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Abstract

A central problem in online learning and decision making—from bandits to rein-
forcement learning—is to understand what modeling assumptions lead to sample-
efficient learning guarantees. With a focus on stochastic environments, a recent
line of research provides general structural conditions under which sample-efficient
learning is possible, but robust learning guarantees for agnostic or adversarial
settings have remained elusive. We consider a general adversarial decision making
framework that encompasses (structured) bandit problems with adversarial rewards
and reinforcement learning problems with adversarial dynamics. Our main result
is to show—via new upper and lower bounds—that the Decision-Estimation Co-
efficient, a complexity measure introduced by Foster et al. [18] in the stochastic
counterpart to our setting, is both necessary and sufficient for low regret in the
adversarial setting. However, compared to the stochastic setting, one must apply
the Decision-Estimation Coefficient to the convex hull of the class of models (or,
hypotheses) under consideration. This establishes that the price of accommodating
adversarial rewards or dynamics is governed by the behavior of the model class
under convexification, and recovers a number of existing results—both positive and
negative. En route to obtaining these guarantees, we provide new structural results
that connect the Decision-Estimation Coefficient to variants of other well-known
complexity measures, including the Information Ratio of Russo and Van Roy [52]
and the Exploration-by-Optimization objective of Lattimore and Gyorgy [34].

1 Introduction

We consider the problem of robust data-driven decision making in bandits, reinforcement learn-
ing, and beyond. The last decade has seen development of data-driven decision algorithms with
strong empirical performance in domains including robotics [28, 40], dialogue systems [38], and
personalization [2, 57]. Reliably deploying data-driven decision making methods in safety-critical
systems requires principled algorithms with provable robustness in the face of dynamic or even
adversarial environments. Furthermore, for such algorithms to be applicable, they must effectively
take advantage of problem structure as modeled by the practitioner. In high-dimensional problems,
this means efficiently generalizing across states and actions while delicately exploring new decisions.

For decision making in static, stochastic environments, recent years have seen extensive investigation
into optimal sample complexity and algorithm design principles, and the foundations are beginning to
take shape. In particular, with an emphasis on reinforcement learning, a burgeoning body of research
identifies specific modeling assumptions under which sample-efficient interactive decision making
is possible [13, 60, 22, 44, 6, 29, 15, 39, 14, 63], as well as general structural conditions that aim
to unify these settings [50, 21, 56, 59, 16, 23, 18]. For dynamic or adversarial settings, however,
comparatively little is known outside of (i) positive results for special cases such as adversarial bandit
problems [5, 4, 20, 11, 1, 8, 27, 17, 9, 31], and (ii) a handful of negative results suggesting that online
reinforcement learning in agnostic or adversarial settings can actually be statistically intractable
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[53, 41]. These developments raise the following questions: (a) what are the underlying phenomena
that determine the statistical complexity of decision making in adversarial settings? (b) what are the
corresponding algorithmic design principles that attain optimal sample complexity?

Contributions. ~ We consider an adversarial variant of the Decision Making with Structured
Observations (DMSO) framework introduced in Foster et al. [18], where learner or decision-maker
interacts with a sequence of models (reward distributions in the case of bandits, or MDPs in the case
of reinforcement learning) chosen by an adaptive adversary, and aims to minimize regret against the
best decision in hindsight. The models are assumed to belong to a known model class which reflects
the learner’s prior knowledge about the problem. The main question we investigate is: How does the
structure of the model class determine the minimax regret for adversarial decision making? We show:

1. For any model class, one can obtain high-probability regret bounds based on a convexified version
of the Decision-Estimation Coefficient (DEC) complexity measure introduced in Foster et al. [18].

2. For any algorithm with reasonable tail behavior, the optimal regret for adversarial decision making
is lower bounded by (a suitably localized version of) the convexified DEC.

In the process, we draw new connections to several existing complexity measures.

1.1 Problem Setting

We adopt an adversarial variant of the DMSO framework of Foster et al. [18]. The protocol consists
of T' rounds, where at eachround ¢t =1,...,7T"

1. The learner selects a decision 7 € II, where 11 is the decision space.
2. Nature selects a model M® € M, where M is a model class.

3. The learner receives a reward r® € R C R and observation o € O sampled via (r™®,0™®) ~
M®(7®), where O is the observation space. We abbreviate z®* := (r™® 0®) and Z := R x O.

Here, each model M = M(-,- | -) € M is a conditional distribution M : II — A(R x O) that
maps the learner’s decision to a distribution over rewards and outcomes. This setting subsumes
(adversarial) bandit problems, where models consist of reward functions/distributions, as well as
adversarial reinforcement learning, where models correspond to Markov decision processes (MDPs).
In both cases, the model class M encodes prior knowledge about the decision making problem such
as structure of rewards or dynamics (e.g., linearity or convexity), and might be parameterized by linear
models, neural networks, or other rich function approximators depending on the problem domain.

For a model M € M, E* ™[] denotes expectation under the process (r,0) ~ M (w). We define
fM(m) :== E7[r] as the mean reward function and 7,, := argmax,r; f (7) as the decision with
greatest reward for M. We let Faq = {f™ | M € M} denote the induced class of reward functions.
We measure performance via regret to the best fixed decision in hindsight:

T

REgDM 1= sup ZEW(t)Np(t) |:fM(t) (7‘('*) _ fm(t) (ﬂ_(t)) ) 1)
el

This formulation generalizes Foster et al. [18], who considered the stochastic setting where M =

M is fixed across all rounds. Examples include:

* Adversarial bandits. With no observations (O = {@}), the adversarial DMSO framework is
equivalent to the adversarial bandit problem with structured rewards. In this context, 7 is
typically referred to as an action or arm and 11 is referred to as the action space. The most basic
example here is the adversarial finite-armed bandit problem with A actions [5, 4, 20], where
m={1,...,A} and Fp = RA. Other well-studied examples include adversarial linear bandits
[11, 1, 8], bandit convex optimization [27, 17, 9, 31], and nonparametric bandits [27, 7, 43].!

* Reinforcement learning. The adversarial DMSO framework encompasses finite-horizon, episodic
online reinforcement learning, with each round ¢ corresponding to a single episode: 7™ is a
policy (a mapping from state to actions) to play in the episode, 7 is the cumulative reward in the

!Typically, these examples are formulated with deterministic rewards, which we encompass by restricting
models in M to be deterministic. Our formulation is more general and allows for, semi-stochastic adversaries.
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episode, and the observation 0" is the episode’s trajectory (sequence of observed states, actions,
and rewards). Online reinforcement learning in the stochastic setting where M ® = M* is fixed
has received extensive attention [21, 56, 22, 59, 16, 23, 18], but the adversarial setting we study has
received less investigation. Examples include the setting in which the adversary chooses a sequence
of tabular MDPs, which is known to be intractable [41], and the easier setting in which there is a
fixed (known) MDP but rewards are adversarial [45, 64, 46, 24]. See Appendix D for more details.

We refer to Appendix B for additional measure-theoretic details and background, and to Foster et al.
[18] for further examples and detailed discussion.?

Understanding sample complexity for the DMSO setting at this level of generality is a challenging
problem. Even if one restricts only to bandit-type problems (with no observations), any complexity
measure must capture the role of structural assumptions such as convexity or smoothness in determin-
ing the optimal rates. To go beyond bandit problems and handle the general setting, one must accom-
modate problems with rich, structured feedback such as reinforcement learning, where observations
(as well as subtle features of the noise distribution) can reveal information about the underlying model.

1.2 Overview of Results

For a model class M, reference model M € M, and scale parameter v > 0, the Decision-Estimation
Coefficient [18] is defined via

AT\ 3 . M _fM _ 3 2 AT
decv(M7M)—p€1£me32§A Ermp [ (70r) — fY(7) =~ - DR(M(7), M(m))], (2

where we recall that for probability measures P and Q with a common dominating measure v,

(squared) Hellinger distance is given by DZ(P,Q) = [(/F/av — \/dQ/du)Q. We define
dec, (M) = supgze ., decy (M, M), and let co(M) denote the convex hull of M, which can
equivalently be viewed as the set of all mixtures of models in M. Our main results show that the
convexified Decision-Estimation Coefficient dec.,(co(M)) leads to upper and lower bounds on the
optimal regret for adversarial decision making.

Theorem (informal). For any model class M, Algorithm 1 ensures that with high probability,
Regpy < dec,(co(M)) - T, (3)

where vy satisfies the balance dec,(co(M)) oc % log|Il|. Moreover, for any algorithm with “rea-
sonable” tail behavior (Section 2.2), regret must scale with a localized version of the same quantity.

As a consequence, there exists an algorithm for which E[Regpy] < o(T) if and only if
dec, (co(M)) oc y~* for some p > 0.

For the stochastic version of our setting, Foster et al. [18] give upper and lower bounds that scale with
dec, (M) (under appropriate technical assumptions; cf. Section 2.3). Hence, our results show that in
general, the gap between optimal regret for stochastic and adversarial settings (or, “price of adversarial
outcomes”) is governed by the behavior of the DEC under convexification. For example, multi-armed
bandits, linear bandits, and convex bandits are convex model classes (where co(M) = M), which
gives a post-hoc explanation for why these models are tractable in the adversarial setting. Finite
state/action Markov decision processes are not a convex class, and have dec., (co(M)) exponentially
large compared to decy (M); in this case, our results recover lower bounds of Liu et al. [41].

Beyond these results, we prove that the convexified Decision-Estimation Coefficient is equivalent to:
1. a “parameterized” variant of the generalized information ratio of Lattimore and Gyorgy [34].
2. anovel high-probability variant of the Exploration-by-Optimization of Lattimore and Gyorgy [34].

Overall, while our results heavily draw on the work of Foster et al. [18] and Lattimore and Gyorgy [34],
we believe they play a valuable role in bridging these lines of research and formalizing connections.

Our techniques. On the lower bound side, we strengthen the lower bound from Foster et al. [18]
with an improved change-of-measure argument (leading to improved results even in the stochastic

>We mention in passing that the upper bounds in this paper encompass the more general setting where
rewards are not observed by the learner (i.e., z'*) does not contain the reward), thus subsuming the partial
monitoring problem. Our lower bounds, however, require that rewards are observed. See Appendix A.



126
127
128
129
130
131

132
133
134

136

137

138
139
140
141
142

143

144

145
146

147

148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167

169
170
171
172
173
174
175

setting), and combine this with the simple idea of choosing a static mixture model as the adversary.
On the upper bound side, we extend the powerful Exploration-by-Optimization machinery of
Lattimore and Gyorgy [34] to the DMSO setting, and give a novel high-probability variant of the
technique. We show that the performance of this method is controlled by a complexity measure
whose value is equivalent to the convexified DEC, as well as parameterized variant of the information
ratio (we present results in terms of the former to draw comparison to the stochastic setting).

Organization. Section 2 presents our main results, including upper and lower bounds on regret and
a characterization of learnability. In Section 3, we provide new structural results connecting the DEC
to Exploration-by-Optimization and the information ratio. We close with future directions (Section 4).
Additional comparison to related work is deferred to Appendix A. The appendix also contains proofs
and additional results, including examples (Appendix D) and further structural results (Appendix E).

2 Main Results

We now present our main results. First, using a new high-probability variant of the Exploration-by-
Optimization technique [37, 34], we provide an upper bound on regret via the (convexified) Decision-
Estimation Coefficient (Section 2.1). Next, we present a lower bound that scales with a localized
version of the same quantity (Section 2.2), and use these results to give a characterization for learn-
ability (Section 2.3). Finally, we discuss the gap between stochastic and adversarial decision making.

For the sake of keeping presentation as simple as possible, we make the following assumption.
Assumption 2.1. The decision space I1 has |I1| < oo, and we have R = [0, 1].

This assumption only serves to facilitate the use of the minimax theorem, and we expect that our results
can be generalized substantially (e.g., with covering numbers as in Section 3.4 of Foster et al. [18]).

2.1 Upper Bound

In this section we give regret bounds for adversarial decision making based on the (convexified)
Decision-Estimation Coefficient. A-priori, it is not obvious why the DEC should bear any relevance
to the adversarial setting: The algorithms and regret bounds based on the DEC that Foster et al. [18]
introduce for the stochastic setting heavily rely on the ability to estimate a static underlying model,
yet in the adversarial setting the learner may only interact with each model a single time. This renders
any sort of global estimation (e.g., for dynamics of an MDP) impossible. In spite of this difficulty, we
show that regret bounds can be achieved by building on the powerful Exploration-by-Optimization
technique of Lattimore and Szepesvari [37], Lattimore and Gyorgy [34], which provides an elegant
approach to estimating rewards while exploiting the structure of the model class under consideration.

Exploration-by-Optimization—which was introduced in Lattimore and Szepesvdri [37] and substan-
tially expanded in Lattimore and Gyorgy [34]—can be thought of as a generalization of the classical
EXP3 algorithm [5], which we recall applies the exponential weights method for full-information
online learning to a sequence of unbiased estimators for the rewards (formed via importance weight-
ing). The naive reward estimator used by EXP3 is unsuitable for general model classes because it
does not exploit the structure of the decision space. Consequently, the regret scales linearly with |TI|
rather than with, e.g., dimension, as one might hope for linear bandits. The idea behind Exploration-
by-Optimization is to solve an optimization problem at each round to find a reward estimator and
modified sampling distribution that better exploit the structure of the model class M for improved re-
gret. Lattimore and Gyorgy [34] showed that for a general partial monitoring setting (cf. Appendix A),
the expected regret of this method—for exponential weights and a more general family of algorithms
based on Bregman divergences—is bounded by a generalization of the information ratio [51, 52].

Our development builds on that of Lattimore and Gyorgy [34], but we pursue high-probability guaran-
tees rather than in-expectation guarantees.’ While high-probability guarantees are useful in their own
right, our motivation for studying such guarantees comes from the lower bound in the sequel (Sec-
tion 2.2), which shows that the convexified Decision-Estimation Coefficient lower bounds the regret
for algorithms with “reasonable” tail behavior. To develop high-probability regret bounds and com-
plement this lower bound, we use a novel high-probability variant of the Exploration-by-Optimization
objective and a specialized analysis which goes beyond the Bregman divergence framework.

3In general, in-expectation regret bounds do not imply high-probability bounds. For example, in adversarial
bandits, the EXP3 algorithm can experience linear regret with constant probability [36].



176
177
178
179
180
181

182

183

184

185

186

187

188

189

190

191

192

194

195

197

198
199
200

Algorithm 1 High-Probability Exploration-by-Optimization (ExO™)
1: parameters: Learning rate n > 0.
2: fort=1,2,--- ,Tdo
3: Define ¢* € A(II) via exponential weights update:

0 () = exp(n 2L FOm) ) ) e exp (n DI T (). )
4: Solve high-probability exploration-by-optimization objective: // See Eq. (7)
(p”,9") < argmin sup Dy p(pogsm”, M). ®)

peA(Il),geG MeM,n*€ll

Sample decision 7 ~ p® and observe z® = (r® o®).

Form reward estimator: o o, 40)
0 g (mmtt 2
f (ﬂ-) - p(t)(ﬂ'(”) . (6)

Our algorithm, ExO™, is displayed in Algorithm 1. At each round ¢, the algorithm proceeds by
forming a reference distribution ¢ € A(II) by applying the standard exponential weights update

o~

(with learning rate n > 0) to a sequence of reward estimators f®, ..., f¢= from previous rounds
(Line 3). Next, for the main step of the algorithm (Line 4), we obtain a sampling distribution
p® € A(II) and an estimation function ¢ € G := (Il x II x X — R) by solving a minimax
optimization problem based on a new objective we term high-probability exploration-by-optmization:

Lou(p,g;m*, M) i= Erp[f (77) = f¥ (7)] 7

+ 071 B znb(m) Ervng {exp ((’7)(9(7#; ™, z) = g(n*;m, Z))) - 1} :

p(m
Finally (Lines 5 and 6), the algorithm samples 7 ~ p®, observes z* = (r® 0®), and then forms
an importance-weighted reward estimator via f(7) := g (m; 7®, 2®) /p® (7®).

The interpretation of the high-probability Exploration-by-Optimization objective (7) is as follows: For
a given round ¢, the model M € M and decision 7* € II should be thought of as a proxy for the true
model and optimal decision, respectively. By solving the minimax problem in (5), the min-player aims
to—in the face of an unknown/worst-case model—find a sampling distribution that minimizes instan-
taneous regret, yet ensures good tail behavior for the importance-weighted estimator g(-; 7, z) /p(m).
Here, tail behavior is captured by the MGF-like term in (7), which penalizes the learner for over-
estimating rewards under the reference distribution ¢ or under-estimating rewards under 7*.

We show that this approach leads to a bound on regret that scales with the convexified DEC.

Theorem 2.1 (Main upper bound). For any choice of n > 0, Algorithm 1 ensures that for all § > 0,
with probability at least 1 — 6,

Regpy < decg,)-1(co(M)) - T+ 2n~" - log(|I1|/6). (8)
In particular, for any 6 > 0, with appropriate 1), the algorithm has that with probability at least 1 — 6,
Regoy < O(1) - inf {dec, (co(M)) - T + 7 - log([11|/5)}. ©)

This should be compared to the upper bound for the stochastic setting in Foster et al. [18] (e.g., Theo-
rem 3.3), which takes a similar form, but scales with the weaker quantity sup sz .. () decy (M, M )4
See also Appendix A for a comparison to Lattimore and Szepesvari [37], Lattimore and Gyorgy [34].

Equivalence of Exploration-by-Optimization and Decision-Estimation Coefficient. We now
discuss a deeper connection between Exploration-by-Optimization and the DEC. Define the minimax
value of the high-probability Exploration-by-Optimization objective via

exon (M, q) = inf su r g ;T M), 10
77( 2 pEA(HLgEQMeM,E*eH q,n(pg ) (10)

*If a proper estimator is available, Foster et al. [18] (Thm. 4.1) gives tighter bounds scaling with dec., (M).
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and let exo, (M) = sup,em) €x0,(M, q). This quantity can be interpreted as a complexity
measure for M whose value reflects the difficulty of exploration. The following structural result
(Corollary 3.1 in Section 3), which is critical to the proof of Theorem 2.1, shows that this complexity
measure is equivalent to the convexified Decision-Estimation Coefficient:

dec(4y)-1(co(M)) < exo, (M) < decigyy-1(co(M)), ¥n > 0. (11)

As we show, the regret of Algorithm 1 is controlled by the value of exo, (M), and thus Theorem 2.1
follows. This result builds on, but goes beyond the Bregman divergence-based framework in Lattimore
and Gyorgy [34], and exploits a somewhat obscure connection between Hellinger distance and the
moment generating function (MGF) for the logarithmic loss. In particular, we use a technical lemma
(proven in Appendix C), which shows that up to constants, the value of Hellinger distance between
two probability distributions can be expressed as variational problem based on the associated MGFs.

Lemma 2.1. Let P and Q be probability distributions over a measurable space (X, F). Then

1

SDAP.Q) < sup {1-Ep[e?] -Eg[e™?]} < DA(P,Q). (12)
g:X—R

The lower inequality in Lemma 2.1 is proven using a trick similar to one used by Zhang [62] to prove

high-probability bounds for maximum likelihood estimation based on Hellinger distance. In the

process of proving (11), we also establish equivalence of the Exploration-by-Optimization objective

and a parameterized version of the information ratio, which is of independent interest (cf. Section 3).

Further remarks. The main focus of this work is sample complexity, and the runtime and memory
requirements of Algorithm 1—which are linear in |II|—are not practical for large decision spaces.
Improving the computational efficiency is an interesting question for future work. We mention in
passing that Theorem 2.1 answers a question raised by Foster et al. [ 18] of obtaining in the frequentist
setting a regret bound matching the Bayesian regret bound in their Theorem 3.6.

2.2 Lower Bound

We now complement the regret bound in the prequel with a lower bound based on the convexified
DEC. Our most general result shows that for any algorithm, either the expected regret or its (one-sided)
second moment must scale with a localized version of the convexified DEC.

To state the result, we define the localized model class around a model M via
M (M) = {M eM: f(my) > (1) 75},

and let dec,, (M) := supjz, o, dec, (M. (M), M) be the localized Decision-Estimation Coefficient.

M(A|m
Let (z)4 = max{z,0} and V(M) = supps ryre p SUPren supAet%(@ﬁ{M} Ves

Theorem 2.2 (Main lower bound). Let C'(T) := c¢-log(T AV (M)) for a sufficiently large numerical
constant ¢ > 0. Set €, := W. For any algorithm, there exists an oblivious adversary for which

E[Regpm] + /E(Regpu)2 > Q(1) .7> S;C{)(T)T dec, . (co(M))-T —O(T"?).  (13)

Theorem 2.2 implies that for any algorithm with “reasonable” tail behavior beyond what is granted by
control of the first moment (such as Algorithm 1), the regret in Theorem 2.1 cannot be substantially
improved. In more detail, consider the notion of a sub-Chebychev algorithm.

Definition 2.1 (Sub-Chebychev Algorithm). We say that a regret minimization algorithm is sub-
Chebychev with parameter R if for all t > 0,

P((Regpw)+ > t) < R*/t*. (14)

For sub-Chebychev algorithms, both the mean and (root) second moment of regret are bounded by
the parameter R (cf. Appendix F.4), which has the following consequence.

>Recall (Appendix B) that M(-,- | ) is the conditional distribution given 7; finiteness of V(M) is not
necessary, but removes a log(7") factor from Theorem 2.2.
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Corollary 2.1. Any regret minimization algorithm with sub-Chebychev parameter R > 0 must have

R>Q(1)- sup dec,. (co(M))-T —O(T"?). (15)
v>+4/2C(T)T

To interpret this result, suppose for simplicity that dec, (co(M)) and dec,, . (co(M)) are continuous
with respect to > 0, and that dec, . (co(M)) Z !, which is satisfied for all non-trivial classes.®

In this case, one can show (cf. Proposition F.2 for a proof) that by setting § = 1/72, Theorem 2.1
implies that Algorithm 1 is sub-Chebychev with parameter

R= 6(£f(){dec7(cow>) T4y 1og(|n|)}) = O(dec,,, (co(M)) - T), (16)

where 7, satisfies the balance dec,, (co(M)) oc % log|TI|. On the other hand, the lower bound in
(15) can be shown to scale with

R> s~2(dec%5w (co(M)) - T), 17)
where 7, satisfies the balance dec,, o, (co(M)) o F. We conclude that the upper bound from

Theorem 2.1 cannot be improved beyond (i) localization and (ii) dependence on log|II]|.

As an example, we show in Appendix D.3 that for the multi-armed bandit problem with II =
{1,..., A}, the upper bound in (16) yields R = O(y/AT log A), while the lower bound in (17) yields

R = Q(VAT). See Appendix D for additional examples which further illustrate the scaling above.

The dependence on log|II| cannot be removed from the upper bound or made to appear in the lower
bound in general (cf. Section 3.5 of Foster et al. [18]). As shown in Foster et al. [18], localization is
inconsequential for essentially all model classes commonly studied in the literature, and the same is
true for the examples we consider here (Appendix D), where Theorem 2.2 leads to the correct rate up
to small polynomial factors. However, improving the upper bound to achieve localization (which
Foster et al. [18] show is possible in the stochastic setting) is an interesting future direction.

See Appendix A for further discussion and for comparison to a related lower bound in Lattimore [33].

Why convexity? At this point, a natural question is why the convex hull co(M) plays a fundamental
role in the adversarial setting. For the lower bound, the intuition is simple: Given a model class M,
the adversary can pick any mixture distribution ;. € A(M), then choose the sequence of models
M® ... M™ by sampling M® ~ p independently at each round. This is equivalent to playing a
static mixture model M* = Ej;,[M] € co(M), which is what allows us to prove a lower bound
based on the DEC for the set co(M) of all such models. In view of the fact that the lower bound is
obtained through this static, stochastic adversary, we believe the more surprising result here is that
good behavior of the convexified DEC is also sufficient for low regret.

2.3 Learnability and Comparison to Stochastic Setting

Building on the upper and lower bounds in the prequel, we give a characterization for learnability
(i.e., when non-trivial regret is possible) in the adversarial setting. This extends the learnability result
for the stochastic setting in Foster et al. [18], and follows a long tradition of such characterizations in
learning theory [58, 3, 54, 49, 12]. To state the result, we define the minimax regret as

MM, T) = inf sup E[Regpu],

1
p) ... ,p(T) MO . M
where p® : (I x Z)!=t — A(II) and M : (I x Z)!=t — M are policies for the learner and
adversary, respectively. Our characterization is as follows.

Theorem 2.3. Suppose there exists My € M such that {0 is a constant function, and that |TI| < oc.
1. Ifthere exists p > 0 s.t. lim,_, o, decy (co(M)) - v* = 0, then limp_, % =0for p<1.

2. Iflim,_, o decy(co(M)) - v > 0 for all p > 0, then limp_, m(%’T) =ooforallp < 1.

SNote that the dominant term dec., . (€co(M))-T in (13) scales with /T any “non-trivial” class that embeds
the two-armed bandit problem, so that the —O(T"/?) term can be discarded.
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The same conclusion holds when 11 = Tl grows with T, but has log|Ilt| = O(T?) for any ¢ < 1.7

Theorem 2.3 shows that polynomial decay of the convexified DEC is necessary and sufficient for low
regret. We emphasize that this result is complementary to Theorem 2.2, and does not require local-
ization or any assumption on the tail behavior of the algorithm. This is a consequence of the coarse,
asymptotic nature of the result, which allows us to perform rescaling tricks to remove these conditions.

Comparison to stochastic setting.  Having shown that the convexified Decision-Estimation
Coefficient plays a fundamental role in determining the optimal regret for the adversarial DMSO
setting, now is a good time to make comparisons to the stochastic setting. There, Foster et al. [18]
obtain upper bounds on regret that have the same form as (9), but scale with the weaker quantity
MAaX 7 ¢ o () deCy (M, M ).3 For classes that are not convex, but where “proper” estimators are
available (e.g., tabular MDPs), the upper bounds in Foster et al. [18] can further be improved to scale
with dec,y(./\/l). Hence, our results show that in general, the price of adversarial outcomes can be as
large as dec, (co(M))/dec, (M). Examples (see Appendix D for details and more) include:

* For tabular MDPs with horizon H, S states, and A actions, Foster et al. [18] show that dec,, M) =

poly(H, S, A)/v, and use this to obtain regret /poly(H, S, A) - T. Tabular MDPs are not a
convex class, and co(M) is equivalent to the class of so-called latent MDPs, which are known to

be intractable [30, 41]. Indeed, we show (Appendix D) that dec., (co(M)) > Q(A™MSH}) This
example highlights that in general, the gap between stochastic and adversarial can be quite large.

* For many common bandit problems, one has co(M) = M, leading to polynomial bounds on
regret in the adversarial setting. For example the multi-armed bandit problem with A actions has
dec,(co(M)) < O(A/7), leading to /AT log A regret from Theorem 2.1, and the linear bandit

problem in d dimensions has dec, (co(M)) < O(d/~), leading to regret /dT log|II].

3 Connections Between Complexity Measures

The Decision-Estimation Coefficient bears a resemblance to the notion of generalized information
ratio introduced by Lattimore and Gyorgy [34], Lattimore [32] which extends the original information
ratio of Russo and Van Roy [51, 52]. In what follows, we establish deeper connections between these
complexity measures. All of the results in this section are proven in Appendix E.

Let us recall the definition of the generalized information ratio from Lattimore [32], which we state
here for a general divergence-like function D(- || -) — R™ (typically, KL divergence or another
Bregman divergence). For a distribution 1 € A(M x II) and decision distribution p € A(II), define
ppr (') :=P(n* = ') and ppo (7' 7, 2) :==P(n* =7’ | (7, 2)), where PP is the law of the process
(M,7*) ~ p,m ~ p,z ~ M(m). pp should be thought of as the prior over 7*, and pip, as the
posterior having observed (z, 7); note that the law f;,, does not depend on the distribution p. For
parameter \ > 1, Lattimore [33] defines the generalized information ratio for a class M via’

(B, meyrop Ernp[ ¥ () = fM (m)])H
ETK'N[) EZ\TF[D(N}DO('; T, Z) || H“PT)]
Here, we have slightly generalized the original definition in Lattimore [33] by incorporating models in

M rather than placing an arbitrary prior over observations z directly. We also use a general divergence,
while Lattimore [33] uses KL divergence and Lattimore and Gyorgy [34] use Bregman divergences.

(18)

Uy(M) = sup inf {

HEA(MxIT) PEA(IT)

To understand the connection to the Decision-Estimation Coefficient, it will be helpful introduce
another variant of the information ratio that we call the parameterized information ratio.

Definition 3.1. For a divergence D(- || -), the parameterized information ratio is given by
inff (M) (19)

= sup inf By [EarmeympfY (7)) = F(0)] =7 Ernp Eapr [D(ttpo (557, 2) || pr)]]-
REA(MxIT) PEA(IT)

" Allowing II to grow with 7" can be used to handle infinite decision spaces using covering arguments.
8Theorem 3.1 of Foster et al. [18] attains Regpy, < infv>0{maxﬂeco(/\4) dec, (M, M) + ~ - log| M|}
?Lattimore and Gyorgy [34] give a slightly different but essentially equivalent definition; cf. Appendix E.
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The parameterized information ratio is always bounded by the generalized information ratio in (18); in

particular, we have inff? (M) < (Tx(M)/ 'y)ﬁ Y~ > 0. All of the regret bounds based on the gen-
eralized information ratio that we are aware of [34, 33] implicitly bound regret by the parameterized
information ratio, and then invoke the inequality above to move to the generalized information ratio.
In general though, it does not appear that these notions are equivalent. Informally, this is because
the notion in (18) is equivalent to requiring that a single distribution p certify a certain bound on the
value in (19) for all values of the parameter -y simultaneously, while the parameterized information
ratio allows the distribution p to vary as a function of v > 0 (hence the name); see also Appendix E.

Letting inf':: (M) denote the parameterized information ratio with D = DZ(+, -), we show that this
notion is equivalent to the convexified Decision-Estimation Coefficient.

Theorem 3.1. For all v > 0, infY (M) < dec, (co(M)) < inf!!,(M).

This result is a special case of Theorem E.1 in Appendix E, which shows that a similar equivalence
holds for a class of “well-behaved” f-divergences that includes KL divergence (but not necessarily
for general Bregman divergences). The basic idea is to use Bayes’ rule to move from the Decision-
Estimation Coefficient, which considers distance between distributions over observations, to the
information ratio, which considers distance between distributions over decisions.

In light of this characterization, the results in this paper could have equivalently been presented in
terms of the parameterized information ratio. We chose to present them in terms of the Decision-
Estimation Coefficient in order to draw parallels to the stochastic setting, where guarantees that scale
with dec, (M) (without convexification) are available. It is unclear whether the information ratio
can accurately reflect the complexity for both stochastic and adversarial settings in the same fashion,
because—unlike the DEC—it is invariant under convexification.'”

Proposition 3.1. For any divergence-like function D(- || -) : A(II) x A(IT) — R, we have
inf,jyj(/\/l) = inf?(co(M)), Yy > 0.

For a final str uctural result, we show that up to constants, the parameterized information ratio is
equivalent to the high-probability Exploration-by-Optimization objective.

Theorem 3.2. Foralln > 0, infgfl(/\/l) < exo,(M) < inf'("s,])fl(/\/l).

This result is proven through a direct argument, and the equivalence of the DEC and Exploration-
by-Optimization in (11) is proven by combining with Theorem 3.1. Summarizing the equivalence:

Corollary 3.1. For all > 0,
dec(4y)-1(co(M)) < inf;'_l(./\/l) < exop(M) < inf?gn)_l(M) < dec(sy)-1(co(M)).

Since this equivalence depends of the value of the parameter v > 0 in the parameterized information
ratio, it seems unlikely that a similar equivalence can be established using the generalized information
ratio in (18). We note in passing that one can use similar techniques to lower bound the Bregman
divergence-based Exploration-by-Optimization objective in Lattimore and Gyorgy [34] by the param-
eterized information ratio for the Bregman divergence of interest, complementing their upper bound.

4 Discussion

We have shown that the convexified Decision-Estimation Coefficient is necessary and sufficient
to achieve low regret for adversarial interactive decision making, establishing that convexity
governs the price of adversarial outcomes. Our results elucidate the relationship between the DEC,
Exploration-by-Optimization, and the information ratio, and we hope they will find broader use.

Our results add to a growing body of research which shows that online reinforcement learning with
agnostic or adversarial outcomes can be statistically intractable [53, 41]. A promising future direction
is to extend our techniques to natural semi-adversarial models in which reinforcement learning is
tractable (for example, the so-called adversarially corrupted setting [42, 19]). Other interesting ques-
tions include (i) extending our lower bounds beyond the observable-reward setting and to directly han-
dle expected regret, and (ii) developing computationally efficient algorithms for large decision spaces.

'9The variants in Lattimore and Gyorgy [34], Lattimore [33] are also invariant under convexification.
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The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes]

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [IN/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [IN/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A ]
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A Detailed Discussion of Related Work

Beyond Foster et al. [18], which was the starting point for this work, our results build on a long line
of research on partial monitoring and the information ratio [51, 52, 35, 31, 32, 34, 33, 25, 26]; most
closely related are the works the works of Lattimore and Gyorgy [34] and Lattimore [33]. Below we
discuss and compare to these results in greater detail.

Comparison to partial monitoring setting. Lattimore and Gyorgy [34], Lattimore [33] and other
works in this sequence consider a general partial monitoring setting in which each outcome z* is
directly chosen by an adversary, and need not contain a reward signal.

* In terms of reward signal, our setting is more restrictive because we assume that r* is
observed. Our upper bounds in fact paper encompass the more general setting where rewards
are not observed by the learner, thus subsuming the partial monitoring problem, but our
lower bounds that require that rewards are observed.

* In terms of data generation process, our setting is more general because we restrict to models
in a known class in M. This setup recovers the case where z® is fully adversarial because
we can take M to consist of point masses over Z as a special case. However, the model also
allows for semi-stochastic adversaries, and for settings like (structured) adversarial MDPs.
For example, if all models in M place ¢ probability mass on a particular outcome z, any
adversary in our model must place € mass on this outcome as well.

Upper bounds. On the upper bound side, our results build on the Exploration-by-Optimization
technique, which was introduced in Lattimore and Szepesvdri [37] and generalized significantly in
Lattimore and Gyorgy [34]. The latter result shows that for a general family of mirror descent-based
Exploration-by-Optimization algorithms parameterized by Bregman divergences, the regret can be
bounded by a certain generalized information ratio based on the associated Bregman divergence (cf.
Appendix E). This approach yields bounds on expected regret with a similar form to Theorem 2.1
(with dec,(co(M)) replaced by the generalized information ratio), but does not appear to yield
high-probability bounds (in general, in-expectation regret bounds do not imply high-probability
regret bounds; for example, even for multi-armed bandits, the EXP3 algorithm can experience linear
regret with constant probability [36]). To develop high-probability regret bounds which complement
our lower bounds, we depart from the Bregman divergence-based framework and exploit refined
properties of Hellinger distance. We note that the work of Lattimore and Szepesvari [37] also
proposes a high-probability Exploration-by-Optimization objective, but it is unclear whether this
objective (which precedes the information ratio-based results of Lattimore and Gyorgy [34]) can be
related to the information ratio or Decision-Estimation Coefficient for general models.!!

Lower bounds. On the lower bound side, we build on the proof strategy from Foster et al. [18].
Our most important technical result is Theorem F.1, which improves upon Theorem 3.1 from Foster
et al. [18] even in the stochastic setting, by using a more refined change of measure argument. In
particular, Theorem 3.1 of Foster et al. [18] gives a lower bound based on the DEC that holds with
low probability, and therefore only provides a meaningful converse to algorithms with sub-Gaussian
or sub-exponential tail behavior. Our result provides a meaningful converse to any upper bound
with sub-Chebycheyv tail behavior, which is a significantly weaker assumption. We note that while
Theorem 3.2 of Foster et al. [18] provides lower bounds on expected regret without algorithmic
assumptions, this result requires a stronger notion of localization than the one we consider here, and
it is not clear whether this notion can be achieved algorithmically in general. Of course, proving a
lower bound on expected regret that matches our lower bound remains an interesting open problem.

Lastly, we mention recent work of Lattimore [33], which provides lower bounds on regret in a general
partial monitoring setting based on a generalized information ratio (cf. Appendix E). This result is
somewhat complementary to our lower bound (Theorem 2.2):

* On the positive side, it leads to lower bounds on expected regret that are always tight in
terms of dependence on 7', while our result only leads to tight dependence on 7" if one
restricts to sub-Chebychev algorithms.

"n particular, this objective is based on a Bernstein-type tail bound, which leads to a requirement of
boundedness for the estimation functions. We avoid explicitly requiring boundedness using a more specialized
tail bound based on Lemma C.1.
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* On the negative side, the lower bound is loose in poly(|II|) factors, while our lower bound
is essentially only loose in poly (log|II|) factors. As a result, only our lower bound leads to
meaningful dependence on problem-dependence parameters such as dimension for models
with large action spaces.

In addition, the lower bound in Lattimore [33] applies to the general partial monitoring setting, while
our lower bound requires that rewards are observed. An interesting question for future work is to
investigate whether the techniques of Lattimore [33] can be combined with our own to get the best of
both worlds.

Finally, we mention in passing that the results of Lattimore [33] also imply a learnability characteri-
zation similar to Theorem 2.3. However, because these results are polynomially loose in |II|, they
cannot handle the case in which log|TI| grows polynomially in 7.

B Preliminaries

Basic notation. For a set X', we let A(X) denote the set of all Radon probability measures over X'
We let co(X) denote the set of all finitely supported convex combinations of elements in X'. We use
the shorthand z V y = max{z,y} and x A y = min{z, y}.

We adopt non-asymptotic big-oh notation: For functions f, g : X — R4, we write f = O(g) (resp.
f = Q(g)) if there exists a constant C' > 0 such that f(z) < Cg(x) (resp. f(z) > Cg(z)) for all
x € X. We write f = O(g) if f = O(g - polylog(T)), f = Q(g) if f = Q(g/polylog(T)), and
f=06(g)if f =0(g) and f = Q(g). We write [ x g if f = O(g).

Probability spaces. We formalize the probability spaces for the DMSO framework in the same fash-
ion as Foster et al. [18], which we briefly summarize here. decisions are associated with a measurable
space (II, &), rewards are associated with the space (R, %), and observations are associated with
the space (O, €). The history up to time ¢ is denoted by H® = (7™, r® o), ... (7@ r® o®).
We define

t t
OV =J[IxRx0), and F©=Q)(PeZ0)
i=1 i=1
so that H® is associated with the space (Q®, .F ™).
Formally, a model M = M(-,- | -) € M is a probability kernel from (I, &) to (R x O, Z & 0);
we use the convention M () = M(-,- | ) throughout the paper.'> An algorithm for horizon T is a
sequence p™, ..., p™, where p™® (- | -) is a probability kernel from (¢~ F =) to (II, &).

Divergences.

For probability distributions P and Q over a measurable space (€2, %) with a common dominating
measure, we define the total variation distance as

Drv(P,Q) = sup[P(4) - Q) = 5 1P~ ag)|.

AeF
Hellinger distance is defined as

2
Di(P.Q) = [ (VB - V) ,
and Kullback-Leibler divergence is defined as
_ [ Jlog(§5)dP,  P<Q,
D (P1Q) = { 400, otherwise.

For a convex function f : (0,00) — R, the associated f-divergence for measures PP and Q with
P <« Qs given by

Ds(® 1 Q) = Ee|f( 55 )] 0)

'2For measurable spaces (X, .2°) and (), %) a probability kernel P(- | -) from (X, 2°) to (V, %) has
the property that (i) For all x € X, P(- | ) is a probability measure, (ii) forallY € &,z — P(Y | z) is
measurable.
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whenever P < Q. More generally, defining p = % and g = % for a common dominating measure
v, we have

Dy Q= [ >Oqf(§)du L P(q=0) f/(c0), e

where f’'(00) 1= lim,_,o+ zf(1/x).

C Technical Tools

C.1 Tail Bounds

Lemma C.1 (e.g., Lemma A.4 of Foster et al. [18]). For any sequence of real-valued random
variables (X¢)i<T adapted to a filtration (F;)i<T, we have that with probability at least 1 — 0,

T T
> X <> log(E[e™ | Fia]) +1og(671). (22)
t=1 t=1

C.2 Minimax Theorem

Lemma C.2 (Sion’s Minimax Theorem [55]). Let X and Y be convex sets in linear topological
spaces, and assume X is compact. Let F' : X x ) — R be such that (i) F(x, ) is concave and upper
semicontinuous over Y for all x € X and (ii) F (-, y) is convex and lower semicontinuous over X for
ally € Y. Then

inf sup F'(x,y) = sup inf F(z,y). (23)
T€X yey () yey TEX (@9)

C.3 Information Theory
C.3.1 Basic Results

Proposition C.1. For any f-divergence Dy (- || -), one has that for any pair of random variables
(X,Y) with joint law Px v,

Ex~px [Ds(Pyix || By)] = Ey~p, [Df (Bx)y || Px)].
Proof of Proposition C.1. Recalling that D;(P || Q) = Eq [ f (3%)} for P < Q, we have

Ex~ex [Df(Pyx | Py)] = Ex~py Ey~p, [f(%)]

dP
=Ex~px Ey~py [f(mﬂ

dP
=Ey~py, Ex~py [f( d]ff}‘(y)} =Ey~py [D;(Pxy || Px)],
where we have used that Py | x < Py, Pxy < Px,and Pxy < Px @ Py. O

C.3.2 Change of Measure

Lemma C.3 (Donsker-Varadhan (e.g., Polyanskiy and Wu [48])). Let P and Q be probability
measures on (X, 7). Then

D (P[|Q) = h:S;BER{]EP[h(X)] — log(Eqexp(A(X))])}- (24)

Lemma C.4. Let P and Q be probability distributions over a measurable space (X, F). Then for
all functions h : X — R,

[Ep[h(X)] — Eq[h(X)]| < /27 L(Ee[h2(X)] + Eo[h2(X)) - DF(P.Q).  (25)
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e7e  Proof of Lemma C.4. From Polyanskiy and Wu [48], we have that for all functions i : X — R, if
79 P <K Q,

[Be[A(X)] — Bg[h(X)]| < /Valh(X)] - Dya(P || Q) < y/Eg[h2(X)]- Dya(P | @),  (26)

ss0 where D,2(P || Q) := [ % and Vg denotes the variance under Q. The result follows by using

et that D, (P || ©12) < D3(P, Q). O
sz Lemma 2.1. Let P and Q be probability distributions over a measurable space (X ,.% ). Then
1
=D{(P,Q) < sup {1-Ep[e?] -Egle™?]} < Di(P,Q). (12)
2 g:X >R

¢ Proof of Lemma 2.1. We first show that Hellinger distance is lower bounded by the quantity in (12).

sss Recall that Hellinger distance is the f-divergence associated with f(z) = (1 — \/z)? (cf. (21)). Let
sss  f*(y) = sup,>o{ry — f(v)} be the Fenchel dual of f, which has the form

Yy
N =, y <1,
f(y){éoy y>1.

es7  Using Theorem 7.14 of Polyanskiy [47], we express Hellinger distance as a following variational
ess problem based on the dual:

) . - h(X)
Dh®.Q) = swp  {ErA(X)] - Eq[f* (X))} = h:X_S)l(lf’wl){EP[h(X )1~ Eo [1—/1()()] }

sss  Reparameterizing via h(X) =1 — h/(X) for b’ : X — (0, 00), this gives

DA(P,Q) = hzx‘i“fé,m){Q - Eelh(X)] - Eo| 75 | |

ss0  To conclude, we observe that for any test function g : X — R, by setting h(z) = e9(@) -Egle 9], we
691 have

2 — Ea[h(X)] - Eq [h(lX)} — 2 Ep[e%] - Bgle?] — Eqle—?]/Eq[e~]
=1-Ep[e?] - Egle™?],

eo2 SO that
Di(P,Q) > sup {1—Ep[e?] - Egle9]}.
g X—=R
ss  We now prove the other direction of the inequality in (12). Let v be a common dominating measure
eoa for P and Q, and set p = %’ and g = Z%. We first consider the case where p, ¢ > 0 everywhere.

ess  Set g(x) = $log(q(z)/p(x)). Then we have Ep[e?] = [ \/pgdv =1 — L D3 (P, Q), and likewise,

-2
s Egle 9] = [/pgdv =1— 1 D}(P,Q). As aresult,
sup {1 —Ep[e?] -Egle™?]} >1— (1 - $Dj(P,Q))* > -Di(P,Q),
g:X—R

| =

s7 where we have used that D3 (PP, Q) € [0,2]. For the general case, one can appeal to Lemma C.5
ess below and take € — 0. O

e99 The following result is generalization of Lemma 2.1 which shows that up to small approximation
700 error, the lower bound in (12) can be obtained using test functions with small magnitude.

70t Lemma C.5. Let P and Q be probability distributions over a measurable space (X, F). Then for
702 any o > 1, we have

1Da (P,Q) < sup {1 — Eple?] - Eg [679} } +4e™“, 27)
2 9€Ge

73 where Gy i={g: X =R |9l < a}.
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Proof of Lemma C.5. Fix a > 1 and let ¢ := =2, Note that ¢ € (0, e~2). Given measures [P and
Q, setP, = (1 — )P+ cQand Q. = (1 — £)Q + P. Consider the test function g = 3 log((ggf ),
which has the following properties:

1—e — 2
establishes that g € G,,.

e Ep[ed] < (1—¢)7 Y2 [dPdQ. = (1 — &) Y/2(1 - LD} (P,Q.)).
* Egle 9] < (1—¢)7!/? [ VaP-dQ = (1 - ¢)~/*(1 - 3D{(P-, Q).
Using these bounds, we have

sup (1= Bx[ef] - Eq[e]} 21— (1-<)7 (1 - }DR(P..@))(1 ~ §DA(P, ©.)

e gl < %log(%+ £ ) < Lllog(e™'), where we have used that ¢ < 1/2. This

>1-(1-¢)}(1- LDA(P., Q)
> (1-2)™" S DA(P., Q) — 2.

Finally, we note that by the triangle inequality for Hellinger distance and convexity of squared
Hellinger distance,

DH(]P)7Q) S DH(]P)E7Q) +DH(P7]P)E) S DH(]IDif?Q) +51/2DH(P5Q)7

so that D (P, Q) > (1 — ¢Y/2)2D}(P,Q), and

sup {1—Ep[e?] -Egle 7]} > MEDQ(P Q)—25>1D2(IP Q) —4e'/?
Phytaic v © = 1-e 21 =2 ’

where we have used that € € (0, 1) and D3 (P, Q) € [0, 2].

C.4 Online Learning

Lemma C.6 (e.g., Cesa-Bianchi and Lugosi [10]). Let II be a finite set. Consider the exponential
weights method with learning rate 1) > 0 and initial point ¢ = unif (II), which has the update:

exp(n X<, [ (7))
> exp(n Zigt fo(r)’

for an arbitrary (potentially adaptively selected) sequence of reward vectors f©, ..., f™ in R™,
This strategy ensures that with probability 1,

q(t+1) (’ﬂ') —

i( @ F©) i( (t+1) @ F0) 1i (@ || ¢®) Di(qll¢™)
q—q", f") < ¢ =q" f) == > D¢V [ ¢") + ————,
=

t=1 t=1 n

forall g € A(ID).

D Examples

D.1 Structured Bandits

In this section we consider adversarial (structured) bandit problems, which correspond to the special
case of the adversarial DMSO setting in which there are no observations (i.e., O = {@}). We
consider three examples: finite-armed bandits, linear bandits, and convex bandits. For each example,
we take R = [0, 1], fix a reward function class F C (II — [0,1]), and take Mz = {M | f™ € F}
to be the induced model class. Conceptually, M r should be thought of as the set of all reward
distributions over [0, 1] with mean rewards in F.
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Example D.1 (Finite-armed bandit). In the finite-armed bandit problem, we take IT = {1,..., A} as
the decision space, where A € N, then let 7 = [0, 1]A and take M = M x as the induced model
class. For this setting, whenever A > 2, it holds that

A
2

IS

Vy >0, and dec, . (co(M))>27°. 4 Yy >

dec,(co(M)) < > 5 ) (28)

where e, = <

A
12~°

This result follows from Foster et al. [ 18, Proposition 5.2 and 5.3], noting that co(M) = M. Plugging
(28) into Theorem 2.1 yields a O(1/AT log A) upper bound on regret, and plugging into Theorem 2.2

gives a (~2( V/ AT) lower bound for sub-Chebychev algorithms. '?
Example D.2 (Linear bandit). In the linear bandit problem, we have IT C R?. We take

F={f:T—=[0,1] ]| fis linear},

and take M = M x as the induced model class. For this setting, it holds that!4

d d 2d
dec,(co(M)) < o Vy >0, and dec,. (co(M))> e Yy > 3 (29)
where €., == %. q

This result follows from Foster et al. [18, Proposition 6.1 and 6.2], again noting that co(M) = M.
Plugging (28) into Theorem 2.1 yields a O(4/dT log |TI|) upper bound on regret, and plugging into
Theorem 2.2 gives a {2(v/dT') lower bound for sub-Chebychev algorithms.

Example D.3 (Convex bandit). In the convex bandit problem, we have II C R?, We take
F={f:TI —[0,1] | fisconvex},
and take M = M x as the induced model class. For this setting, it holds that for all v > 0,

4
dec, (co(M)) < O((fy - polylog(d, diam(H),Ay)). (30)
4

This result follows from Foster et al. [18, Proposition 6.3] (which itself is a restatement of Lattimore
and Szepesviri [36, Theorem 3]), and by noting once more that co(M) = M.

Remark D.1. The adversarial bandit literature [5, 4, 20, 11, 1, 8, 27, 17, 9, 31, 27, 7] typically
considers a slightly different formulation in which the adversary selects a deterministic reward
function. This can be captured by restricting M to deterministic models. It is clear that the upper
bounds on dec,, (co(M)) in the examples above lead to upper bounds for this model. The lower
bounds in Examples D.1 and D.2 easily extend as well.

D.2 Reinforcement Learning

We now consider examples in reinforcement learning. We begin by recalling how to view the episodic
reinforcement learning problem under the DMSO framework.

Model class. For episodic reinforcement learning, we fix a horizon H and let the model class
M consist of a set of non-stationary Markov Decision Processes (MDP). Each model M € M is
specified by
H+1 H H
M = {{Sh}h:1 7/4; {P}i\l}h:p {Ril\{l}h:pdl}»

where Sy, is the state space for layer h, A is the action space, P}’ : S, X A +— A(Sp41) is the
probability transition kernel for layer i, R} : S, x A — A([0,1]) is the reward distribution for
layer h and d; € A(Sy) is the initial state distribution. This formulation allows reward distribution

"For this example and Example D.2, the lower bound on dec, ¢, (co(M)) in Foster et al. [18] is witnessed
by a subfamily M’ C M with V(M') = O(1). As a result, we can take C'(7") = O(1) in Theorem 2.2.
14The upper bound here holds for all IT, while the lower bound holds for a specific choice for I1.
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and transition kernel to vary across models in M, but keeps the initial state distribution is fixed. We
adopt the convention that Sg1 = {sg 11} where sy is a deterministic terminal state.

Before an episode, the learner selects a non-stationary policy, 7 = (7y, ..., mg) where 7, : Sp — A;
we let IIxg denote the set of all such policies. For a given MDP M € M, an episode proceeds by
first sampling s; ~ dy, thenforh =1,... H:

® ap = Trh(Sh).
e Ty~ R;;{(S}“ah) and Sh4+1 ™~ P}]LVI( | sh,ah).

The value of the policy 7 under M is given by f*(r) := E*™[S21" 73], where E™[] denotes
expectation under the process above.

Adbversarial protocol. Within the adversarial DMSO framework, model classes above lead to the
following adversarial reinforcement learning protocol. At each time ¢, the learner plays selects a

policy 7 € Ilng and the adversary chooses an MDP M ® € M. The policy 7 is then executed in

the MDP M ), resulting in a trajectory 79 = (s{”,r{"”, 7", ..., (s, 7%, 7'7). The learner then

observes feedback (7, 0®), where r® := Zthl 7' is the cumulative reward of the episode, and
o' = 7 is the trajectory.
With this setting in mind, we give our main example.
Example D.4 (Tabular MDP). Let M be the class of finite-state/action (tabular) MDPs with horizon
H, S > 2 states, A > 2 actions, and Zthl ry, € [0, 1]. Then, for any vy > Ami“{s’l’H}/G,
Amin{S—l,H}

24~ ’

where ¢, 1= AMIMSTLHAY /94, <

dec, . (co(M)) >

Using this result with Theorem 2.2 leads to a lower bound on regret that scales with Q(A™i*S—1LH)

which recovers existing intractability results for this setting [30, 41]. Note that we have dec, (M) =
poly(S, A, H)/~ for this setting [18], so this is a case where there is a separation between the
stochastic and adversarial setting.

>

We briefly mention that the set co(M) can be interpreted as the set of latent MDPs [30]. In the latent
MDP setting, each model is a mixture of MDPs. At the beginning of each episode, the underlying
MDP from the mixture (the identity is not observed), and then run the MDP for the duration of the
episode. This setting is also known to be intractable.

D.3 Proofs for Examples
D.3.1 Preliminaries

Our lower bounds on the Decision-Estimation Coefficient involve a constructing hard sub-family of
models. Recall the following definition from [18].

Definition D.1 ((c, 3, §)-family). A reference model M € M and collection { My, . .., My} with
N > 2 are said to be an (o, 3, §)-family if the following properties hold:

1. Regret property. There exist functions u™ : 11+ [0, 1], with ), u™(7) < %for all
such that

() = () = ac (1= u(m))
forall M € M.

2. Information property. There exist functions v* : 11 = [0, 1], with ), 0™ (7) < 1 for
all 7, such that
Di(M(m), M (7)) < B-v"(m) + 4.
Any (a, 8, §)-family leads to a difficult decision making problem because a given decision can have

low regret or large information gain on (roughly) one model in the family. This is formalized through
the following lemma.
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Lemma D.1 (Lemma 5.1, [18]). Let M = {M,..., My} be an («, 3, 3)-family with respect to M.
Then, for all v > 0,

dec, (M, M) > % —7(16 +6>.

The following technical lemma bounds Hellinger distance for Bernoulli distributions.
Lemma D.2 (Lemma A.7, [18]). Forany A € (0,1/2),

Da (Ber(% + A),Ber(%)) < 3A2

D.3.2 Proof for Example D.4 (Tabular MDP)

In this section, we prove the lower bound in Example D.4. We first derive an intermediate result
which gives a lower bound on the Decision-Estimation Coefficient when the model class M consists
of mixtures of K MDPs; this is equivalent to the subset of co(M) where we restrict to support size
K, as well as the so-called latent MDP setting [30].

Lemma D.3. Let K > 1 be given. Let M be the class of mixtures of K MDPs with horizon H,
S > 2 states, A > 2 actions, and Zthl r, € [0,1]. Then there exists M € M such that for all
> Amin{S'fl,H,K}/G,

e Amin{S—l,H,K}
dec, (M., (M), M) > ————

24y ’

. AmIn{S-1,H,K}
where €., 1= 7 a—

The proof of this result proceeds by constructing a hard sub-family of models and appealing to
Lemma D.1. Our construction is based of the lower bound for latent MDPs in Kwon et al. [30].

Proof of Lemma D.3. Let S and A be arbitrary sets with |S| = S and |A| = A. Let A € (0,1/2)
be a parameter to be chosen later, and define K := min{S — 1, K, H}. Partition the state space
S into sets S’ and S \ S’ such that |S’| = K + 1, and label the states in S" as {s®),..., sE+D},
Additionally, define sets via S, = {s™,s®*V} for h < K and S, = {sF*V} U (S \ 5) for
K < h < H + 1. Recall that the decision space IIyg is the set of all deterministic non-stationary
policies 7 = (1, ..., my) where 7, : Sp, — A.

We construct a class M’ C M in which each model M € M’ is specified by

H+1 K
M = {{Sn},—1, A M S {ad i, )
where for each k € [K], a;y’ € A, and where M}’ is a tabular MDP specified by

M H

{Rh,k} h=1’ 65(1) }.

Here, di = 0,1), so that the initial state s; is s deterministically. The transitions P;”, and rewards
Ry, are constructed as follows.

H+1 H
M{cw = {{Sh}h:1 7A7 {Piiv,jkr h=1"’

e Construction of M}’.

(i) Forall h < H, the dynamics P}f‘/fk are deterministic. For an action ay, in the state sy, the
next state sjy1 is

s+, ifh <K, s, =s"™,and aj, = a,
Sht1 = { SFHY, if h < K, sp =s™, and ap, # a}’,
Sh, otherwise.

(i) The reward distribution is given by

Ber(3 +A), if h= IE,Sh = s, and ay = a}t,
Ry (sh,an) = § Ber(3), if h=K,s, =5, andaj, # azt,

0, otherwise.
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e Construction of M} for 2 < j < K.

(i) Foreach h < H, the dynamics Pé‘/[k are deterministic. For action a;, in state sj,, the next
state sp,1 1S

S0 i s, = s™ and b < j

sEif g, =s™ h = jand ap = a)
st if s, =™ h=jand ap # a})
Spy1 =< s if sy =™ h > jand ap = a)f .
sEHY if g, =s™ h > jand ap # a)
sEY if h=K-—lorh=

Sh otherwise

(i) The reward distribution is given by

Ber(3), if h=K
RIV] — 2/ ’
ok (8h> an) {07 otherwise.

Each model M € M’ is a uniform mixture of K MDPs {M}/, ... MX %} as described above,
parameterized by the action sequence a . The model class M’ is deﬁned as the set of all such

mixture models (one for each sequence in .AK , so that M| = AK,

At the start of each episode, an MDP M is chosen by sampling 2 ~ Unif([K]). The trajectory is
then drawn by setting s; = s, and for h— 1,...,H:
® ap = ’/Th(Sh).

o Ty~ R;\f,z(shv ah) and Sh+41 ™~ P}i\,{z( | Sh, ah).

Note that rewards can be non-zero only at layer h =K. We receive areward from Ber (3 + A) only

when z = 1 and the first K actions match g™ K, ie a.z = a For every other action sequence,

the reward is sampled from Ber(3). Thus, for any policy 7,

fr(m) =5+ Al{n(s,,5) = a7z ),
which implies that

() = () = AQ =7 (sy,z) = aylz})- G1)
Finally, we define the reference model M. The model M is specified by {{Sh}hH:Jrll, A, MM } where
M™ is a tabular MDP given by
MY = {8} A PRI 6 ).

Here, the initial state s; is s deterministically, and the transitions P}, and rewards R}, are as
follows:

(1) Transitions are stochastic and independent of the chosen action. In particular, for each
h < H, the dynamics ;" are given by

E—h_ jf p < K,s, =s™ and 55,1 = stV

K—h+1 o -~
B 1?—1h+1 if h<K,s,=s™andsp 3 =sF
Py (sht1 | snyan) = Q1 if h<K,s,#s" and s;, = sp41
1 if h>Kandsp, = Sh+1
0 otherwise

(i) The reward distribution is given by

Ber(%), if h=K,
0, otherwise.

Ry (s, an) = {
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Note that M can be thought of as a mixture of K identical tabular MDPs each given by M. Note that

for any policy 7, the rewards for any trajectory in M are sampled from Ber( ) and thus f¥ () = L

which implies that ?
Fi () = f¥(7) = 0. (32)

We define M” = M’ U{M} C M, and note that for any policy m, the distribution over the
trajectories is identical in all mixture models in M. However, as mentioned before, the rewards in
M are sampled from Ber( ) and for any M € M/, the rewards in M are sampled from Ber( +

%H{TF(SLK> =a}! 1?}) Thus, for any policy 7 and M € M’,

D (M), () = Dfy (Ber (5 + {{r(ou) = i }) Ber (1))
= 3IA(2 Hr(s.5) = ajigh &3

where the last line uses Lemma D.2.
The bounds in (31), (32) and (33) together imply that the model class M” is a (A 34, =, O)—family in
the sense of Definition D.1, where for each 7 € IT andM € M" we take

u(m) = r(s.z) = a)lz and v () =7 (s %) = al'z )

with 4™ (7) := 1 and v™(7) := 0. As a result, Lemma D.1 implies that

2
dec, (M, M) > A 3’YA
oK KN’

for N := AK 4+ 1. Setting A = @ leads to the lower bound dec, (M, M) > N . We conclude by
noting that all M € M" have M S M ( ) with e, = 5 4 , and thus the 1ower bound on the DEC
also applies to the class M. (M). O

Proof for Example D.4. let M be the class of all tabular MDPs, and let M) denote the set of all
mixture models in which each M € MY is a mixture of K MDPs from M. Additionally, define

M = co(M), and note that M C M forall K > 1. Forany ¢ > 0 and M € M, we have
that M (M) C M_(M), which implies that
dec, (M (M), M) > dec, (MY (M), M),
because dec,, (-, M) is a non-decreasing function with respect to inclusion. Using Lemma D.3, we
have that for any X > 1 and v > Ami“{s’l’H*K}/G, withe, 1= Ami“{s’l’H’K}/Qélv,
. 77 Amin{Sfl,H,K}
dec, (M (M), M) > dec, (MO (M), M) > —
~

Setting K = .S above gives the desired lower bound. O

E Structural Results

This section is organized as follows.
* In Appendix E.1, we recall existing variants of the information ratio and state some basic
properties.

* In Appendix E.2, we prove equivalence of the Decision-Estimation Coefficient and the
parameterized information ratio with Hellinger distance (Theorem 3.1), as well as a general-
ization of this result (Theorem E.1).

* In Appendix E.3, we prove equivalence of the parameterized information ratio with Hellinger
distance and the high-probability exploration-by-optimization objective.
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E.1 Background on Complexity Measures

For a measurable space (X, .%), let us call any function D : A(X) x A(X) — Ry adivergence-like
function.

Generalized information ratio. Below we recall two notions of generalized information ratio
introduced by Lattimore and Gyorgy [34] and Lattimore [33], which extend the original definition of
Russo and Van Roy [51, 52].

For a given prior i € A(M X II), define jup (7') := P(7* = 7’) and pipo (7’5 7, 2) 1= P(n* =7’ |
(7, 2)) under the process (M, 7*) ~ p, 7 ~ p,z ~ M(7).

1. Lattimore and Gyorgy [34] define a class M to have generalized information ratio (a, 8, A)

(where o, 8 > 0, A > 1) if for each prior © € A(M x II), there exists a distribution
p € A(II) such that

E(M,w*)wt ]ETW;D[fM(T"*) - fMm] <a+ /Bl_l/A (Epr EZ\W[D(:U’PO('; m,z) || Mpr>])1//\-
(34)

2. Lattimore [33] define the generalized information ratio for a class M (for A > 1) via

{ (Etryop Brnp[f* (%) = ()] } 35)

Uy\(M) = sup inf
A( ) ETer EZ\W[D(,U/pO(';ﬂ.vz) || MPF>]

pEA(MxXIT) PEAIT)

As mentioned in Section 3, the formulations above slightly generalize the original versions in
Lattimore and Gyorgy [34], Lattimore [33] by incorporating models M € M and considering
general distances.

The following proposition shows that boundedness of the generalized information ratio implies
boundedness of the parameterized information ratio (Definition 3.1).

Proposition E.1. Fix o, 8 > 0 and X > 1. If a class M has generalized information ratio (o, 5, \)
in the sense of (34), then
B

inffyj(/\/l) Sat—= V>0
3T
Likewise, the generalized information ratio in (35) satisfies
inf2 (M) < (UA(M)/7)™ Vv >0,

Proof of Proposition E.1. Suppose M has generalized information ratio (c, 8, A). Then there exists
p € A(II) such that for all x € A(M x II), we have

IE(M,'fr*)wu ETFNP[fM(W*) - fM(ﬂ—)] <a+ ﬂl_l//\ (E7r~p EZIW[D(FLPO('; T, Z) H ﬂpr)])

B
<a+ ﬁ + - E‘ITNP Ezlw[D(upo(';ﬂvZ) H ,Upr)],
yx=

1/x

where we have applied Young’s inequality, which gives that zy < %xﬁ + %y)‘ forz,y > 0.

For the second result, we use that the definition of ¥ (M) implies generalized information ratio
1

(0, (TA(M))>=T, A). O

This results show that an upper bound in terms of the parameterized information ratio in Definition 3.1
implies an upper bound in terms of either version of the generalized information ratio. It is also
straightforward to see that generalized information ratio (0, 3, \) in (34) implies that Uy (M) < A1
and vice-versa. Note that o = 0 is the most interesting regime, as the regret bounds in Lattimore and
Gyorgy [34] scale with o - T" when o > 0.

Another important property of the parameterized information ratio (as well both generalized informa-
tion ratios) is that it is invariant under convexification.

Proposition 3.1. For any divergence-like function D(- || -) : A(II) x A(IT) — Ry, we have
inf,?(./\/l) = infﬂfD(co(/\/l))7 Yy > 0.
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Proof of Proposition 3.1. Fix 1 € A(co(M) x IT). We can represent any M € co(M) as a mixture
v € A(M), so that M = Eps, [M]. Let i € A(A(M) x II) be such that the process (v, 7*) ~ [i,
M = Epz,[M] has the same law as (M, 7*) ~ f. Finally, let 4/ € A(M x II) be the law of
(M, 7*) induced by sampling (v, 7*) ~ frand M ~ v.

We observe that for any distribution p € A(II),
E(M’W*)NH Ennp [fﬁ(ﬂ*) - fﬁ(ﬂ)}
=E@x)~ii Brmp Enenn [f (77) — £ ()]
= Esmy o Brp[f (77) = £ ().

Next, observe that(m, 7*, z) are identically distributed under the processes 7 ~ p, (M, 7*) ~ p,
2~ T () and 7 ~ p, (M, %) ~ ', = ~ M(r). As a tesult, we have fipe — iy and jipo = i, 50

Erep Bajn[D(ttpo (37, 2) || fipr)] = B Bajr [ D (150 (17, 2) || ) ]-

This establishes that inff (co(M)) < inff? (M); the other direction is trivial. O

E.2 Decision-Estimation Coefficient and Information Ratio (Theorem 3.1)

Theorem 3.1. For all y > 0, inff (M) < dec,(co(M)) < infll ,(M).

Theorem 3.1 is a special case of the following theorem, which concerns general divergence-like
functions.

Theorem E.1. Let A(II) x A(II) — Ry be any divergence-like function for which there exist

constants ¢y, cy > 1 such that:

1. ForallQ € A(II), P— D(P || Q) is convex.

2. For all pairs of random variables (X,Y),

Ex~px [D(Pyix | Py)] < ci- Eyap, [D(Pxpy | Px)]

3. For all pairs of random variables (X,Y),

Ex~rx [D(Pyix | Py)] <c2- i%fEXNIPX [D(Pyx | Q)].

4. For all ¢ > 0 sufficiently small, and all Q € A(II), there exists Q' € A(1) such that
DP|Q)>DP|Q)—c¢ and suppe A (1m DP| Q) < o

Then we have

infl)_ (M) < dec? (co(M)) <inf(}, .,y-1,(M). (36)

~

All f-divergences satisfy Property 2 with ¢; = 1, but may not satisfy Property 3. On the other hand,
Bregman divergences'” satisfy Property 3 with ¢c; = 1, but may not satisfy Property 2 (consider
squared euclidean distance). KL-divergence, being both an f-divergence and a Bregman divergence,
satisfies both properties with ¢c; = co = 1 (this fact has been used tacitly in many prior works).
Squared Hellinger distance is an f-divergence but not a Bregman divergence, yet satisfies Property 3
with co = 4 as a consequence of the triangle inequality.

Proof of Theorem E.1. We first bound the DEC by the information ratio, then proceed to bound the
information ratio by the DEC.

Bounding the DEC by the information ratio. Fix M’ € M, and ¢ > 0 and let M" be such that
D (-, M'(m)) > D3(-, M" (7)) — € and D} (-, M" (7)) < oo (as guaranteed by Property 4). Using

"5Recall that for a convex set X' and regularizer R : X — R, Dr(z||y) = R(z)—R(y) — (VR(y),z — y)
is the associated Bregman divergence.
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the minimax theorem (Lemma C.2), we have

decl(M.M) < inf - sup Ere [ (mr) — £(x) =7+ DM () || M (7)) + 3¢

= inf  sup By Eay [ (ma) = £ (1) = v - D(M(x) || M" ()] + 7e
PEA(M) peA(M)

= sup inf EropEnren[fY(m) — (1) — v - D(M () || M"(m))] + ve.
veA(M) PEA(IT)

Note that the application of the minimax theorem is admissible here, since A(II) is compact (a
consequence of finiteness of II) and the objective value is bounded (a consequence of the choice of
M"" and the fact that f™ € [0, 1]).

Fix v € A(M), and let p € A(M x II) be the induced law of (M,7,,). Let M (m) =
Epren[M () | mar = '] and M (1) = Epgpy [M ()] = Egs oy [M+ (7)]. Then for any p € A(II),
we have

Bty Banp[f¥ (mar) = ¥ () = - D(M () || M"(7))]

=B n0)mp Brp[f (%) = () — v - D(M () | M" ()]
< By By [f (%) = £ (1) =7+ D(M s () || M3 ()]
< Bt yop B [fY(77) = f2 (1) = ve3 " - D(Mge () | M(m))],

where the first inequality uses convexity of P — D(P || Q) (Property 1), and the second inequality
uses Property 3. To proceed, let P be the law of the process @ ~ p, (M, 7*) ~ u, z ~ M (7).
Observe that M+ (7) = P, »« and M (7) = P,|.. Hence, using Property 2, we have that for all 7

Ersnw [D(Mas () || M(7))] = &7 B [D(Prs s | Prejr)] = €1 " B [D (P2 | Prv) ],

where the last equality uses that 7 and 7* are independent (marginally). Since D (IP,,* | ]P’,r*) =
D(ppo (37, 2) || ppr)s if we choose p to attain the minimum in (19) for i we are guaranteed that

Entow Brnp[f* (7ar) = [ (1) = - D(M () || M(m))]

< IE:(M )~ p ]Eﬂ~p[fM(7T ) fM( )] y(erez)™ L. Ernvp EZ\W[D(NPO('§7T7Z) [ Mpr)] + e
< mf(clcz) 1y (M) +7e.

Taking ¢ — 0, we conclude that dec,YD(/\/l) < infﬁlc2)—17(M). By Proposition 3.1, inf,?(/\/l) =
inffyD (co(M)), so applying the result to co(M) yields

dec,lyj(co(/\/l)) < |nf (crc9) 1y (M).

Bounding the information ratio by the DEC. We now consider the opposite direction. Fix a prior
i € A(M x II) and consider the value for the parameterized information ratio:

Bt mymps Brnp LY (77) = fY(7)] = 7+ Erp B [D(pipo (57, 2) || ipr)]-

Define M /() := E,[M(r) | 7* = '] and M () = Eps,,[M (7)]. Using that (7*, 7r) are inde-
pendent, along with Property 3, we have

Ezlﬂ[D(MpO(';Wa Z) H lupr)] = IEz\Tr [D(]Pﬂ*lw,z ” ]P)‘ﬂ'*)}
=B [D(Brepr,z || Proj)] 2 €1 Enene[D (Mg () || M(mr))].

Next, observe that we have

Bt mymp Banp[fY (77) = Y ()] = B Br oy B[ (77) — fY () | 77]
= Eﬂ'Np Eﬂ'*Nu [fMW* (7T ) - fﬁw* (7‘[’)]
< g Bany [max [ (1) = [ ().
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Recall that the definition of dec.(co(M)) implies the following: For any x € A(M) there exists
a distribution p € A(II) such that for all v € A(M), defining M, (7) := Epn[M ()] and
M, (7) := Epro [M(7)], we have

Ervp [ma}x F(a') = £ (x) — 4-D(M,(x) | Mﬁ(w))] < dec,(co(M)).  (37)
By invoking (37) with M, = M and M, = M .., we are guaranteed that for every draw of 7*
Erp [rr;g}x Fior () — f¥er (W)} <yer ' Ermp [D(Mas () || M(m))] + deccl_lv(co(./\/l)).

Taking the expectation over 7* ~ u, we conclude that

inf,?(/\/l) < deCcl—l,y(CO(M)).
O

E.3 High-Probability Exploration-By-Optimization and Information Ratio (Theorem 3.2)
Theorem 3.2. Foralln > 0, inff:_l(/\/l) < exo,(M) < infrgn)_l(/\/l).

Proof of Theorem 3.2. We first state the following basic result, which is proven in the sequel.
Lemma E.1. For any fixed M € M and ©* € 11, the map (p,g) — Tq,(p,g;7*, M) is jointly
convex with respect to (p, g) € A(II) x G, where G := (Il x I x Z — R).

Upper bound: Minimax theorem. We first use the minimax theorem to move to a Bayesian coun-
terpart to the Exploration-by-Optimization objective. This requires some care to ensure boundedness
and compactness, but otherwise is conceptually straightforward. To begin, observe that we can write
the Exploration-by-Optimization objective as

exo, (M) = sup inf sup  [Lgn(p,g;m, M
n(M) qu(n)peA(H),gegMeM,w*eH[ an(prgim, M)]

= sup inf sup  ErroynLan(psg;7*, M)).
qeA(1) PEA(IL),9EG e A(MxTI) ( ) LIPS )]

Fixa>1Vvn~tande € (0,1), and define
Go={9€G]|lgllo <a}, and P.={pe A(ll)]|p(r) > e[| Vr}.
Then, by restricting to these classes, we have!'®

exop(M) < sup inf sup  EaraoyenTam(p, g7, M)
n qEA(IT) PEP=19€Ga e A(MXII) (M, m*)~pll qm

We verify that the conditions required to apply the minimax theorem are satisfied.

* The map p — E(nspoyp[lgn(p, g;7*, M)] is linear. Furthermore, by Lemma E.1, the map
(2,9) = EsneoyouLan (s g7, M)] is convex.

* Since we have restricted to p € P, and g € G, the value 'y ,,(p, g; 7*, M) is uniformly bounded,
as well as continuous with respect to p and g (so long as € > 0 and o < 00).

* The set A(M x II) is convex. Since |II| < oo, the set P, x G, is convex and compact (for P
equipped with the usual topology and G, equipped with the product topology; see Lattimore and
Gyorgy [34] for details).

Hence, using Lemma C.2 we can bound by the value of the Bayesian game as follows:

exo, (M) < sup sup inf  EoroyopnLon® g7, M) (38)
WMIS sup SR pereg, Bt~ Tan )]

18Restricting to these sets allows us to enforce boundedness and continuity of the Exploration-by-Optimization
objective, which is necessary to appeal to the minimax theorem. The parameters a and € will not enter the final
bound quantitatively.
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Upper bound: Moving to Hellinger distance. For any ¢ € A(II), u € A(M x II), and p € P-

the value of the game in

(38) is

Bt m) o B [f7 (77) = 4 (70)]

+ 1
g 9E€Ga

inf E(M,ﬂ"*)

n
~u |:]E7r~p,z~M(7'r) ]ETF'Nq eXp <p(7|')(g(7T/ 3y T Z) - g(ﬂ—* 3 Ty Z))) - 1:| :

Using Bayes’ rule, we can rewrite the second term above as

) g(7r’;7r7z)>} [ ( 9(77*57373)>} ]
f ErepEsjr |Enin - N Eren STz - -1
glenga P ‘ |: q |:eXp (77 p(ﬂ_) Hpo(+3m,2) €xp n p(ﬂ-)

By reparameterizing via g(7’ ; 7, 2) + @ g(7";m, z), the value is upper bounded by

inf ErvpE.r [Eﬂrwq[exp(g(ﬂ’ 57, 2))] B (- 5m,2) [exp(—g(m*;m,2))] — 1].

gegan

Furthermore, by skolemizing, we can rewrite this as

V(p7 q, /J) = Eﬂ'NP IEZ|7T inf {E‘ﬂ'"\'q[exp(g(ﬂ-/))] : EW*N;LPQ(~;7T,Z) [eXp(—g(ﬂ'*))] - 1}

gII=R, |||l  <am

We now appeal to Lemma C.5, which grants that

1 —«
V(pv q, /u‘) < - iEﬂ'NPEzM [Da(lu’po(';ﬂ_’z)aqxl +4e . (39)

Using (39), we have
exo, (M)

< sup sup inf {E(M_’,r*)wu Enmp[f™(7%)

qEA(TT) pEA(M xTI) PEPe

1

= fM(m)] = % ErnpEzix [Dﬁ (Hpo(-5m,2), Q)] } +dn e,

In addition, since f € [0,1] and D3(-,-) € [0, 2], we can further upper bound by

sup sup inf

qeA(TT) peA(MxIT) PEA(ITD)

+O0(m e +e-(14+n71).

Since this expression only depends on « and ¢ through the additive approximation terms, taking the
limit as « — oo and € — 0 yields

exo,(M) < sup

1

{E(]M,Tr*)wu Eﬂ'Np[fM (W*) - fM(W)] 5 ]E7TNp IEz|ﬂ' [Da (:upo(' y T Z)a q)} }

2n

1

sup inf {E(M,mwu Ernp[fY (1) = [ ()] = 5= Ennp B [Dii (110 - 57, 2), )] }
qEA(IT) peA(M xII) PEA(TT)

2n

Finally, recall that since Hellinger distance satisfies the triangle inequality, we have
Eﬂ'Np IEz|7r [Da (,Ufpo(' 3T Z), lffpr)] <2 ETer Ez\ﬂ [Da (,Ufpo(' 3T Z), Q)] + 2DE| (Mph Q)'

Using that pip (') = Exvp E.jx [ttpo(7; 7, 2)] and that squared Hellinger distance is convex, we
have D (1tpr, @) < Ernp Eopr [Df (1po (-7, 2), ¢)], and so

E‘H'NP IEZI7r [Dgi (NpO(' 3T Z)? Npr)] <4 Eﬂ~p IEZI7r [Dgi (ﬂPO(’ 3T Z)7 Q)]

It follows that

exo, (M) < sup
PEA(MXII)

pEA(II)

= inf|(—|8,r])—1 (M)

Lower bound. It is immediate (without having to invoke the minimax theorem) that

exo, (M) =

>

sup inf sup
qeA(IT) PEA(IT),9EG e A(MXTT)

sup sup inf
gEA(IT) peA(MXIT) PEA(TT),g€G
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inf {EWJ*)NH Byl (1) = (1)) = = B Bape [Di(tpol- i, z>,upr>]}

8n

E(]V[,ﬂ'*)rwp,[rq,n (pa g; 71'*, M)]

Eas,aoyonlLan (9577, M)
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Performing the same sequence of calculations as in the upper bound, we have that for any ¢ € A(II),
u e AWM x1II),and p € A(II),

glrelg E(MJ*)NM[Fq,n(pv g;m*, M)]
=Et,meymp Brnp[fY (77) = ¥ ()]

“Uinf Boasneymp | ot (m) Exre (g 57, 2) — g(* ~1
+n ;IEIQ (M,7*)~p | Sr~op,zo M (1) q €Xp p(ﬂ‘)(g(ﬂ. 77T7Z) g(ﬂ- ,7T,Z))

= Bt )ops Brmp [FY (7)) = ()] + 07 By B gifelg{Ewwq[eXp(g(W'))] B i (- im.2) [exp(—g (7)) = 1}
Using Lemma 2.1, we have
Er~p IEZ|7T ;relg{Eﬁ/Nq[exp(g(ﬂ'))] ) EW*Nupo(- im,2) [exp(—g(7))] — 1} > —Exnp Ez\w [Da (NpO(' T, 2), (I)]

We conclude that

. 1
exo, (M) > sup sup inf {]E(M’,r*)wu Ermp Y (7) = fY(7)] = = Ernp E.jr [Da (tpo(- s, z),q)]}
qeA(TT) peA(MxIT) PEA(IT) n

. 1
> sup nf {Em,wwwlﬁmp[fﬂf(w*)—fM(w)]—EWNPEZM[Da(upo(-m,z>,upr>]}
HEA(MxTIT) PEA(II) n

= inf,'-:fl (M)
O

Proof of Lemma E.1. Let A/ € M and 7* € II be fixed. The map p — E.p[f* (7)) — f¥ ()]
is linear, so our main task is to show that the function

(.9) = > p(m) Eers(m) [Z g(n') exp (p(nﬁ) (9(n";m,2) = g(n* s, Z))ﬂ
is jointly convex. We can rewrite this as7r
54t o) B [exp o' m,2) — g2 )|
Since convexityﬂis preser\T/red under summation with non-negative weights, it suffices to show that for

any fixed (7, 7’), the map

(67).9) 7 ) B o0 (25 00 7.2) = a5, ) (40)

is convex. Since the function g = K. (x [exp(n(g(7’;m, 2) — g(n*;m, 2)))] is convex over G,
convexity for (40) follows from the following standard result.

Proposition E.2 (Convexity of perspective transformation). Let f : RY — (—o0, c0) be a convex
function. Then the function
(z,t) = t- fz/t)

is convex over R? x R,

F Proofs for Main Results (Section 2)

F.1 Proof of Theorem 2.1

Theorem 2.1 (Main upper bound). For any choice of n > 0, Algorithm 1 ensures that for all 6 > 0,
with probability at least 1 — 0,

Regpy < decg,)-1(co(M)) - T + 2n~' - log(|T1|/6). (8)
In particular, for any § > 0, with appropriate m, the algorithm has that with probability at least 1 — 6,
Regpm < O(1) - inf {decy(co(M)) - T+ - log(|LI|/3)}. ©)
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Proof of Theorem 2.1. Let us adopt convention (p, f) = > _p(n) - f() and let e, denote the wth
standard basis vector in R™. For each 7* € II, we write regret as

RegDM ZEWNp(t) [fM(f)( *) fM(f) :| Z<eﬂ_* _ p(t) fM(f)>

t=1

Adding and subtracting Zthl <€w* —q", f(” >, we rewrite this as

T T T T
(t) t) -~ ~
D (em =0 ) = lew =0 ) 4D e =@ T) = D (ew —a ).
t=1 t=1 t=1 =
(4D
The exponential weights update ensures (Lemma C.6) that with probability 1,
T T T
-~ ~ 1 Dit (e || g
Z<e”* _ q(t)7f(t>> < Z<q(t+1) _ q(t), f(t)> _ = ZDKL(Q(H—U H q(t)) + M
ny n
t=1 t=1

M’ﬂ

(gD — ¢ f(t) _ - ZDK ) || g®) + M.
n

~
Il
-

In addition, using Lemma C.3, we have that for all ¢,

< (t+1) f(‘)> _ EDK'—( ¢ ¢ < 1 (Z M exp( J?(t)(ﬂ)))

Hence, combining this with (41), we have

T
Regpwm (7 Z<e +—p" fM(t)> - <€7r*,f(t)> + % Zlog <Z q“(m) eXP(ﬁ : J?(”(W))> + M.
=1 -

n

3

Let % = o(n®, 20, ..., 7® z®) be a filtration, and let E,[-] := E[- | .%#;]. For each 7 € TI,
define a sequence of random variables {Xt(w)}thl via

log<2q“> eXp(n Fo(r ))) — (e, [O).

Using Lemma C.1 and a union bound, we have that for any 7 > 0, with probability at least 1 — 4, for
all m e II

> < Zlog Bealexp(Xs () + <20,
t=1 i

Since this bounded holds uniformly for all 7, we have that with probability at least 1 — 4, for all
a* e Il
T T
t 1 * lo Il /6
Regou () < 3-(er- —p )+ 1 3 log(Ermsexp(nXu(r ) + 220,
t=1 t=1
We compute that for any 7* € II,

log(E;—1 [exp(nX:(7))])

= log (Eﬂ.,\,p(t) ]EZNM(t)(ﬂ.) ET‘./Nq(t) [exp <p(t:7(7r) . (g“)(ﬂ'/ T, Z) — g(f)(ﬂ-* T, Z))>:|)

n t) [ *
S Erpo Eoopro () Brrog) {exp (p“)(ﬂ') (99" 57, 2) — g (7 ;7T72>)):| -1,
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1042 where we have used that log(z) < « — 1 for > 0. Hence, with probability at least 1 — 4, for all
143 7 € 11,

) 4 ploglll/o)

T

+ (t)

Regpy(7") < Z<€rr* —p ;
t=1

1 n ' 0 (>
+ n(Eﬂ.NP(t) EZNM(t)(ﬂ.) ]EW/Nqu) |:exp (pm(ﬂ-) . (g( >(7TI;7T,Z) _ g( )(ﬂ- ;W,Z))):| _ 1)

T
D g® st M log (|11] /0
=2 Taw (0”957 ,M<>>+2<'77'/>
t=1

< exo,(M) - T + 210g(|71;[|/5)7

104« where the last line uses that (p®, g®) are chosen to minimize the Exploration-By-Optimization
145 objective. Finally, using Corollary 3.1, we have that exo, (M) < dec(g,)-1(co(M)).

1046 D

1047 F.2 Proof of Theorem 2.2

1045 In this section we prove Theorem 2.2. Most of the work consists of proving an improved lower
1040 bound for the stochastic setting in which M® = M™* is fixed across ¢t (Theorem F.1). We then
100 appeal to this stochastic lower bound with the class co(M). Since co(M) is equivalent to the set of
151 mixtures of models in M, this establishes existence of distribution 1 € A(M) and mixture model
1s2 M, = Eps~,[M] for which regret in the stochastic setting must scale with dec, . (co(M)). The
1053 proof concludes by arguing that this yields a lower bound for the adversarial setting when we sample
10se MY ~ p.

1055 Throughout this section, we define the one-sided variance for a random variable Z as
V. [2] =E[(Z - E[2)}].

1056 Theorem 2.2 (Main lower bound). Let C(T) := c-log(T AV (M)) for a sufficiently large numerical

1057 constant ¢ > 0. Set €, := W. For any algorithm, there exists an oblivious adversary for which

E[Regpy] + /E(Regpw)? > Q(1) -W> S;l(];(T)T dec, . (co(M)) T — o(T'?). (13)

1058 We also have the following slight variant of Theorem 2.2.

1059 Theorem 2.2a. Let C(T') := c-log(T A V(M) for a sufficiently large numerical constant ¢ > 0.
1060 Set e 1= W. For any algorithm, there exists an oblivious adversary for which E[Regpy] > 0

1061 and
E[Regpu] + VE[Regpu] - T > Q1) - sup dec, (co(M)) - T, (42)
y>+/2C(T)T

162 Proof of Theorem 2.2. We invoke Theorem F.1 with the model class co(M), which implies that
163 there exists a distribution u € A(M) for which

E[figgDM] +4/ V4 [flengM} >L:=8" sup dec,. (co(M)) T,
v>4/2C(T)T

1064 Where
- T
Regoy = > Eropo Enrulf (m) — £ (7],
t=1
1es  and 7, 1= arg max, oy Earp[f* ()], with the data generating process is (foreach t = 1,...,7T):
1066 * The learner samples 7 ~ p*,
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* Nature samples 2 ~ Eps, [M (7).

Observe that this is equivalent in law to the following data-generating process, which constitutes an
admissible adversary (with M € M):

* The learner samples 7 ~ p®,

* Nature samples M® ~ g and 2 ~ M@ (7®),
Likewise, we can equivalently write
T
5 ® ®
Regpy = ZEM@)NM E ) mpo [fM (mu) — ™ (w(t))].
t=1

Hence, all that remains is to relate the quantity li:e/gDM to the realized regret Regp), for the sequence
M® . M™ which entails removing the conditional expectation over M ® ~ p. To this end, we
first observe that

E[Regpy] = E

T
ZEﬂ(t)Np(t) |:f]\l(f) (ﬂ'u) _ fM(t) (ﬂ_(t)):|‘|

t=1

<E

=E [I{iBEg[)hA}.

T
M@ % M@ ()
max ;Ewump(t) [f () = [ )}

Next, note that since Regpy is non-negative, V. [Regpy] < E[(Regpy)2]. Define

T
RegDM = ZEW(‘)Np(t) [me(ﬂ-u) _ f]\l(t)(ﬂ_(t)):|.

t=1
Then we have
]E[(]i\e/gDM)i} < Z]E[(]ie\gDM)i] + QE[(f{\(;gDM - 1:fe\gDM)Q}

<2E[(Regpm)i] + QE[(ﬁengM - R/'e\gDM)ﬂ

< 2E[(Regpu)?] + 2T,
where the first inequality uses that lie;gDM < Regpy almost surely, and the second inequality uses (i)
f™ € [0,1], and (ii) for any sequence of random variables (Z;)_; withE[Z, | Z1,...,Zy_1] =0,
E [(Zthl Zt)z} = Zthl E[Z?]. Putting everything together, we conclude that

E[Regpy] + /2E[(Regpw)” | > L — V2T.
This proves Theorem 2.2. To prove Theorem 2.2a, we use that since ﬁggDM € 10,77,
At [RegDM] <T- E[RegDM] < T'-E[Regpy]-

O

The following result concerns the stochastic setting in Foster et al. [18]. Here, there is a (unknown)
underlying model M* € M. Fort =1,...,T, data is generated through the process:

* Learner samples 7 ~ p™,

* Nature samples 2z ~ M*(7®).

In addition, regret simplifies to

T
Regpy = ZEﬁ(t)Np(t) [fM* (7TM*) _ fM* (ﬂ_(t))] (43)
t=1

For a fixed algorithm, let P denote the law of ™ when M* = M, and let E[-] and V4 sup M|
denote the corresponding expectation non-negative variance. Our main lower bound for the stochastic
setting is as follows.
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Theorem F.1. Let C(T) := 2°log(T A V(M)), and set e, = W. For any algorithm, there
exists a model in M for which

EY[Regpy] + 1/ VY [Regpy] > 87!+  sup sup decy (M. (M), M)-T.
v>4,/C(T)T MeM

The general structure of the lower bound follows that of Theorem 3.1 in Foster et al. [18], with
the main difference being that we use a more refined change-of-measure argument to move from a

“reference” model M € M to a worst-case alternative. Specifically, we replace Lemma A.11 in Foster

et al. [18], which requires an almost sure bound on the random variables under consideration (in our
case, regret), with Lemma C.4, which requires only boundedness of the second moment. Combining
this with a self-bounding argument that takes advantage of the localized model class yields the result.

Proof of Theorem F.1. Throughout this proof we will use that Regp), is non-negative in the
stochastic setting, which can be seen by inspecting (43) (in the general adversarial setting, it is
possible for Regp), to be negative).

Let us introduce some additional notation. For M € M, define g (7) = f* (m\,) — f™ (), and for
p € A(ID), let g™ (p) = Explg (7)]. Let p := % Zthl p®, and p,, ;= E [T thl p“)}.

To begin, fix M e M, v > 0,and € > 0, and set

M = argmax E..,_ [fM(mu) — f(m) — v - Di(M (), M(7))].
MeM (M)

Abbreviate dec, = dec., (M. (M), M). The definition of the DEC implies that

dec, <E,_[g"(m)] — v B, [Di(M(n),M(r))] = EY[¢" ()] — v - Ep, [Di (M (x), M())].

(44)
Change of measure. To proceed, we write
EY[g" ()] = E™ [¢™ (B) — g™ (B) — EM[¢™ (D)]] + E [¢™ (D)] + E" [g" (§)]
< EY[(g" () — 9" (®) —E"[g" D))+] +EY[¢" ()] +EV gV (D). 45

We recall the following technical lemma.

Lemma C.4. Let P and Q be probability distributions over a measurable space (X, F). Then for
all functions h : X — R,

[Ep[h(X)] - Eg[A(X)]| < \/2‘1(]Enﬂ>[h2(X)] +Eg[h*(X)]) - DE(P, Q). (25)

Defining h(p) = (g™ (p) — g™ (p) — EM[g™ (P)])+, Lemma C.4 implies that
E"[(g" () — 9" (B) — E"[g" (B)])+]
< EM [( Nl(ﬁ) 7g ( ) EM p) Jr \/ ]EI\I EM[h( ) ]) .Da(]P)]VIJPMW)

< E[g"(0)] +/ (E" [h()?] + B [h(p)?]) - D3 (¥, B7), (46)
where we have used that g™, g™ > 0. We proceed to bound the second moment terms. First, we have
E"[1(p)*] = E™[(¢" (B) — 9" (B) — E"[¢" (D)7 ]

< E"[(¢™ (D) —E™[¢g" ()2 ]
= V¥[g" (D)]. (47)

where the first inequality uses that g™ > 0. For the second variance term, we have

EY [n(p)?] =E"[(¢" () — " (B) —EM[g" (@))3] < EV[(9™ () — 9" (D)% ].
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1112 We have
EY[(¢" (P) - ¢ (P))%]

= E[(" ()~ 9™ (0)+ (" (mar) = £ ) + £7 D) = 1 0)+]

<SEY[(g™(D) — g™ )+ (S (7o) — (7

1115 For the first term above, we have
EY[(¢™ (D) — g™ (0)+ (¥ (mar) — [ (mw)4] < ]EM[(gM(ﬁ) — 9" (0))+] < e-EY[g" ()],

1116 where we have used the localization property and the fact that g*, g™ > 0. For the second term,
117 using the AM-GM inequality, we have

Z
t.
_|_
=
g
—
e}
g
S
|
Q —_
g
<)
N—
N—
+
\
—

= M (D)+]-

E” (6" (5) ~ 9" ()« () ~ ()]

< SE"[(6"®) - " B3] + 3BT (77 6) - 1 6)Y]

< SB[ 0) — 97 B3] + 5 Brmpy [(7 () = 7 (1))
< SE[(6" )~ g7 B)2] + 5 Ermpy [DR(M (), BT(m)],

s where the last line uses that rewards are observed and bounded in [0, 1]. After combining these results
1119 and rearranging, we have

EY[(p)*] <EY[(9"(P) — 9™ (D)}] < 26 EY[g" (B)] + Ennpy [DR (M (), M(m))]. (48)
1120 From Lemma A.13 of Foster et al. [18], we have
Di (P, PY) < C(T) - T - Ennp [Di (M (7), M(7))], (49)
121 where C(T) < 28 - log(T A V(M)).

1122 Combining the variance bounds with (46), we have
E" [(9™ (D) — QM(A) -E"[g M(A)])+]
< E¥[g™(p)] + \/ VY (g4 (P)] + 2¢ - E¥[g%(P)] + Epnp D} (M(w),M(ﬁ))]) D2 (P, P)

< EM[ _|_ \/QVJVI M _|_ \/ 2% . EM +E7r~pM[ ( ]W(Tr))]) -Da(PM,PM)

< EM[g" ()] + \/2vy[g" w EMM[D% (), <>)]
+ /26 E 9" (P)] - C(T)T ey [Da (M (), M ()],

1123 where the second inequality uses that D (-, -) < 2 and the last inequality uses (49). where the second
112+ inequality uses that D (P™,P™) < 2.

1125 Now, suppose we restrict to £ < Then we have

v
aTC(T)"

V2 E7 (g4 (B)] - C(T)T By, [DE (M (), F(m))] < waf[w@)] 2 By, [DR (M (), M ()]

1126 Altogether, we have
EY [(¢™ () — g™ (p) — BV [gM(ﬁ)]M
< BV (7)) + 2VY (0™ (P) + (VETDIT +7/4) - By [DA(M (), M(m)] + 5 E 1" )

127 and, using (45),
EY[g" (D)] < 2EM[g" (D) + E [¢ (D)] + 1/2V (9 (D)]

\/ +7/4 TFNPM[ a(M(ﬂ—)?

=l

(m)] + 5 E”[o" ()]
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12s After rearranging, this implies that

E™[g" (p)] < 4EY[g" (D)) + 2B [¢"(D)] + 1/8V¥ (g™ (P)] + 2(v/ C(T)T + 7/4)  Enpy, [Di (M (), M())].

(50
1129 Completing the proof. Combining (50) with (44), we have
dec, < 4EM[9M(13)] + 2EH[9M(@] 8VM ( VO(T)T +v/4) — ) *Br~ps; [DE! (M(W)aM(ﬂ'))]
10 In particular, whenever v > 4./C(T)T, this implies that there exists an instance M’ € {M, M} for

1131 which
EM [¢™ ()] + \/ VA [g™ (P)] = 87" - dec,.

a2 Finally, we observe that g™’ (p) is identical in law to Regpy, under P,

1133 D

113« FE3 Proof of Theorem 2.3

1135 Theorem 2.3. Suppose there exists My € M such that ™0 is a constant function, and that |II| < oco.

M(M,T)

nas 1. If there exists p > 0 s.t. lim,,_, dec, (co(M)) - v = 0, then limr_, o, =55 = 0 for p < 1.
, , MM.T) _
ne7 2. Iflim,_, o dec,(co(M)) - v” > 0 for all p > 0, then limp_, o —75— = oo forall p < 1.

13 The same conclusion holds when T1 = Tl grows with T, but has log|Tlp| = O(T'?) for any q¢ < 1.

1139 Proof of Theorem 2.3. This proof closely follows that of Theorem 3.5 in Foster et al. [18].

1140 Upper bound. Assume that lim,_, ., dec, (co(M)) - v* = 0 for some p > 0, and that log|IIr| =

1141 5(T‘1) for some ¢ < 1. Using Theorem 2.1 with § = 1/T, we have that for each T', for all
1142 adversaries,

En[Regpy(T)] < O(dec, (co(M)) - T + 7 - log|Ilz|) < O(dec, (co(M)) - T + - T7),

1143 with O(+) hiding factors logarithmic in 7". For each T', we set y = vy 1= T}Tﬁ; recall that 1 — g > 0.
114s  The assumption that lim.,_,, dec,(co(M)) - 4* = 0, implies that for all ¢ > 0, there exists 7' > 0
a5 such that dec,(co(M)) < e/+” for all v > ~'. For T sufficiently large, this implies that for all
1146 adversaries

~( T ~ 1+pg
E[Regpy] < O(,yp +97- Tq) =0(T i ).
T

(p+ 1) < 1, this establishes that
T
lim LT(M’ )

T—o0 v

: s 1
147 Defining p’ := 5

=0.

1145 Lower bound. Assume that lim,_,, dec,(co(M)) - v” = oo for all p > 0 (this is equivalent
1140 to assuming that lim,_, . dec, (co(M)) - 4* > 0 for all p > 0, as in the theorem statement). Let
1s0 p € (0,1/2) be fixed. Using Theorem 2.2a, we are guaranteed that for any algorithm, there exists an
151 adversary for which E[Regpy] > 0 and

E[Regpu] + VE[Regpu] - Q(dec,y c(v,1)(co(M)) -T),

nsz forall y = w(y/Tlog(T)), where (v, T) = ¢ - 735k for a sufficiently small numerical constant

153 ¢ < 1. Since there exists My € M such that the function f*° is constant, Lemma B.1 of Foster et al.
154 [18] further implies that

RegDM + \V4 RegDM deC’Y(C()(M)) . T)
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For each T, set ¥ = yp := T. By the assumption that lim.,_, , dec,(co(M)) - v* = oo, we have
that for 7" sufficiently large, dec.,, (co(M)) > ~,.”, which implies that and

(T
E[Regpy] + VE[Regpy] - T = Q(p)?
T
where we have used that e(yp, T') @. Rearranging, this implies that

E[Regpy] = Q(T'72).

Hence, for any p € (0, 1), by setting p = 17” € (0,1/2), we have
E[Regpy] = Q(Tp)~
Applying this argument with p’ = $(p + 1) € (1/2,1) yields
MM, T)

lim —— =) =

T—o00 Tp

F.4 Sub-Chebychev Algorithms

Proposition F.1. Any random variable with E [X _ﬂ < R has

2
P(Xy >t) < =

12’

vt > 0.

Conversely, if X € (—oo, B) and has P(X; > t) < If—; Vt > 0, then
E[X?] < R*(log(B/R) +1).

Proof of Proposition F.1. For the first direction, note that if E [X _ﬂ < R, Chebychev’s inequality

implies that for all £ > 0,
2
P(x2>1) < o (51)

For the other direction, since X} € [0, B] almost surely, we have

B B
E[X2] = /0 P(X; > t)tdt < R2+/R

B

1
P(X, > t)tdt < R2+R2/ —dt < R*+R%log(B/R).

R
0

Proposition F.2. Suppose that for any § > 0, an algorithm (with 0 as a parameter) ensures that with
probability at least 1 — 6,

Regpy < Rlog”(67 1)
for some R > 1 and p > 0. Then the algorithm, when invoked with parameter § = 1/T?, is
sub-Chebychev with parameter 5'/% R log” (T).

Proof of Proposition F.2. Set § = 1/T2. Then, since |Regpy| < 7, the law of total expectation
implies that
E[(Regpw)i] < R?log™(T?) + T?/T? < 5R?log*(T),
where we have used that R > 1. Chebychev’s inequality now implies that for all £ > 0
E[(RegDM)ﬂ < 5R? logQ”(T)
t2 - t '

P((Regpm)+ > 1) <
O

Corollary 2.1. Any regret minimization algorithm with sub-Chebychev parameter R > 0 must have
R>Q(1)- sup dec,. (co(M))-T —O(T"?). (15)
v>4/2C(T)T

Proof of Corollary 2.1. This result immediately follows from Proposition F.1, Proposition F.2, and
Theorem 2.2. O
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