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1 MORE EXPERIMENTAL RESULTS

Table 1 reports the experimental results about the number (77)
of DMF modules in the CSPSR model. More DMF modules
result in better SR results. However, as the number of DMF
modules increases, the improvement degree decreases.

We also demonstrate the performance of different SR mod-
els in the ablation study on the cross-spectral stereo match-
ing task, the RMSE results of which on the test images of
the video ‘0224_0742’ from the RGB-NIR stereo dataset are
shown in Figure 1.
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Figure 1: Quantitative comparison of the ablation
study on the cross-spectral disparity prediction task.
The disparity RMSE in pixels for different materials
on ‘0224_0742° of the RGB-NIR stereo dataset [8].

Figure 2 demonstrates that the proposed CSPSR outper-
forms the state-of-the-art SISR models and produces more
accurate SR results of the left VIS images, especially for
image areas with high brightness, with gains over 3dB for a
scale 4.

Figure 3 demonstrate the quantitative and visual compari-
son on x4 SR.

Bicubic Baseline w/ NIR

w/ CVM GT
| i

24.063/0.5812  28.615/0.6811  30.177/0.6984
w/o CSFT w/o CVM w/o DyConv Full (Our)

29.104/0.6971  30.003/0.6988  30.301/0.6993  30.468/0.7302

PSNR/SSIM

Figure 4: Visual SR results of the ablation study.
Compared with the ‘w/o CSFT’, which generates
blurred textures, and the ‘w/o CVM’, which pro-
duces some artefacts, our final model ‘Full’ achieves
the best visual results with fine details.

Figure 4 demonstrates the SR results of the ablation study.
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Table 1: Experimental results about the number (7') of DMF modules in the CSPSR model. The x4 SR results
(average PSNR?1/SSIM?) of visible images on the RGBNIRStereo dataset.

T | ‘0224.0742’ ‘0222.0951° 10222.1423’ ‘02231639’

1 26.247/0.6398 28.265/0.7922 26.887/0.7882 23.955/0.5937

5 27.063/0.6647 28.992/0.8051 27.267/0.8041 24.080/0.6101

10 | 27.460/0.6924 29.075/0.8124 27.759/0.8105 25.451/0.6583

15 | 27.615/0.6980 29.525/0.8188 28.210/0.8178 25.708/0.6630

= i
22.361/0.5339 23.545/0.6438 25.093/0.6752 27.541/0.7077 28.069/0.7128 PSNR/SSIM

Figure 2: Visual comparison with the state-of-the-arts (NLSN [7], ENLCN [5], HAT [2]). The x4 VIS SR
results on the RGB-NIR stereo [8] and NIRScene [1] datasets.

Bicubic PASSR NAFSSR MASA-GAN CMSR CMSR (HR NIR) Ours GT
4 ,/"/ ‘ Vi

23.844/0.5859 28.183/0.6286 28.078/0.6301 26.144/0.5156 27.019/0.5460 27.923/0.5875 28.309/0.6319 PSNR/SSIM

Figure 3: Visual comparison with the prior-guided SR methods, including StereoSR (NAFSSR [3]), reference-
based SR (MASA [4]), and multi-modal SR (CMSR [6]) methods.
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