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A APPENDIX

This supplementary material describes the dataset examples, experiment setups, and character length
distribution.

A.1 DATASET EXAMPLE

Here, we present the several English samples we collected using GPT-4 requests in Table 6. The
”Posssible Pronounciation” is necessary for the TTS models to generate speech and is extremely
helpful for the human speech annotators as they can use it for reference if they do not know how to
read the equation properly and simplifies the criteria for the human annotator.

A.2 ADDITIONAL METRICS

Let us recall the main metrics in more detail.

Character Error Rate (CER) which is defined as the ratio of the normalized edit distance (Levenshtein
distance) between the predicted sequence and the ground truth, normalized by the total number of
characters in the reference: CER = S+D+I

N , where S is the number of substitutions, D is the
number of deletions, I is the number of insertions, and N is the total number of characters in the
reference.

The Word Error Rate (WER) is defined similarly to the CER but considers words instead of charac-
ters. CER and WER are commonly used in ASR tasks.

ROUGE-1 calculates the unigram recall between the predicted output and the reference text.

ROUGE-1 =

∑
unigram∈ref min(count(unigram), count(unigram pred))∑

unigram∈ref count(unigram)
(1)

This metric is widely used for summarization and transcription tasks to evaluate the lexical overlap
between predicted and reference outputs.

BLEU and sacreBLEU evaluate n-gram precision by comparing the predicted output against the
reference. BLEU is computed as:

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
(2)

where BP is the brevity penalty, pn is the precision of n-grams, and wn are weights. SacreBLEU
applies different tokenization (Papineni et al., 2002; Post, 2018).

chrF and chrF++ are character-based F-scores metrics that compute a balance between precision and
recall at the character level.

We’ve tried to train LLM with pronunciations from all 5 ASR systems from Table 1 to make it an
ASR-agnostic model, but the model’s accuracy was worth more than just with Whisper. For results
see Tables 7 and 8

As we can see, Qwen’s performance has declined, so mixing Audio models in this way is a bad idea
because the training examples could be inconsistent.

Let’s measure case-sensitive performance when ϕ and Φ mean different symbols. See Tables 9 and
10

As we can see, the performance drop of the models was not as severe. This means that models
in general, and Salamon in particular, were trained well, and data in terms of capitalized and non-
capitalized symbols was well labelled.

The rest of the lower-cased metrics. This will be an edition to Table 2. For more details see Table 11

In this case, we also trained some models on non-overlapping formulas to check performance boost
or degradation. See Tables 3 and 12.

And the second table for cross-language performance boost (all discussion was made 5.1). For the
remaining metrics, see Table 13.
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Figure 4: Distribution of equations lengths in the S2L dataset.

A.3 CHARACTER LENGTH DISTRIBUTION

We provide additional information about our dataset. Mainly, it is num of characters in the formula
in our test set for English. See Figure 4.

Here, we can see that our models were trained to predict both short and long equations with up to
140 characters.
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Table 6: Example of the dataset samples for further annotation by speaker and TTS models.
Topic Possible Pronunciation Equation

Numbers Fraction: 2 over 5 2
5

Calculus. Integrals Integral: integral of x cubed dx
equals x to the fourth over 4 plus
constant

∫
x3 dx = x4

4 + C

Basic Geometry the distance between two points
(x1, y1) and (x2, y2) is the square
root of (x2 minus x1) squared plus
(y2 minus y1) squared

d =
√

(x2 − x1)2 + (y2 − y1)2

Basic Functions f of x is equal to x minus 3 divided
by x squared minus 9

f(x) = x−3
x2−9

Partial Derivatives The partial derivative of f with
respect to x and then y equals d
squared f divided by d x d y

∂2f
∂x∂y

Linear Algebra the cross product of vectors a and
b is a vector perpendicular to both

a× b

Statistics phi of x is equal to one divided by
the square root of two pi times e to
the power minus x squared
divided by two

φ(x) = 1√
2π

e−
x2

2

Complex Analysis the exponential function of z is e
raised to the power z

exp(z)

Differential Equations the solution to d y over d x equals
negative k y is y equals c e to the
negative k x

dy
dx = −ky is y = Ce−kx

Field Theory the electromagnetic field tensor is
given by F mu nu equals partial
mu A nu minus partial nu A mu

Fµν = ∂µAν − ∂νAµ

Quantum Mechanics the Schrödinger equation for a
free particle is i h bar d psi over d t
equals minus h bar squared over 2
m d squared psi over d x squared

iℏdψdt = − ℏ2

2m
d2ψ
dx2

QFT the Lagrangian density for the
gauge field is minus one over four
F mu nu F mu nu

L = − 1
4FµνF

µν

Particle Physics the mass of the Z boson is
approximately 91.2 GeV/c
squared

mZ ≈ 91.2GeV/c2

Machine Learning the F1 score with precision 0.75
and recall 0.5

F1 = 20.75×0.5
0.75+0.5 = 0.6

General Physics Period of a pendulum: two pi
times square root of length divided
by gravitational acceleration

T = 2π
√

L
g

Trigonometry Euler’s formula, e to the power i
times pi plus one equals zero

eiπ + 1 = 0

Thermodynamics Gibbs free energy, G equals H
minus TS

G = H − TS
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Table 7: Metrics results (%) for Qwen trained with 5 ASR models

Model CER ↓ Rouge-1 ↑ sBLEU ↑ chrF ↑
Qwen2.5-0.5B 43.21 78.49 50.06 60.35

Table 8: Remaining metrics results (%) for Qwen trained with 5 ASR models

Model WER ↓ METEOR ↑ BLEU ↑ chrF++ ↑
Qwen2.5-0.5B 75.33 57.21 47.06 58.88

Table 9: Case-sensitive metrics (%) for different Language Models

Model Language CER ↓ Rouge-1 ↑ sBLEU ↑ chrF ↑
Qwen2.5-0.5B Eng 45.79 77.78 50.46 61.06

Qwen2.5-Math-1.5B Eng 44.39 79.29 51.02 61.67
SALMONN-13B Eng 44.47 83.88 56.76 66.70

Flan-T5 Eng 67.52 53.47 10.43 26.01
Qwen-Audio Eng 54.64 76.63 54.79 57.61

Qwen2.5-0.5B Rus 13.45 89.71 72.67 85.47
SALMONN-13B Rus 10.59 93.59 76.52 91.38

Qwen2.5-0.5B Eng+Rus 23.39 86.22 66.26 78.74
SALMONN-13B Eng+Rus 24.99 89.93 68.69 82.82

Note: All formulas in the training and validation sets were voiced using TTS, and those in
the test set were voiced with real speakers.

Table 10: Remaining case-sensitive metrics (%) for different Language Models

Model Language WER ↓ METEOR ↑ BLEU ↑ chrF++ ↑
Qwen2.5-0.5B Eng 79.60 56.89 47.16 59.44

Qwen2.5-Math-1.5B Eng 76.78 57.52 47.85 60.24
SALMONN-13B Eng 72.20 61.91 53.08 65.06

Flan-T5 Eng 111.83 20.47 6.19 24.84
Qwen-Audio Eng 102.91 53.67 42.53 55.89

Qwen2.5-0.5B Rus 28.14 80.78 70.55 83.68
SALMONN-13B Rus 18.13 84.91 74.95 90.09

Qwen2.5-0.5B Eng+Rus 42.46 73.63 63.80 78.18
SALMONN-13B Eng+Rus 40.02 77.24 66.77 81.38

Note: All formulas in the training and validation sets were voiced using TTS, and those in the
test set were voiced with real speakers.
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Table 11: Remaining lower-case metrics (%) for different Language Models

Model Language WER ↓ METEOR ↑ BLEU ↑ chrF++ ↑
Qwen2.5-0.5B Eng 76.85 56.89 50.42 62.71

Qwen2.5-Math-1.5B Eng 69.16 60.33 55.57 66.77
ProofGPT-1.3B Eng 69.64 55.86 49.73 62.50

SALMONN-13B Eng 68.90 61.91 57.55 69.20
InternLM2-1.8B Eng 81.01 57.30 50.65 62.55

Flan-T5 Eng 109.26 20.47 7.69 27.53
Qwen-Audio Eng 100.18 53.67 45.67 59.10

Qwen2.5-0.5B Rus 27.14 80.78 70.64 84.34
Qwen2.5-Math-1.5B Rus 23.80 81.65 72.03 86.47

ProofGPT-1.3B Rus 32.14 79.10 68.51 82.22
SALMONN-13B Rus 17.94 84.91 75.05 90.36

Qwen2.5-0.5B Eng+Rus 41.47 73.63 64.75 78.18
ProofGPT-1.3B Eng+Rus 43.26 72.20 62.94 76.37

SALMONN -13B Eng+Rus 38.80 77.24 67.85 82.62

Table 12: Remaining metrics (%) results on overlapping formulas on train, val and test sets

Model Language Test WER ↓ METEOR ↑ BLEU ↑ chrF++ ↑
Qwen2-0.5B Rus Human 14.82 86.74 78.46 91.87

Qwen2.5-0.5B Rus Human 13.91 86.77 78.77 91.92
Qwen2-0.5B Eng Human 40.37 73.88 68.60 76.53

Qwen2.5-0.5B Eng Human 38.54 74.59 69.71 76.53

Qwen2-0.5B Eng+Rus Human 57.02 68.83 58.82 70.78
Qwen2.5-0.5B Eng+Rus Human 58.27 68.56 58.60 70.85

Note: All formulas in the training and validation sets were voiced using TTS, and those in the test
set were voiced with real speakers.

Table 13: Remaining metrics (%) results on non-overlapping cross-language fine-tuning

Model Train
Language

Test
Language WER ↓ METEOR ↑ BLEU ↑ chrF++ ↑

Qwen2-0.5B Eng Eng 40.37 73.88 68.60 76.53
Qwen2-0.5B Eng+Rus Eng 40.38 75.86 70.71 78.59
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