral feature transfer (CSFT) unit. The dynamic
convolution adaptively adapts the NIR feature to better
match the VIS feature, and the CSFT unit transfers reliable
knowledge from the NIR image to the VIS image by learning
different confidence maps.

As shown in Figure 1 (b), our CSPSR can effectively utilize
the NIR information to produce an HR VIS image with clear
textures and structures, that are closer to the ground truth
(GT). The highlights of our work are as follows.

∙ We analyze the inherent characteristics of the cross-
spectral images and propose a novel cross-spectral pri-
or guided image super-resolution (CSPSR) approach,
which introduces the NIR image to assist the SR of
the VIS image for the first time.

∙ We propose a cross-view matching (CVM) module
and a dynamic multi-modal fusion (DMF) module to
take full advantage of the cross-spectral and cross-view
image information for better SR. The CVM module en-
hances the cross-view spatial correspondence. The DM-
F module adaptively bridges the multi-modal feature
gap and transfers cross-spectral knowledge through
a dynamic convolution and a cross-spectral feature
transfer (CSFT) unit.

∙ We design a dual-branch framework for extracting
multi-modal features of cross-spectral images to provide
an informative reference related to SR.

2 RELATED WORK

2.1 Single-Modal Image Super-Resolution

Benefiting from the development of deep learning, single-
image super-resolution (SISR) has achieved remarkable ad-
vances over previous reconstruction-based methods [2, 20,
34, 54]. As the first convolutional neural network (CNN)

based SISR method, SRCNN [9] learns the LR-to-HR map-
ping and achieves remarkable advances. Following this fash-
ion, a large number of deep learning-based SISR method-
s [3, 19, 23, 26, 36, 42, 47, 50, 52, 55–57, 59, 62, 64]) have been
developed to improve the objective accuracy or perceptual
quality of the SISR results.

Most SISR approaches adopt MSE or MAE as a loss func-
tion and target high PSNR/SSIM by proposing various deep
network architectures. For instance, VDSR [19] constructs a
deeper SISR network with 20 convolution layers. EDSR [23]
builds a very deep and wide network by cascading modi-
fied residual blocks. DRFN [56] adopts a deep recurrence
learning strategy to enlarge the receptive field and utilizes
transposed convolution for upsampling. ENLCN [47] proposes
an efficient non-local contrastive attention module to model
long-range visual features and leverage more relevant non-
local features in an image. HAT [3] combines both channel
attention and self-attention schemes to utilize global image
statistics. To decrease the computational cost, NLSN [59]
proposes a Non-Local Sparse Attention (NLSA) and embeds
it into a residual network to enforce sparsity in the Non-Local
attention module, as well as largely reduce its computational
cost. SMSR [42] learns sparse spatial and channel masks to
identify important locations and mark redundant channels
in those unimportant regions for efficient SR.

To obtain better SR performance, some methods use addi-
tional images prior to assisting the super-resolution. Specifi-
cally, multi-frame super-resolution [31], reference-based super-
resolution (RefSR) [27, 48, 53, 60, 65], and stereo image
super-resolution [7, 10, 17, 24, 43, 51, 68] methods exploit
images from adjacent frames, reference images and cross-view
images, respectively, to provide beneficial guidance for SR
and achieve a huge breakthrough.

2.2 Multi-Modal Image Restoration

In addition to single-modal visible images, multi-modal im-
ages, including infrared images and near-infrared (NIR) im-
ages, have also been regarded as a prior in some RGB im-
age restoration tasks, such as the low-light image enhance-
ment [33, 63, 69], image dehazing [21, 38], image restora-
tion [16, 46], and image denoising [44].

For instance, some image enhancement methods [33, 63, 69]
use the contrast and texture information in infrared images
to guide the enhancement of low-light VIS images. The NIR
image-guided colour image denoising method [44] fuses NIR
images and noisy colour images to eliminate image noise
and transfer detail structure from guided images by simply
concatenating the two input images.

In order to utilize the multi-modal images in SR, most cur-
rent multi-modal image super-resolution (MMSR) methods
regard RGB images as the guidance for the SR of images from
other modalities, including depth image [8, 30, 35, 37, 40,
41, 45, 49, 58, 70], multi-spectral image [22, 28, 61], thermal
image [35, 49], NIR image [35]. Some self-supervised MMSR
methods [30, 35, 49] only require LR source and HR RGB
images for training by constructing pseudo supervision in
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(a) Frequency difference between the cross-spectral images.

Figure 2: Visual and statistic comparison between
cross-spectral images (NIR and VIS). (a) The spec-
trograms are shown below the NIR-VIS images.
Some texture details, that are blurred in the VIS im-
ages, are clear and sharp in the NIR images. (b) The
pixel intensity distribution of NIR-VIS images in
RGB-NIR stereo [66], NIRScene [1], and RANUS [6]
datasets. (c) Intensity fluctuation of pixels along the
red dotted lines on the left NIR-VIS images.

LR space or using the weakly supervised cross-modal trans-
formation manner. CMSR [49] is proposed to super-resolve
the thermal, NIR, and depth images under the guidance of
RGB images. However, these RGB-guided MMSR methods
require high-resolution RGB images as reference, which are
unavailable in some real-world scenes.

Current MMSR methods ignore the potential of the NIR
image for improving the VIS image quality and require pixel-
level aligned multi-modal images. NIR images have not been
considered to assist the SR of visible (RGB) images. In
addition, their practicability is limited when the HR RGB
image is unavailable.

3 NIR-VIS IMAGE ANALYSIS

To effectively introduce the NIR guidance into the VIS image
SR, we first analyze the inherent characteristics of the NIR-
VIS images. Figure 2 demonstrates the visual and statistical
characteristics of the NIR and VIS images.

As shown in Figure 2 (a), the NIR images retain better
brightness contrast and richer texture details under poor
lighting conditions, while the VIS images suffer from detail
loss in the overexposed or dark areas. Furthermore, the NIR

images provide simpler and clearer boundaries of texts, as
they are more sensitive to illumination change. In comparison,
the VIS images need to handle complex colours, leading to
blurred or jagged edges between different objects. In addition,
VIS images are susceptible to illumination, fog, and other
bad weather, and NIR images can well resist these distur-
bances. Furthermore, we also observe that the NIR images
preserve accurate high-frequency information, which is help-
ful in providing reasonable guidance and few low-frequency
disturbances for recovering adequate image details.

Then, we also show the distribution of average pixel in-
tensity in NIR/VIS images from three benchmark datasets
(RGB-NIR stereo [66], NIRScene [1], and RANUS [6]) in
Figure 2 (b). Compared to VIS images, the pixel intensi-
ty distribution of NIR images is relatively more uniform,
demonstrating that NIR images can provide beneficial and
complementary guidance for recovering accurate and rich VIS
image details. Figure 2 (c) visualizes the intensity variation
of pixels along the red dotted lines in the left NIR/VIS im-
age. The NIR image presents a larger step response between
mountains and clouds, therefore, it retains clearer boundaries.
In addition, for the rich-textured VIS image areas with a
high-frequency intensity variation, the NIR image has weaker
intensity changes, which ensures more valuable NIR informa-
tion is provided and avoids the disturbance to details that
already exist in the VIS image.

Based on the above analysis, the visual and statistical
difference between the NIR-VIS images inspires us to take
full advantage of the beneficial information from the NIR
image for guiding the SR of the VIS image.

4 METHOD

To take full advantage of the cross-spectral guidance for better
SR, we propose a cross-spectral prior guided image super-
resolution (CSPSR) approach. We will dedicate to stating
the proposed approach in detail in the following subsections.

4.1 Overview

Figure 3 demonstrates the overall workflow of the CSPSR
framework. We adopt a dual-branch structure to super-resolve
images of different modalities, as the two SR branches can
extract valuable features, that are more relevant to SR, to
provide more appropriate guidance. To bridge the multi-
modal feature gap and enhance the cross-view sub-pixel
correspondence of cross-spectral images, we design a cross-
view matching (CVM) module and a dynamic multi-modal
fusion (DMF) module, which can enhance the correspondence
between two views and fuse features of different modalities,
respectively. We will introduce the two modules in detail in
the following subsections.

As shown in Figure 3, given a pair of LR cross-spectral
images, composed of a left VIS image (𝐼𝑙𝐿𝑅 ∈ 𝑅𝐻×𝑊×3) and
a right NIR image (𝑁𝐼𝑅𝑟

𝐿𝑅 ∈ 𝑅𝐻×𝑊×1), the CSPSR model
first aligns the two images to obtain an NIR image (𝑁𝐼𝑅𝑙)
in the left view through the CVM module. Then, we deliver
the 𝐼𝑙𝐿𝑅 and 𝑁𝐼𝑅𝑙 into two SR branches. Concretely, each
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Figure 3: Overview of the proposed cross-spectral prior guided image super-resolution (CSPSR) framework.
Given a pair of LR VIS image (𝐼𝑙𝐿𝑅) and LR NIR image (𝑁𝐼𝑅𝑟

𝐿𝑅), the CSPSR adopts a cross-view matching
(CVM) module to enhance the correlation between the cross-spectral input images, generating the NIR image
in the left view (𝑁𝐼𝑅𝑙). Then, the dual-branch network extracts the middle SR features (𝐹 𝑡−1

𝑉 𝐼𝑆,𝑡=1:𝑇 , 𝐹
𝑡−1
𝑁𝐼𝑅,𝑡=1:𝑇 )

from the matched cross-spectral images and fuses the features of two modalities adaptively by repeating
the dynamic multi-modal fusion (DMF) module 𝑇 times. The cross-spectral feature transfer (CSFT) unit
adaptively transfers information from the 𝐹 ′𝑡−1

𝑁𝐼𝑅 to the VIS feature space, yielding 𝐹 ′𝑡−1
𝑉 𝐼𝑆 . The final SR results

(𝐼𝑙𝑆𝑅, 𝑁𝐼𝑅𝑙
𝑆𝑅) are reconstructed through a convolution layer and a pixel shuffle layer. The total loss of the

CSPSR is composed of the MSE on the SR result of the VIS image and the cross-spectral spatial consistency
loss (ℒ𝐶𝑆𝑆𝐶).

SR branch first extracts the shallow features (𝐹 0
𝑉 𝐼𝑆 , 𝐹

0
𝑁𝐼𝑅 ∈

𝑅𝐻×𝑊×𝐶) of the inputs (𝐼𝑙𝐿𝑅, 𝑁𝐼𝑅𝑙) with two convolution
layers and a residual block. The residual block is composed
of two convolution layers and a residual connection. 𝐻,𝑊,𝐶
denote the height, width, and channel number of the features
(𝐹𝑁𝐼𝑅, 𝐹𝑉 𝐼𝑆).

To adaptively fuse the NIR and VIS image features, the
DMF module, consisting of a dynamic convolution operation
and a cross-spectral feature transfer (CSFT) unit, is insert-
ed between two SR branches. The DMF module takes the
NIR image feature (𝐹 𝑡−1

𝑁𝐼𝑅,𝑡=1:𝑇 ) and the VIS image feature

(𝐹 𝑡−1
𝑉 𝐼𝑆,𝑡=1:𝑇 ) as input and is repeated for 𝑇 times to fully com-

bine the NIR and VIS image features. After 𝑇 DMF modules,
the outputs (𝐹𝑇

𝑉 𝐼𝑆 , 𝐹
𝑇
𝑁𝐼𝑅) of the last DMF module in each

SR branch are delivered to a convolution layer and a pixel
shuffle layer to generate the final SR results (𝐼𝑙𝑆𝑅, 𝑁𝐼𝑅𝑙

𝑆𝑅).

4.2 Cross-View Matching (CVM) Module

As shown in Figure 3, the CVM module enhances the global
correspondence between the cross-spectral images based on
the cross-spectral disparity prediction model [66]. In order
to enhance the robustness of the CSPSR model, we predict
rough left-right disparities {𝑑𝑖𝑠𝑝𝑙, 𝑑𝑖𝑠𝑝𝑟} based on the low-
frequency LR images directly. Thus, we can also allocate more
training effort to the subsequent SR modules by decreasing
difficulty and releasing the burden of training the CVM
module.

Then, we offset all pixels (𝑖, 𝑗) in the right NIR image
according to the 𝑑𝑖𝑠𝑝𝑙, which can accurately align cross-
spectral images to the same view, and generate the new NIR
image in the left view (𝑁𝐼𝑅𝑙), facilitating stronger sub-pixel
correspondence between the NIR/VIS images.

𝑁𝐼𝑅𝑙(𝑖, 𝑗) = 𝑁𝐼𝑅𝑟(𝑖, 𝑗 − 𝑑𝑖𝑠𝑝𝑙(𝑖, 𝑗)) (1)

Figure 4 gives an example of the output of the CVM
module. By enhancing the pixel-level correlation between
cross-spectral images, the convolutional calculation with a
limited receptive field can take full advantage of the aligned
NIR image to restore more accurate VIS image details.

4.3 Dynamic Multi-Modal Fusion (DMF)
Module

As shown in Figure 3, the 𝑡-th dynamic multi-modal fusion
(DMF) module first adopts a dynamic convolution to adapt
the 𝐹 𝑡−1

𝑁𝐼𝑅, resulting in a new NIR image feature (𝐹 ′𝑡−1
𝑁𝐼𝑅).

Then, to transfer knowledge from the NIR image to the VIS
image, we feed the 𝐹 𝑡−1

𝑉 𝐼𝑆 and the 𝐹 ′𝑡−1
𝑁𝐼𝑅 to the CSFT unit

and obtain a new VIS image feature (𝐹 ′𝑡−1
𝑉 𝐼𝑆 ), containing the

information in the NIR image feature. Finally, the input
features (𝐹 𝑡

𝑁𝐼𝑅, 𝐹
𝑡
𝑉 𝐼𝑆) of the next DMF module (𝐷𝑀𝐹𝑡+1)

are obtained by two convolution layers.
Dynamic convolution. Inspired by the dynamic upsam-

pling filter [18], we introduce a dynamic convolution to con-
duct content-adaptive feature adaption. First, we concatenate
the 𝐹 𝑡−1

𝑉 𝐼𝑆 and the 𝐹 𝑡−1
𝑁𝐼𝑅 and apply a convolution layer to learn
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Figure 4: The outputs of the cross-view matching
(CVM) module, which takes the LR left VIS im-
age (𝐼𝑙𝐿𝑅) and right NIR image (𝑁𝐼𝑅𝑟

𝐿𝑅) as input
and outputs the left NIR image and the disparity
(𝑁𝐼𝑅𝑙, 𝑑𝑖𝑠𝑝). The pixel (𝑖, 𝑗) in 𝐼𝑙𝐿𝑅 corresponds to the
pixel (𝑖, 𝑗−𝑑(𝑖, 𝑗)) in 𝑁𝐼𝑅𝑟

𝐿𝑅, where 𝑑(𝑖, 𝑗) denotes the
corresponding value in the 𝑑𝑖𝑠𝑝𝑙.

a kernel map (𝐾 ∈ 𝑅𝐻×𝑊×𝑘2

). Then, we reshape all vectors

𝐾(𝑖, 𝑗)𝑖=1:𝐻,𝑗=1:𝑊 ∈ 𝑅1×1×𝑘2

to generate 𝐻 × 𝑊 filters of
size 𝑅𝑘×𝑘. Finally, the new NIR image feature (𝐹 ′𝑡−1

𝑁𝐼𝑅) can

be obtained by position-aware filtering the 𝐹 𝑡−1
𝑁𝐼𝑅 with the 𝐾.

As the kernel is learned based on the NIR-VIS features, it can
flexibly adapt the NIR feature and make it more compatible
to enhance the VIS feature.

Cross-spectral feature transfer (CSFT) unit. The
aligned images can provide more relevant information, which
makes it easier to guide the SR of the left VIS image. How-
ever, due to the issue of occlusions, the CVM module cannot
guarantee sub-pixel matching accuracy, which may degrade
the SR performance and introduce unwanted artefacts. There-
fore, how to effectively extract and utilize helpful information
in the aligned cross-spectral images is significant. In addition,
fusing features of different modalities adaptively is also a key
point that needs to be solved.

To address the above problems and make full use of the
NIR image for better SR, we propose a confidence-based
CSFT unit, where the multi-modal features are weighted for
better feature fusion between cross-spectral images. As shown
in Figure 3, the CSFT unit can adaptively fuse the NIR-VIS
image features (𝐹 ′𝑡−1

𝑁𝐼𝑅, 𝐹
𝑡−1
𝑉 𝐼𝑆) to output a new feature (𝐹 ′𝑡−1

𝑉 𝐼𝑆 )
through learnable spatial and channel-wise attention. Thus,
the feature 𝐹 𝑡−1

𝑉 𝐼𝑆 , combining abundant and useful information
of the NIR image and VIS image, is helpful for restoring more
texture details in the VIS image. The specific workflow of
the CSFT unit is as follows.

As we mentioned before, some VIS image regions with low
contrast typically lose many details. From this observation,
we first learn a spatial weight (𝑤𝑠1 ∈ 𝑅𝐻×𝑊×1) based on
the 𝐹 𝑡−1

𝑉 𝐼𝑆 through a convolution layer with kernel size 3 ×
3× 1 to indicate image areas with poor quality. Considering
that cross-spectral images have different intensity ranges and

visual effects, we apply two batch normalization (BN) layers
on 𝐹 ′𝑡−1

𝑁𝐼𝑅, 𝐹
𝑡−1
𝑉 𝐼𝑆 to unify the NIR-VIS image features and

highlight the relative difference. Then, to rebalance features
of different modalities, we also learn a channel weight (𝑤𝑐 ∈
𝑅1×1×2𝐶) by passing the 𝐹 ′𝑡−1

𝑁𝐼𝑅 and 𝐹 𝑡−1
𝑉 𝐼𝑆 to a global average

pooling layer, a convolution layer with kernel size 1 × 1 ×
2𝐶, and a sigmoid activation layer, respectively. Next, 𝑤𝑐

is split into two vectors (𝑤𝑐1, 𝑤𝑐2 ∈ 𝑅1×1×𝐶) to re-weight
the 𝐹 ′𝑡−1

𝑁𝐼𝑅, 𝐹
𝑡−1
𝑉 𝐼𝑆 based on their channel-wise correlation and

significance.
Given the concatenation of 𝐹 ′𝑡−1

𝑁𝐼𝑅 and 𝐹 𝑡−1
𝑉 𝐼𝑆 , another spa-

tial weight map (𝑤𝑠2) is generated through a convolution
layer with kernel size 3× 3× 1 to identify the accurate and
useful NIR image features. Finally, we combine the 𝐹 ′𝑡−1

𝑁𝐼𝑅

and 𝐹 𝑡−1
𝑉 𝐼𝑆 by weighted summation based on the weights

𝑤𝑠1, 𝑤𝑠2, 𝑤𝑐1, 𝑤𝑐2 to transfer the abundant information from
the NIR image to the VIS image.

𝐹 ′𝑡−1
𝑉 𝐼𝑆 = 𝐹 ′𝑡−1

𝑁𝐼𝑅 × 𝑤𝑠1 × 𝑤𝑐2 + 𝐹 𝑡−1
𝑉 𝐼𝑆 × 𝑤𝑠1 × 𝑤𝑠2 × 𝑤𝑐1,

(2)
where × denotes the element-wise multiplication.

4.4 Cross-Spectral Spatial Consistency
Loss

Given the VIS-NIR outputs (𝐼𝑙𝑆𝑅, 𝑁𝐼𝑅𝑙
𝑆𝑅) and the GT cross-

spectral images (𝐼𝑙𝐻𝑅, 𝑁𝐼𝑅𝑟
𝐻𝑅), our CSPSR model is trained

end-to-end using the final loss (ℒ) in Eq.(3). In addition
to the mean square error (MSE) loss, used to constrain
the pixel-level accuracy between the 𝐼𝑙𝑆𝑅 and 𝐼𝑙𝐻𝑅, we al-
so propose a cross-spectral spatial consistency loss (ℒ𝐶𝑆𝑆𝐶)
for optimizing the network to learn better NIR informa-
tion. Since calculating the MSE between the misaligned NIR
images (𝑁𝐼𝑅𝑙

𝑆𝑅, 𝑁𝐼𝑅𝑟
𝐻𝑅) directly will lead to spatial arte-

facts in the NIR image, we first obtain the HR left NIR
image (𝑁𝐼𝑅𝑙

𝐻𝑅) and the SR right NIR image (𝑁𝐼𝑅𝑟
𝑆𝑅)

by warping the 𝑁𝐼𝑅𝑟
𝐻𝑅 and the 𝑁𝐼𝑅𝑙

𝑆𝑅 based on the dis-
parity (𝑑𝑖𝑠𝑝𝑙, 𝑑𝑖𝑠𝑝𝑟) (Eq.(1)). Then, the ℒ𝐶𝑆𝑆𝐶 calculates
the MSE between the aligned NIR image pairs, including
(𝑁𝐼𝑅𝑙

𝑆𝑅, 𝑁𝐼𝑅𝑙
𝐻𝑅) and (𝑁𝐼𝑅𝑟

𝑆𝑅, 𝑁𝐼𝑅𝑟
𝐻𝑅).

ℒ =|𝐼𝑙𝑆𝑅 − 𝐼𝑙𝐻𝑅|2 + 𝜆1ℒ𝐶𝑆𝑆𝐶 ,

ℒ𝐶𝑆𝑆𝐶 =|𝑁𝐼𝑅𝑙
𝑆𝑅 −𝑁𝐼𝑅𝑙

𝐻𝑅|2 + |𝑁𝐼𝑅𝑟
𝐻𝑅 −𝑁𝐼𝑅𝑟

𝑆𝑅|2,
(3)

where the weight 𝜆1 is set to 0.1.

4.5 Implementation Details

The final CSPSR model contains 15 DMF modules (𝑇 = 15)
in total. The kernel size of the convolution layers in two SR
branches is 3 × 3 and the feature number 𝐶 is 64.

5 EXPERIMENTS

This section mainly introduces experimental settings and
reports the performance of our approach by conducting the
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Table 1: Quantitative comparison with state-of-the-art SR approaches. The average PSNR↑/SSIM↑ of VIS
images on three NIR-VIS datasets (RGB-NIR stereo [66], NIRScene [1], RANUS [6]). ↑ denotes the higher,
the better. The best results are highlighted in bold. The GFLOPs/Param(MB) denote the calculation amounts
and the parameter amounts of different SR models.

Dataset scale Bicubic EDSR RCAN SMSR NLSN ENLCN HAT Our

RGB-NIR stereo
×2 26.484/0.7664 29.592/0.8153 30.959/0.8179 30.176/0.8501 30.296/0.8531 30.288/0.8527 30.777/0.8628 32.212/0.8584
×4 22.056/0.5628 24.928/0.6841 25.245/0.6915 25.471/0.7018 25.377/0.6971 25.440/0.6999 25.560/0.7195 27.765/0.7494

NIRScene
×2 32.455/0.9075 33.915/0.9259 33.937/0.9265 33.486/0.9191 33.966/0.9295 34.012/0.9325 34.506/0.9306 35.177/0.9410
×4 28.276/0.7784 30.293/0.8339 29.802/0.7963 29.265/0.7801 29.641/0.7841 29.905/0.8002 29.955/0.8065 30.856/0.8454

RANUS
×2 39.169/0.9716 41.059/0.9703 41.350/0.9725 41.453/0.9733 42.004/0.9774 42.038/0.9778 42.338/0.9782 43.466/0.9885
×4 34.815/0.9092 35.992/0.9115 36.335/0.9204 35.895/0.9097 36.307/0.9280 36.364/0.9305 36.608/0.9328 37.501/0.9380

GFLOPs/Param(MB) - 246.586/1.518 247.592/15.592 2.710/1.005 36.030/1.853 86.248/1.536 65.758/9.211 51.059/1.298
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Figure 5: Visual comparison with the state-of-the-arts (NLSN [59], ENLCN [47], HAT [3]). The ×4 VIS SR
results on the RGB-NIR stereo [66] and NIRScene [1] datasets.
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Bicubic CMSRMASA-GANNAFSSR Ours

25.641/0.6124 29.107/0.7124 28.107/0.6412 27.916/0.6321 29.908/0.7158
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PSNR/SSIM

CMSR (HR NIR)
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27.922/0.5875

26.826/0.5893

26.952/0.5618

Figure 6: Visual comparison with the prior-guided SR methods, including StereoSR (NAFSSR [7]), reference-
based SR (MASA [27]), and multi-modal SR (CMSR [49]) methods.

comparison experiment and the ablation experiment. Fur-
thermore, the cross-spectral disparity prediction results are
provided to verify the practicability of the CSPSR.

5.1 Dataset and Protocols

We train our models on the RGB-NIR stereo dataset [66],
which contains 12 videos in total. The RGB-NIR stereo
dataset contains 8 training videos and 4 testing videos, where
each video covers 500 pairs of RGB-NIR cross-view frames
with spatial size 582×429. We employ the RGB-NIR stereo,
the NIRScene [1] (477 pairs of NIR-VIS images), and the
RANUS [6] (40k pairs of NIR-VIS images) datasets for e-
valuation. Specifically, images in four testing videos of the
RGB-NIR stereo dataset, 46 pairs of NIR-VIS images, cor-
responding to 9 categories, from the NIRScene dataset, and

the 50th subset (104 NIR-VIS image pairs) in the RANUS
dataset are adopted to test different SR models.

During training, each mini-batch contains 32 pairs of cross-
spectral image patches of size 120×120. The LR NIR/VIS
images are generated by bicubic interpolation with scales 2,
and 4. We augment the training data by randomly down-
scaling, flipping, and rotating images. To measure the SR
results, we adopt the peak signal-to-noise ratio (PSNR) and
structure similarity (SSIM) [67]. The higher PSNR/SSIM
indicates better performance.

All models are based on the Pytorch implementation and
optimized by Adam [32] with 𝛽1 = 0.9, 𝛽2 = 0.999. All
experiments are conducted on an Nvidia GTX2080Ti GPU
(128G RAM). Our model is optimized for 300 epochs with a
learning rate of 1e-4.
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Table 2: Quantitative comparison with prior-guided
SR methods, including StereoSR (PASSR [43], NAF-
SSR [7]), reference-based SR (MASA [27]), and
multi-modal SR (CMSR [49]) models.

Testset PASSR NAFSSR MASA CMSR CMSR
(HR NIR)

Our

RGB-NIR 26.751/0.7214 27.529/0.7326 25.965/0.6677 26.04/0.6727 27.815/0.7411 27.765/0.7494
RANUS 36.579/0.9710 36.953/0.9352 37.433/0.9341 36.964/0.9094 37.889/0.9479 37.501/0.9380
nirscene 29.900/0.8981 30.562/0.8391 29.867/0.7984 29.299/0.7906 30.993/0.8479 30.856/0.8454

5.2 Comparison with Prior Art

SISR methods. To our best knowledge, existing SR meth-
ods have never explored the NIR guidance for the SR of
VIS images. In order to compare with the state-of-the-art,
we train and evaluate several representative SISR models,
including EDSR [23], RCAN [64], SMSR [42], NLSN [59],
ENLCN [47], HAT [3], on the VIS images of the RGB-NIR
stereo dataset.

Table 1 reports the quantitative SR results (PSNR/SSIM)
of the VIS images on three datasets and also compares the
calculation amounts (GFLOPs) and parameter amounts of
different SR models. Our CSPSR substantially achieves the
best PSNR/SSIM with acceptable calculation amount and
parameter amount. Figure 5 demonstrates that the proposed
CSPSR is able to produce photo-realistic images with accu-
rate structure and clear textures, resulting in satisfactory
visual performance.

Prior-guided SR methods. To further verify whether
the existing prior-guided SR methods work well on our prob-
lem, we retrain the StereoSR (PASSR [43], NAFSSR [7]), the
reference-based SR (MASA [27]), and the multi-modal SR
(CMSR [49]) models on our training data. Specifically, we
replace the stereo VIS images with the NIR-VIS images as
the input for the StereoSR model. Since our model only re-
quires LR NIR image guidance, we take the Bicubic upscaled
NIR image instead of the HR VIS image as the reference to
guide the SR of the VIS image to the MASA and the CMSR
models for fair comparison. We also construct the CMSR (w/
HR NIR) by taking the HR NIR image as guidance, which
reflects the possible upper bound of the NIR-guided VIS
image SR. Note that, the NIR-VIS images are first aligned
through the cross-spectral stereo matching model [66] before
SR.

Table 2 and Figure 6 demonstrate the quantitative and vi-
sual comparison on ×4 SR. Though our CSPSR only leverages
LR NIR image, its SR results are comparable with that of the
HR NIR image-guided CMSR (w/ HR NIR), which indicates
the effectiveness of our strategy to exploit cross-spectral and
cross-view information for SR.

5.3 Ablation Study

To verify the effectiveness of the proposed module for using
NIR image information, we retrain a SISR model [47] (ENL-
CN w/ NIR), which takes the concatenation of RGB and
NIR images as input. Table 3 reports the ×4 SR results on
the RGB-NIR stereo dataset [66]. We can observe a slight

Table 3: SR results on four testing videos in the
RGB-NIR stereo dataset [66]. Comparison with the
original ENLCN model and modified ‘ENLCN w/
NIR’, which takes the concatenation of NIR and VIS
image as the input.

0224 0742 0222 0951 0222 1423 0223 1639 mean

ENLCN
w/ NIR

25.874/0.6568 26.884/0.7761 25.637/0.7720 24.003/0.6229 25.600/0.7070

ENLCN 25.704/0.6491 26.600/0.7658 25.384/0.7605 23.821/0.6130 25.440/0.6999

Ours 27.615/0.6980 29.525/0.8188 28.210/0.8178 25.708/0.6630 27.765/0.7494

Table 4: Ablation study on the different components.
Average PSNR↑/SSIM↑ of ×4 SR results.

0224 0742 0222 0951 0222 1423 0223 1639

Single
Branch

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 26.279/0.6407 28.315/0.7934 26.901/0.7898 23.969/0.5942
𝑤/ 𝑁𝐼𝑅 27.160/0.6641 29.484/0.8107 28.014/0.8089 24.937/0.6166
𝑤/ 𝐶𝑉𝑀 26.974/0.6578 29.448/0.8101 27.978/0.8081 24.762/0.6128

Dual
Branch

𝑤/𝑜 𝐶𝑉𝑀 27.061/0.6646 26.232/0.7748 24.430/0.7638 21.036/0.5529
𝑤/𝑜 𝐶𝑆𝐹𝑇 27.162/0.6660 29.561/0.8122 28.117/0.8111 24.993/0.6200
𝑤/𝑜 𝐷𝑦𝐶𝑜𝑛𝑣 27.377/0.6925 29.075/0.8124 27.759/0.8105 25.451/0.6583
𝑤/𝑜 ℒ𝐶𝑆𝑆𝐶 27.336/0.6821 29.223/0.8163 27.993/0.8142 25.653/0.6598

𝐹𝑢𝑙𝑙 27.615/0.6980 29.525/0.8188 28.210/0.8178 25.708/0.6630

TMM 24

Baseline

w/o CSFT

w/ CVMw/ NIR

w/o CVM w/o DyConv

Bicubic

19.817/0.4207

20.517/0.4416

19.862/0.427320.529/0.4417

16.918/0.3719 21.618/0.5009

17.565/0.3446
Full (Our)

21.645/0.5042

GT

PSNR/SSIM
Baseline

w/o CSFT

w/ CVMw/ NIR

w/o CVM w/o DyConv

Bicubic

28.615/0.6811

29.104/0.6971

29.231/0.690930.177/0.6984

30.003/0.6988 30.301/0.6993

24.063/0.5812
Full (Our)

30.468/0.7302

GT

PSNR/SSIM

Figure 7: Visual SR results of the ablation study.
Compared with the ‘w/o CSFT’, which generates
blurred textures, and the ‘w/o CVM’, which pro-
duces some artefacts, our final model ‘Full’ achieves
the best visual results with fine details.

improvement in SR accuracy after feeding NIR images into
the SISR model, which proves that simply concatenating NIR
and RGB images does not effectively exploit the valuable
information in NIR images.

To verify the contribution of each component in our C-
SPSR, we construct multiple SR models, three of which
were single-branch and the other were double-branch, with
different design options and indicate the quantitative SR
results (×4) on 4 testing videos (‘0224 0742’, ‘0222 0951’,
‘0222 1423’, ‘0223 1639’) from the RGB-NIR stereo dataset
in Table 4.

First, we construct three single-branch models (‘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒’,
‘𝑤/ 𝑁𝐼𝑅’, and ‘𝑤/ 𝐶𝑉𝑀 ’). The ‘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒’ adopts the struc-
ture of the VIS image SR branch to learn the LR-to-HR
VIS image mapping directly. Based on the ‘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒’, the
‘𝑤/ 𝑁𝐼𝑅’ takes the concatenation of the LR VIS image and
LR NIR image as input to introduce the NIR guidance. The P-
SNR/SSIM improvement of the ‘𝑤/ 𝑁𝐼𝑅’ over the ‘𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒’
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Table 5: Cross-spectral disparity estimation results
on SR images. Disparity RMSE ↓ in pixels for differ-
ent materials.

Method Common Light Glass Glossy Vegetation Skin Clothing Mean

Bicubic 1.3565 1.701 1.9886 2.3736 1.6742 1.5242 2.0174 1.5795
EDSR 0.7995 0.8368 1.0887 1.6819 0.9763 1.7356 0.7425 0.9827
RCAN 0.7978 0.8260 1.0875 1.6756 0.9731 1.7267 0.7374 0.9780
SMSR 0.8001 0.8541 1.0939 1.6775 0.9772 1.7522 0.7398 0.9868
NLSN 0.7999 0.8506 1.0893 1.6911 0.9753 1.7410 0.7447 0.9865
ENLCN 0.8610 1.0687 0.7465 1.0737 1.0338 1.5752 1.1080 1.1087
Our 0.5210 0.2558 0.3899 0.5940 0.6113 0.9846 0.5131 0.4837

HR 0.5109 0.2930 0.3912 0.3965 0.5973 1.0353 0.5700 0.4743

demonstrates that the NIR image can provide positive guid-
ance for restoring accurate VIS image details, though the
‘𝑤/ 𝑁𝐼𝑅’ uses the unmatched NIR-VIS images. Then, based
on the ‘𝑤/ 𝑁𝐼𝑅’, the ‘𝑤/ 𝐶𝑉𝑀 ’ inserts the CVM module to
align the NIR image and the VIS image before concatenating
them. The CVM module may produce structure distortion in
the warped NIR image, and the ‘𝑤/ 𝐶𝑉𝑀 ’ fails to tolerate
such error in the NIR image. Therefore, directly concatenat-
ing the aligned NIR and VIS image slightly decreases the
PSNR.

We use ‘𝐹𝑢𝑙𝑙’ to denote the complete model, based on
which the ‘𝑤/𝑜 𝐶𝑉𝑀 ’ and the ‘𝑤/𝑜 𝐶𝑆𝐹𝑇 ’ remove the CVM
module and the CSFT unit, respectively. The ‘𝑤/𝑜 𝐶𝑉𝑀 ’
fuses NIR-VIS image features by directly concatenating them.
The comparison verifies that the CVM module enables the
NIR image to provide a more valuable reference for recovering
image details and the CSFT module is helpful for the model to
better fuse and utilize multi-modal features for the VIS image
SR. The ‘𝑤/𝑜 𝐷𝑦𝐶𝑜𝑛𝑣’ replaces the dynamic convolution
with the common convolution.

The ‘𝑤/𝑜 ℒ𝐶𝑆𝑆𝐶 ’ only calculates the MSE between the
SR results and the GT of VIS images and ignores the explicit
constraint for the NIR SR branch and the CVM module,
obtaining lower accuracy. In conclusion, the ‘𝐹𝑢𝑙𝑙’ can adap-
tively exploit valuable NIR image information, leading to the
highest PSNR/SSIM. In Figure 7, the SR results of the ‘𝐹𝑢𝑙𝑙’
contain finer textures that are sharper and closer to the GT,
compared with that of the ‘w/o CVM’ and ‘w/o CSFT’.

All the above experiments demonstrate the reasonabili-
ty and effectiveness of the proposed network architecture
and modules, which facilitate better SR by fully using the
guidance of the cross-view NIR image.

Table 5 reports the disparity RMSE, calculated on different
SR results on the video ‘0224 0742’ of the RGB-NIR stereo
dataset [66]. Figure 8 visualizes the cross-spectral disparity.
This experiment demonstrates that our CSPSR provides
high-quality cross-spectral images for the downstream task.

5.4 Cross-Spectral Disparity Prediction

To further demonstrate the practical value of the CSPSR,
we estimate the cross-spectral disparity between the SR VIS
image and the HR NIR image with a cross-spectral stere-
o matching [66] method. All test images of the RGB-NIR
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28.615/0.6811 29.104/0.697129.231/0.690930.177/0.6984 30.301/0.6993 PSNR/SSIM30.468/0.730224.064/0.5812
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Figure 8: The cross-spectral disparity between the
SR VIS image and the HR NIR image. Our CSPSR
can restore clear edge textures for accurate cross-
spectral matching.

Stereo dataset are labelled with material segments in 8 class-
es, including common, light, glass, glossy, vegetation, skin,
clothing, and bag. By following this work, we evaluate the
disparity accuracy through the disparity root mean square
error (RMSE) in pixels for each material.

5.5 Discussion and Limitation

The main contribution of this paper is introducing cross-
spectral guidance in SR of images from the multi-camera
cross-spectral system. Though the near-infrared images pro-
vide benefits for the super-resolution of visible images, as
we mentioned before, it may not help much for some areas
with normal brightness, where the visible images contain
enough high-frequency information. Therefore, how to better
exploit the near-infrared image guidance for more efficient
computing returns, needs to be further studied.

6 CONCLUSION

In this paper, we have proposed a novel cross-spectral pri-
or guided image super-resolution (CSPSR) approach, which
makes the first attempt to introduce the near-infrared (NIR)
image to assist the visible image SR. The proposed CSPSR
can reasonably exploit the cross-spectral guidance for recover-
ing accurate structures and clear details through a cross-view
matching (CVM) module and a dynamic multi-modal fusion
(DMF) module. Specifically, the CVM module enhances the
cross-view correspondence, which facilitates cross-spectral
images providing more valuable and appropriate guidance for
SR. The DMF module adopts a dynamic convolution and a
cross-spectral feature transfer unit to adaptively enhance the
multi-modal features and fully fuse the cross-spectral infor-
mation for predicting abundant and realistic image details.
Extensive experiments have demonstrated that the CSPSR
can take full advantage of the NIR information to restore
high-quality images with accurate structures and clear details,
obtaining superior SR results compared to the state-of-the-
art.
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