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Frame Interpolation with Consecutive Brownian Bridge Diffusion
(Supplementary Material)

1 OVERVIEW OF SUPPLEMENTARY
MATERIAL

The supplementary material is organized into the following sec-
tions:

• Section 2: Detailed formula derivation.
• Section 3: Connection between our method and diffusion
SDEs [13].

• Section 4: Additional experimental results, including evalua-
tionwith a better-converged autoencoder, results in PSNR/SSIM,
additional visualizations, and additional ablation studies.

2 FORMULA DERIVATION
2.1 Consecutive Brownian Bridge
For 0 < 𝑡 < ℎ, if we have 𝑠 > 𝑡 , then the Markov property of the
Wiener process produces:

𝑊𝑠 | (𝑊0,𝑊𝑡 ,𝑊ℎ) =𝑊𝑠 | (𝑊𝑡 ,𝑊ℎ)
Applying in our setting, this becomes:𝑊𝑡 |𝑊𝑇 = x,𝑊2𝑇 = z for
𝑡 > 𝑇 . Note that only the variance of the Wiener process is related
to time, and the variance of general Brownian Bridge𝑊𝑡 | (𝑊𝑡1 ,𝑊𝑡2 )
is (𝑡2−𝑡 ) (𝑡−𝑡1 )

𝑡2−𝑡1
. If we add any value simultaneously to 𝑡1, 𝑡2, 𝑡 , the

variance is unchanged. Therefore, we can subtract T in time to get
𝑊𝑠 |𝑊0 = x,𝑊𝑇 = z, where 𝑠 = 𝑡 −𝑇 .

If we have 𝑠 < 𝑡 , then it is important to know that 𝑡𝑊𝑡−1 is a
Wiener process with the same distribution with𝑊𝑡 [9]. We can
simply add a small 𝜖 to time and use such transformation to obtain:

𝑊𝑠 | (𝑊0,𝑊𝑡 ,𝑊ℎ)
= 𝑊𝑠+𝜖 | (𝑊𝜖 ,𝑊𝑡+𝜖 ,𝑊ℎ+𝜖 )
= (𝑠 + 𝜖)𝑊(𝑠+𝜖 )−1 |𝜖𝑊𝜖−1 , (𝑡 + 𝜖)𝑊(𝑡+𝜖 )−1 , (ℎ + 𝜖)𝑊(ℎ+𝜖 )−1

= (𝑠 + 𝜖)𝑊(𝑠+𝜖 )−1 |𝜖𝑊𝜖−1 , (𝑡 + 𝜖)𝑊(𝑡+𝜖 )−1

= 𝑊𝑠 | (𝑊0,𝑊𝑡 )

In our method, this becomes𝑊𝑡 |𝑊0 = y,𝑊𝑇 = x. The distribution
is N( 𝑡

𝑇
y + (1 − 𝑡

𝑇
x), 𝑡 (𝑇−𝑡 )

𝑇
I). Now, let’s consider another process

defined as𝑊𝑠 |𝑊0 = x,𝑊𝑇 = y. The distribution is easy to derive:
N( 𝑠

𝑇
x + (1 − 𝑠

𝑇
y), 𝑠 (𝑇−𝑠 )

𝑇
I). With simple algebra, we can find that

when 𝑠 = 𝑇 − 𝑡 , the two distributions are equal. Thus, we finish the
derivation of the distribution of consecutive Brownian Bridge.
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2.2 Cumulative Variance
We denote z as standard Gaussian distribution. In DDPM [4], x𝑡−1 =

1√
1−𝛽𝑡

(
x𝑡 − 𝛽𝑡√

1−𝛼𝑡
𝜖𝜃

)
+
√︃
𝛽𝑡 z. At the first step of generation, since

x𝑇 ∼ N(0, I) and 0 < 𝛽𝑡 < 1, we have:

𝑉𝑎𝑟 (x𝑇−1) = 𝑉𝑎𝑟

(
1√︁

1 − 𝛽𝑡

(
x𝑇 − 𝛽𝑡√

1 − 𝛼𝑡
𝜖𝜃

)
+

√︃
𝛽𝑡 z

)
> 𝑉𝑎𝑟

(
1√︁

1 − 𝛽𝑡
x𝑇 +

√︃
𝛽𝑡 z

)
> 1 + 𝛽𝑡

Since 𝜖𝜃 takes random input, it has a positive variance. The follow-
ing sampling steps have fixed inputs 𝑥𝑡 , so the variance only con-
tains 𝛽𝑡 . Therefore, the cumulative variance is larger than 1+∑

𝑡 𝛽𝑡 ,
corresponding to 11.036 in real experiments. However, in our

method, we have x𝑡−Δ𝑡
= x𝑡 − Δ𝑡

𝑡 𝜖𝜃 +
√︃

(𝑡−Δ𝑡 )Δ𝑡

𝑡 z, and x𝑇 is
deterministic, we have:

𝑉𝑎𝑟 (𝑥𝑡−Δ𝑡
) = 𝑉𝑎𝑟

(
x𝑡 −

Δ𝑡
𝑡
𝜖𝜃 +

√︂
(𝑡 − Δ𝑡 )Δ𝑡

𝑡
z

)
= 𝑉𝑎𝑟

(√︂
(𝑡 − Δ𝑡 )Δ𝑡

𝑡
z

)
< Δ𝑡

Since 𝜖𝜃 takes fixed inputs, it has no variance. The cumulative
variance is smaller than

∑
𝑡 Δ𝑡 = 𝑇 , corresponding to 2 in our

experiments. We mentioned this result in Section 3.4 in our main
paper.

3 CONNECTIONWITH DIFFUSION SDES
Our method can be easily written in score-based SDE [1, 13, 18].
The forward process of score-based SDEs is defined as:

𝑑x = 𝑓 (𝑥, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑w. (1)

𝑓 (𝑥, 𝑡) is the drift term, and 𝑔(𝑡) is the dispersion term. w denotes
the standard Wiener process. The corresponding reversed SDE is
defined as:

𝑑x =
[
𝑓 (𝑥, 𝑡) − 𝑔(𝑡)2∇x𝑙𝑜𝑔𝑝𝑡 (x)

]
𝑑𝑡 + 𝑔(𝑡)𝑑w̄. (2)

The conditional generation counterpart is defined as:

𝑑x =
{
𝑓 (𝑥, 𝑡) − 𝑔(𝑡)2∇x [𝑙𝑜𝑔𝑝𝑡 (x) + 𝑙𝑜𝑔𝑝𝑡 (y|x)]

}
𝑑𝑡 +𝑔(𝑡)𝑑w̄. (3)

The term y is the conditional control for generation. Moreover,
there exists a deterministic ODE trajectory (probability flow ODE)
with the same marginal distribution 𝑝𝑡 (𝑥) with Eq. (2) [13]:

𝑑x =

[
𝑓 (𝑥, 𝑡) − 1

2𝑔(𝑡)
2∇x𝑙𝑜𝑔𝑝𝑡 (x)

]
𝑑𝑡 . (4)
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Therefore, the it suffices to train a neural network 𝑠𝜃 estimating
∇x𝑙𝑜𝑔𝑝𝑡 (x) [13]. Indeed, Brownian Bridge can be written in SDE
form by [9]:

𝑑x =
y − x𝑡
𝑇 − 𝑡

𝑑𝑡 + 𝑑w. (5)

y is another endpoint of the Brownian Bridge. The reversed SDE is
defined as:

𝑑x =

[y − x𝑡
𝑇 − 𝑡

− ∇x𝑙𝑜𝑔𝑝𝑡 (x)
]
𝑑𝑡 + 𝑑w̄. (6)

By our formulation, our proposed method is compatible with score-
based SDEs. Moreover, compared with conditional SDEs in Eq. (3),
this formulation does not include 𝑙𝑜𝑔𝑝𝑡 (y|x) which needs estima-
tion.

4 ADDITIONAL RESULTS
4.1 Better-Converged Autoencoder
Aswe claimed in ourmain paper, the autoencoder is still converging,
so we train the autoencoder with an additional 80 epochs to evaluate
the performance. The updated results are shown in Table 2 and
Table 3, corresponding to Table 1 and Table 2 in our main paper.
After additional training, our method achieves the best performance
except for FID in the SNU-FILM extreme subset [2] and LPIPS in
UCF-101 [14]. It is important to note that our autoencoder can
still further converge, and the architecture of the autoencoder is
not optimized (our main focus is the diffusion model rather than
the autoencoder). Our performance on the DAVIS dataset [11] gets
slightly degraded in FloLPIPS and FID while improved in LPIPS. It
might be because our method did not improve on the DAVIS dataset,
but the weight-changing of our model makes the performance
slightly vary.

4.2 Quantitative Results
We provide the evaluation results (with the latest weights in Sec-
tion 4.1) in PSNR/SSIM in Table 4. Though our method does not
have a good performance in PSNR/SSIM, it is due to the inconsis-
tency between PSNR/SSIM and visual quality (see Section 4.3 and
Figure 1). Therefore, we choose LPIPS/FloLPIPS/FID as our main
evaluation metrics.

4.3 Qualitative Reults
Inconsistency Between PSNR/SSIM and Visual Quality. We
provide some examples to demonstrate the inconsistency between
PSNR/SSIM and visual quality, as shown in Figure 1. Our method
achieves better visual quality than UPR-Net [5] such as clearer dog
skins, clearer cloth with folds, and clearer shoes and fences with
nets. However, we did not achieve a satisfactory PSNR/SSIM, which
is 5-10% lower than that of UPR-Net.
Additional Qualitative Comparisons. In addition, we provide
more qualitative comparisons between our method and LDMVFI [3]
in Figure 3 and qualitative comparisons between our method and
recent SOTAs in Figure 4. All examples are selected from SNU-FILM
extreme [2].
Multi-frame Interpolation. We provide qualitative results of
multi-frame interpolation of our methods and LDMVFI [3]. Multi-
frame interpolation is achieved in a bisection manner. We first inter-
polate 𝐼0.5 with 𝐼0, 𝐼1, and then we interpolate 𝐼0.25 with 𝐼0, 𝐼0.5 and

Overlaid Inputs GTUPR-Net Ours

PSNR:16.711

SSIM: 0.830

PSNR:15.620

SSIM: 0.808

PSNR:21.529

SSIM: 0.873
PSNR:19.598

SSIM: 0.837

PSNR:24.263

SSIM: 0.810

PSNR:22.685

SSIM: 0.719

Figure 1: Visual illustration of the inconsistency between
PSNR/SSIM and visual quality. Only images cropped within
blue boxes are evaluated with PSNR/SSIM. The red circles
highlight our visual quality. Our method generates images
with better visual quality, but the PSNR/SSIM is much lower.

Our sampling DDIM sampling Residual

PSNR = 99.5

PSNR = 93.0

PSNR = 87.0

Figure 2: Visual comparison between our sampling andDDIM
samplingwith 5 steps generation. They achieve almost identi-
cal results (with very large PSNR). The residual is the absolute
difference between the two images. Black means 0 difference,
and almost everywhere is black.

𝐼0.75 with 𝐼0.5, 𝐼1. More frames can be interpolated in this manner.
We interpolate 7 frames between two 𝐼0, 𝐼1, and the visual compar-
isons are presented in Figure 5. All examples are selected from SNU-
FILM hard [2]. Additional video demos are shown on an anonymous
GitHub page: https://anonymous.4open.science/w/interpolation/.
Due to the bisection-like multi-frame interpolation method, the
multi-frame interpolation results largely depends on the first step
of interpolation (𝐼0.5). If 𝐼0.5 achieves good quality, then the rela-
tive motion in the second step (interpolating 𝐼0.25, 𝐼0.75) is easy to
achieve high quality because the motion changes become smaller.

2024-04-19 14:55. Page 2 of 1–7.
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Table 1: Ablation study on the number of sampling steps. This
experiment is conducted on SNU-FILM extreme subset [2].

Number of steps LPIPS FloLPIPS FID
200 0.074 0.075 41.264
100 0.074 0.075 41.265
50 0.074 0.075 41.264
20 0.074 0.075 41.266
5 0.074 0.075 41.264

However, if the interpolation quality is not good at the first step,
then later steps will not achieve good quality because such an unsat-
isfactory quality will be transmitted. LDMVFI 3 tends to generate
overlaid or distorted 𝐼0.5, resulting in unsatisfactory multi-frame
interpolation results. We largely alleviate this problem, resulting in
much better and more realistic interpolated videos.

4.4 Ablation Studies
Number of Sampling Steps.We investigate how the number of
sampling steps will impact the performance. This ablation study
is conducted on SNU-FILM extreme subset [2], shown in Table 1.
We observe that the performance remains almost identical. The
reason could be the relatively small differences between neighbor-
ing frames. Our method does not convert random noise to images
like DDPM [4]. Instead, we convert one image to its neighboring
frames, so we do not need to generate details from random noises.
Instead, we change details from existing details, and therefore it
may not need many steps to generate.
DDIM Sampling. As we claimed, our formulation does not need
DDIM [12] sampling to accelerate. We compare our sampling with
DDIM sampling with 𝜂 = 0 in 5 sampling steps for comparison
(evaluated with the latest weights). The visual result is shown in
Figure 2. There is almost no difference between the output of our
sampling method and DDIM sampling, indicating that we do not
require such a method to accelerate sampling.

2024-04-19 14:55. Page 3 of 1–7.
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Table 2: Quantitative results (LPIPS/FloLPIPS/FID, the lower the better) on test datasets. †means we evaluate our consecutive
Brownian Bridge diffusion (trained on Vimeo 90K triplets [16]) with autoencoder provided by LDMVFI [3]. The best perfor-
mances are boldfaced, and the second best performances are underlined.

Methods Middlebury UCF-101 DAVIS SNU-FILM
easy medium hard extreme

LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID
ABME’21 [10] 0.027/0.040/11.393 0.058/0.069/37.066 0.151/0.209/16.931 0.022/0.034/6.363 0.042/0.076/15.159 0.092/0.168/34.236 0.182/0.300/63.561
MCVD’22 [15] 0.123/0.138/41.053 0.155/0.169/102.054 0.247/0.293/28.002 0.199/0.230/32.246 0.213/0.243/37.474 0.250/0.292/51.529 0.320/0.385/83.156
VFIformer’22 [8] 0.015/0.024/9.439 0.033/0.040/22.513 0.127/0.184/14.407 0.018/0.029/5.918 0.033/0.053/11.271 0.061/0.100/22.775 0.119/0.185/40.586
IFRNet’22 [6] 0.015/0.030/10.029 0.029/0.034/20.589 0.106/0.156/12.422 0.021/0.031/6.863 0.034/0.050/12.197 0.059/0.093/23.254 0.116/0.182/42.824
AMT’23 [7] 0.015/0.023/7.895 0.032/0.039/21.915 0.109/0.145/13.018 0.022/0.034/6.139 0.035/0.055/11.039 0.060/0.092/20.810 0.112/0.177/40.075
UPR-Net’23 [5] 0.015/0.024/7.935 0.032/0.039/21.970 0.134/0.172/15.002 0.018/0.029/5.669 0.034/0.052/10.983 0.062/0.097/22.127 0.112/0.176/40.098
EMA-VFI’23 [17] 0.015/0.025/8.358 0.032/0.038/21.395 0.132/0.166/15.186 0.019/0.038/5.882 0.033/0.053/11.051 0.060/0.091/20.679 0.114/0.170/39.051
LDMVFI’24 [3] 0.019/0.044/16.167 0.026/0.035/26.301 0.107 0.153/12.554 0.014/0.024/5.752 0.028/0.053/12.485 0.060/0.114/26.520 0.123/0.204/47.042
Ours† 0.012/0.011/14.447 0.030/0.029/15.335 0.097/0.145/12.623 0.011/0.011/5.737 0.028/0.028/12.569 0.051/0.053/25.567 0.099/0.103/46.088
Ours 0.007/0.008/7.493 0.029/0.028/13.898 0.051/0.090/10.190 0.009/0.009/4.992 0.021/0.022/9.301 0.034/0.035/19.852 0.074/0.074/41.264

Table 3: Ablation studies of autoencoder and ground truth estimation. + GT means we input ground truth x to the decoder part
of autoencoder. + BB indicates our consecutive Brownian Bridge diffusion trained with autoencoder of LDMVFI. With our
consecutive Brownian Bridge diffusion, the interpolated frame has almost the same performance as the interpolated frame
with ground truth latent representation, indicating the strong ground truth estimation capability. Our autoencoder also has
better performance than LDMVFI [3].

Methods Middlebury UCF-101 DAVIS SNU-FILM
easy medium hard extreme

LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID LPIPS/FloLPIPS/FID
LDMVFI’24 [3] 0.019/0.044/16.167 0.026/0.035/26.301 0.107 0.153/12.554 0.014/0.024/5.752 0.028/0.053/12.485 0.060/0.114/26.520 0.123 0.204/47.042
LDMVFI’24 [3] + BB 0.012/0.011/14.447 0.030/0.029/15.335 0.097/0.145/12.623 0.011/0.011/5.737 0.028/0.028/12.569 0.051/0.053/25.567 0.099/0.103/46.088
LDMVFI’24 [3] + GT 0.012/0.011/14.492 0.030/0.029/15.338 0.097/0.145/12.670 0.011/0.011/5.738 0.028/0.028/12.574 0.051/0.053/25.655 0.099/0.103/46.080
Ours 0.007/0.008/7.493 0.029/0.028/13.898 0.051/0.090/10.190 0.009/0.009/4.992 0.021/0.022/9.301 0.034/0.035/19.852 0.074/0.074/41.264
Ours + GT 0.007/0.008/7.486 0.029/0.028/13.898 0.051/0.090/10.189 0.009/0.009/4.994 0.021/0.022/9.230 0.034/0.035/19.850 0.074/0.074/41.265

Table 4: Quantitative results (PSNR/SSIM) on test datasets (the higher the better). †means we evaluate our consecutive Brownian
Bridge diffusion (trained on Vimeo 90K [16]) with autoencoder provided by LDMVFI [3].

Methods Middlebury UCF-101 DAVIS SNU-FILM
easy medium hard extreme

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM
ABME’21 [10] 37.639/0.986 35.380/0.970 26.861/0.865 39.590/0.990 35.770/0.979 30.580/0.936 25.430/0.864
MCVD’22 [15] 20.539/0.820 18.775/0.710 18.946/0.705 22.201/0.828 21.488/0.812 20.314/0.766 18.464/0.694
VFIformer’22 [8] 38.438/0.987 35.430/0.970 26.241/0.850 40.130/0.991 36.090/0.980 30.670/0.938 25.430/0.864
IFRNet’22 [6] 36.368/0.983 35.420/0.967 27.313/0.877 40.100/0.991 36.120/0.980 30.630/0.937 25.270/0.861
AMT’23 [7] 38.395/0.988 35.450/0.970 27.234/0.877 39.880/0.991 36.120/0.981 30.780/0.939 25.430/0.865

UPR-Net’23 [5] 38.065/0.986 35.470/0.970 26.894/0.870 40.440/0.991 36.290/0.980 30.860/0.938 25.630/0.864
EMA-VFI’23 [17] 38.526/0.988 35.480/0.970 27.111/0.871 39.980/0.991 36.090/0.980 30.940/0.939 25.690/0.866
LDMVFI’24 [3] 34.230/0.974 32.160/0.964 25.073/0.819 38.890 0.988 33.975/0.971 28.144/0.911 23.349 0.827

Ours† 34.057/0.970 34.730/0.965 25.446/0.837 38.720/0.988 34.016/0.971 28.556/0.918 23.931/0.837
Ours 35.709/0.971 34.941/0.968 25.994/0.849 39.162/0.988 34.886/0.974 29.158/0.921 24.084/0.838
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Figure 3: Additional Qualitative Comparison of our methods and LDMVFI. Images cropped with blue boxes are shown for
better-detailed comparison. Our method steadily achieves better visual quality.
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Figure 4: Additional Qualitative Comparison of our methods and recent SOTAs. Only images within the blue box are displayed
for better-detailed comparison.
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Figure 5: Multi-frame interpolation results. LDMVFI usually interpolates distorted or overlaid images while ours does not.
Images with red and blue borders are displayed to show details. Our method corresponds to the blue border while LDMVFI
corresponds to the red. Green circles highlight the detail where our performance is better.
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