Frame Interpolation with Consecutive Brownian Bridge Diffusion
(Supplementary Material)

1 OVERVIEW OF SUPPLEMENTARY
MATERIAL

The supplementary material is organized into the following sec-
tions:

e Section 2: Detailed formula derivation.

e Section 3: Connection between our method and diffusion
SDEs [13].

e Section 4: Additional experimental results, including evalua-
tion with a better-converged autoencoder, results in PSNR/SSIM,
additional visualizations, and additional ablation studies.

2 FORMULA DERIVATION

2.1 Consecutive Brownian Bridge

For 0 < t < h, if we have s > t, then the Markov property of the
Wiener process produces:

Ws|(Wo, Wy, Wy,) = Ws|(Wy, W)

Applying in our setting, this becomes: W;|Wr = x, Wor = z for
t > T. Note that only the variance of the Wiener process is related
to time, and the variance of general Brownian Bridge W;|(Wy,, Wy,)
is % If we add any value simultaneously to t1, t2, t, the
variance is unchanged. Therefore, we can subtract T in time to get
Ws|Wo = x, Wr =z, wheres =t — T.

If we have s < t, then it is important to know that tW,-: is a
Wiener process with the same distribution with W; [9]. We can
simply add a small € to time and use such transformation to obtain:

Ws|(Wo, We, Wy)
Wsrel(We, Were, Whae)
(S + €)W(s+€)—1 |6We—1, (t+ E)W(t+€)—1, (h + e)W(h+e)‘1

(s+ 6)W(s+€)—1 leWe-r, (£ + e)w(t+5)7l
Ws|(Wo, W)

In our method, this becomes W;|Wy =y, Wr = x. The distribution
is N(%y +(1- %x), @I) Now, let’s consider another process
defined as Ws|Wy = x, W = y. The distribution is easy to derive:
N(Gx+ (1= Fy), S(TT_S)I). With simple algebra, we can find that
when s = T — t, the two distributions are equal. Thus, we finish the
derivation of the distribution of consecutive Brownian Bridge.
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2.2 Cumulative Variance
We denote z as standard Gaussian distribution. In DDPM [4], x;—1 =

L (x - L) e ion, si
Vi (x, WEQ) ++/Prz. At the first step of generation, since
69) + \/EZ)

x7 ~ N(0,I) and 0 < fB; < 1, we have:

Var(xt-1) = Var (

1 (X B
V1-Bt ! 1-a;
XT+\/,BTtZ)

> Var

1
V1= B¢
> 14+ f;
Since €y takes random input, it has a positive variance. The follow-
ing safnpling steps have fixed inputs x;, so the variance only con-

tains ;. Therefore, the cumulative variance is larger than 1+ 3}; f;,
corresponding to 11.036 in real experiments. However, in our

method, we have x;_5, = x; — %69 + ﬁ%z, and xT is

deterministic, we have:
o B [EZADA
ETe t
[(t = A)As )
— z

Since €y takes fixed inputs, it has no variance. The cumulative
variance is smaller than }}; A; = T, corresponding to 2 in our
experiments. We mentioned this result in Section 3.4 in our main

paper.

Var(x;_p,) = Var

=Var

<At

3 CONNECTION WITH DIFFUSION SDES

Our method can be easily written in score-based SDE [1, 13, 18].
The forward process of score-based SDEs is defined as:

dx = f(x,t)dt + g(t)dw. (1)

f(x,t) is the drift term, and g(¢) is the dispersion term. w denotes
the standard Wiener process. The corresponding reversed SDE is
defined as:

dx = [f(x,1) — g(t)*Vxlogp; (x)| dt + g(t)dw. @)
The conditional generation counterpart is defined as:

dx = {f(x,t) = g(t)* Vx[logpe (x) + logpe (y1x)] } di +g(D)dw. (3)

The term y is the conditional control for generation. Moreover,
there exists a deterministic ODE trajectory (probability flow ODE)
with the same marginal distribution p;(x) with Eq. (2) [13]:

dx = |Flx,1) = 1901 Vlogpe(x) | d. )

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116


https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

ACM Multimedia 24, October 28— November 01, 2024, Melbourne, Austrilia

Therefore, the it suffices to train a neural network sy estimating
Vxlogp(x) [13]. Indeed, Brownian Bridge can be written in SDE
form by [9]:

dx = YT _X: dt +dw. )
y is another endpoint of the Brownian Bridge. The reversed SDE is
defined as:

dx = % - Vxlogpt(x)] dt +dw. ©)

By our formulation, our proposed method is compatible with score-
based SDEs. Moreover, compared with conditional SDEs in Eq. (3),
this formulation does not include logp; (y|x) which needs estima-
tion.

4 ADDITIONAL RESULTS
4.1 Better-Converged Autoencoder

As we claimed in our main paper, the autoencoder is still converging,
so we train the autoencoder with an additional 80 epochs to evaluate
the performance. The updated results are shown in Table 2 and
Table 3, corresponding to Table 1 and Table 2 in our main paper.
After additional training, our method achieves the best performance
except for FID in the SNU-FILM extreme subset [2] and LPIPS in
UCF-101 [14]. It is important to note that our autoencoder can
still further converge, and the architecture of the autoencoder is
not optimized (our main focus is the diffusion model rather than
the autoencoder). Our performance on the DAVIS dataset [11] gets
slightly degraded in FloLPIPS and FID while improved in LPIPS. It
might be because our method did not improve on the DAVIS dataset,
but the weight-changing of our model makes the performance
slightly vary.

4.2 Quantitative Results

We provide the evaluation results (with the latest weights in Sec-
tion 4.1) in PSNR/SSIM in Table 4. Though our method does not
have a good performance in PSNR/SSIM, it is due to the inconsis-
tency between PSNR/SSIM and visual quality (see Section 4.3 and
Figure 1). Therefore, we choose LPIPS/FloLPIPS/FID as our main
evaluation metrics.

4.3 Qualitative Reults

Inconsistency Between PSNR/SSIM and Visual Quality. We
provide some examples to demonstrate the inconsistency between
PSNR/SSIM and visual quality, as shown in Figure 1. Our method
achieves better visual quality than UPR-Net [5] such as clearer dog
skins, clearer cloth with folds, and clearer shoes and fences with
nets. However, we did not achieve a satisfactory PSNR/SSIM, which
is 5-10% lower than that of UPR-Net.

Additional Qualitative Comparisons. In addition, we provide
more qualitative comparisons between our method and LDMVFI [3]
in Figure 3 and qualitative comparisons between our method and
recent SOTAs in Figure 4. All examples are selected from SNU-FILM
extreme [2].

Multi-frame Interpolation. We provide qualitative results of
multi-frame interpolation of our methods and LDMVFI [3]. Multi-
frame interpolation is achieved in a bisection manner. We first inter-
polate Iy 5 with Iy, I, and then we interpolate Iy 25 with I, Iy 5 and

PSNR:15.620
SSIM: 0.808

PSNR:16.711
SSIM: 0.830

4
PSNR:21.529
SSIM: 0.873

PSNR:19.598
SSIM: 0.837

K —

PSNR:22.685

PSNR:24.263
SSIM: 0.810 SSIM: 0.719
Overlaid Inputs UPR-Net Ours GT

Figure 1: Visual illustration of the inconsistency between
PSNR/SSIM and visual quality. Only images cropped within
blue boxes are evaluated with PSNR/SSIM. The red circles
highlight our visual quality. Our method generates images
with better visual quality, but the PSNR/SSIM is much lower.

Our sampling DDIM sampling Residual

PSNR =99.5

PSNR =93.0

PSNR =87.0

Figure 2: Visual comparison between our sampling and DDIM
sampling with 5 steps generation. They achieve almost identi-
cal results (with very large PSNR). The residual is the absolute
difference between the two images. Black means 0 difference,
and almost everywhere is black.

Iy.75 with Iy 5, I1. More frames can be interpolated in this manner.
We interpolate 7 frames between two Iy, I1, and the visual compar-
isons are presented in Figure 5. All examples are selected from SNU-
FILM hard [2]. Additional video demos are shown on an anonymous
GitHub page: https://anonymous.4open.science/w/interpolation/.
Due to the bisection-like multi-frame interpolation method, the
multi-frame interpolation results largely depends on the first step
of interpolation (Iy 5). If Iy 5 achieves good quality, then the rela-
tive motion in the second step (interpolating Iy 25, Ip.75) is easy to
achieve high quality because the motion changes become smaller.
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o3 Table 1: Ablation study on the number of sampling steps. This

experiment is conducted on SNU-FILM extreme subset [2].

234 291
235 292

293

236 Number of steps LPIPS FloLPIPS  FID s
:i; 200 0.074 0.075 41.264 295
230 100 0.074 0.075 41.265 296
210 50 0.074 0.075 41.264 297
it 20 0.074 0.075 41.266 298
. 5 0.074 0.075 41.264 299
243 300
» However, if the interpolation quality is not good at the first step, 301
o5 then later steps will not achieve good quality because such an unsat- 302
” isfactory quality will be transmitted. LDMVFI 3 tends to generate 303
- overlaid or distorted Iy 5, resulting in unsatisfactory multi-frame 304
" interpolation results. We largely alleviate this problem, resulting in 305
" much better and more realistic interpolated videos. 306
250 . . 307
R X Ablation Studies 108
252 Number of Sampling Steps. We investigate how the number of 309
253 sampling steps will impact the performance. This ablation study 310
254 is conducted on SNU-FILM extreme subset [2], shown in Table 1. 311
255 We observe that the performance remains almost identical. The 312
256 reason could be the relatively small differences between neighbor- 313
257 ing frames. Our method does not convert random noise to images 314
258 like DDPM [4]. Instead, we convert one image to its neighboring 315
250 frames, so we do not need to generate details from random noises. 316
260 Instead, we change details from existing details, and therefore it 317
261 may not need many steps to generate. 318
262 DDIM Sampling. As we claimed, our formulation does not need 319
263 DDIM [12] sampling to accelerate. We compare our sampling with 320
264 DDIM sampling with 7 = 0 in 5 sampling steps for comparison 321
265 (evaluated with the latest weights). The visual result is shown in 322
266 Figure 2. There is almost no difference between the output of our 323
267 sampling method and DDIM sampling, indicating that we do not 324
268 require such a method to accelerate sampling. 325
269 326
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273 330
274 331
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349 Table 2: Quantitative results (LPIPS/FloLPIPS/FID, the lower the better) on test datasets. f means we evaluate our consecutive 407
350 Brownian Bridge diffusion (trained on Vimeo 90K triplets [16]) with autoencoder provided by LDMVFI [3]. The best perfor- 408
351 mances are boldfaced, and the second best performances are underlined. 409
352 410
353 Methods Middlebury UCF-101 DAVIS SNU-FILM u
354 easy medium hard extreme 412
355 LPIPS/FIoLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FloLPIPS/FID 413

356 ABME’21 [10]
MCVD’22 [15]

0.027/0.040/11.393
0.123/0.138/41.053

0.058/0.069/37.066
0.155/0.169/102.054

0.151/0.209/16.931
0.247/0.293/28.002

0.022/0.034/6.363
0.199/0.230/32.246

0.042/0.076/15.159
0.213/0.243/37.474

0.092/0.168/34.236
0.250/0.292/51.529

0.182/0.300/63.561 414
0.320/0.385/83.156

. VFlIformer'22 [8]  0.015/0.024/9.439  0.033/0.040/22.513  0.127/0.184/14.407  0.018/0.029/5918  0.033/0.053/11.271  0.061/0.100/22.775  0.119/0.185/40.586 w
338 IFRNet’22 [6] 0.015/0.030/10.029  0.029/0.034/20.589  0.106/0.156/12.422  0.021/0.031/6.863  0.034/0.050/12.197  0.059/0.093/23.254  0.116/0.182/42.824 416
359 AMT’23 [7] 0.015/0.023/7.895  0.032/0.039/21.915  0.109/0.145/13.018  0.022/0.034/6.139  0.035/0.055/11.039  0.060/0.092/20.810  0.112/0.177/40.075 47
560 UPR-Net'23 [5] 0.015/0.024/7.935  0.032/0.039/21.970  0.134/0.172/15.002  0.018/0.029/5.669  0.034/0.052/10.983  0.062/0.097/22.127  0.112/0.176/40.098 s
EMA-VFI'23 [17]  0.015/0.025/8.358  0.032/0.038/21.395  0.132/0.166/15.186  0.019/0.038/5.882  0.033/0.053/11.051  0.060/0.091/20.679  0.114/0.170/39.051
361 LDMVFI'24 [3]  0.019/0.044/16.167  0.026/0.035/26.301  0.1070.153/12.554  0.014/0.024/5.752  0.028/0.053/12.485  0.060/0.114/26.520  0.123/0.204/47.042 49
362 Ourst 0.012/0.011/14.447  0.030/0.029/15.335  0.097/0.145/12.623  0.011/0.011/5.737  0.028/0.028/12.569  0.051/0.053/25.567  0.099/0.103/46.088 420
363 Ours 0.007/0.008/7.493  0.029/0.028/13.898  0.051/0.090/10.190  0.009/0.009/4.992  0.021/0.022/9.301  0.034/0.035/19.852  0.074/0.074/41.264 421
364 422
365 Table 3: Ablation studies of autoencoder and ground truth estimation. + GT means we input ground truth x to the decoder part 423
366 of autoencoder. + BB indicates our consecutive Brownian Bridge diffusion trained with autoencoder of LDMVFI. With our 424
367 consecutive Brownian Bridge diffusion, the interpolated frame has almost the same performance as the interpolated frame 425
368 with ground truth latent representation, indicating the strong ground truth estimation capability. Our autoencoder also has 426
369 better performance than LDMVFI [3]. 127
370 428
e Methods Middlebury UCF-101 DAVIS SNU-FILM @
372 easy medium hard extreme 430
373 LPIPS/FIoLPIPS/FID  LPIPS/FIOLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FIoLPIPS/FID  LPIPS/FIOLPIPS/FID  LPIPS/FIOLPIPS/FID  LPIPS/FloLPIPS/FID 11
374 LDMVFI'24 [3] 0.019/0.044/16.167  0.026/0.035/26.301  0.107 0.153/12.554  0.014/0.024/5.752  0.028/0.053/12.485  0.060/0.114/26.520  0.123 0.204/47.042 432
- LDMVFI'24 [3] + BB 0.012/0.011/14.447  0.030/0.029/15335  0.097/0.145/12.623  0.011/0.011/5.737  0.028/0.028/12.569  0.051/0.053/25.567  0.099/0.103/46.088 53
’ LDMVFI'24 [3] + GT ~ 0.012/0.011/14.492  0.030/0.029/15.338  0.097/0.145/12.670  0.011/0.011/5.738  0.028/0.028/12.574  0.051/0.053/25.655  0.099/0.103/46.080 ’
376 Ours 0.007/0.008/7.493  0.029/0.028/13.898  0.051/0.090/10.190  0.009/0.009/4.992  0.021/0.022/9301  0.034/0.035/19.852  0.074/0.074/41.264 434
377 Ours + GT 0.007/0.008/7.486  0.029/0.028/13.898  0.051/0.090/10.189  0.009/0.009/4.994  0.021/0.022/9.230  0.034/0.035/19.850  0.074/0.074/41.265 435
378 436
379 Table 4: Quantitative results (PSNR/SSIM) on test datasets (the higher the better). { means we evaluate our consecutive Brownian .
350 Bridge diffusion (trained on Vimeo 90K [16]) with autoencoder provided by LDMVFI [3]. 58
381 439
382 . SNU-FILM 440
153 Methods Middlebury UCF-101 DAVIS "
184 easy medium hard extreme "
385 PSNR/SSIM  PSNR/SSIM ~ PSNR/SSIM ~ PSNR/SSIM ~ PSNR/SSIM ~ PSNR/SSIM ~ PSNR/SSIM a3
98 ABME’21 [10]  37.639/0.986 35.380/0.970 26.861/0.865 39.590/0.990 35.770/0.979 30.580/0.936  25.430/0.864 h
3 , 445
3:1 MCVD’22 [15 20.539/0.820 18.775/0.710  18.946/0.705 22.201/0.828 21.488/0.812 20.314/0.766  18.464/0.694 4;
:589 VFIformer’22 [ 38.438/0.987 35.430/0.970 26.241/0.850 40.130/0.991 36.090/0.980 30.670/0.938 25.430/0.864 7
590 IFRNet’22 [6] 36.368/0.983  35.420/0.967 27.313/0.877 40.100/0.991 36.120/0.980 30.630/0.937 25.270/0.861 s
391 AMT 23 [7] 38.395/0.988  35.450/0.970 27.234/0.877 39.880/0.991 36.120/0.981 30.780/0.939  25.430/0.865 449
392 UPR-Net’23 [5]  38.065/0.986 35.470/0.970 26.894/0.870  40.440/0.991 36.290/0.980 30.860/0.938 25.630/0.864 450
393 EMA-VFI'23 [17] 38.526/0.988 35.480/0.970 27.111/0.871 39.980/0.991 36.090/0.980 30.940/0.939  25.690/0.866 451
394 LDMVFI'24 [3] 34.230/0.974 32.160/0.964 25.073/0.819 38.890 0.988 33.975/0.971 28.144/0.911 23.349 0.827 452
395 453
196 Ourst 34.057/0.970  34.730/0.965 25.446/0.837 38.720/0.988 34.016/0.971 28.556/0.918 23.931/0.837 54
397 Ours 35.709/0.971 34.941/0.968 25.994/0.849 39.162/0.988 34.886/0.974 29.158/0.921 24.084/0.838 455
398 456
399 457
400 458
401 459
402 460
403 461
404 462
405 463
406 464
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Overlaid
Inputs

LDMVFI

Ours

GT

Figure 3: Additional Qualitative Comparison of our methods and LDMVFI. Images
better-detailed comparison. Our method steadily achieves better visual quality.

Overlaid Inputs VFlformer IFR-Net EMA-VFI UPR-Net LDMVFI Ours

Figure 4: Additional Qualitative Comparison of our methods and recent SOTAs. Only images within the blue box are displayed
for better-detailed comparison.
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Interpolated Frames

Starting Frame

LDMVFI

Ours

Ending Frame

LDMVFI ‘ F ,’

Ours‘ F,

Figure 5: Multi-frame interpolation results. LDMVFI usually interpolates distorted or overlaid images while ours does not.

Images with red and blue borders are displayed to show details. Our method corresponds to the blue border while LDMVFI

corresponds to the red. Green circles highlight the detail where our performance is better.
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