
Supplementary Materials: Modulate Your Spectrum
in Self-Supervised Learning

Anonymous Author(s)
Affiliation
Address
email

A Proofs of Proposition1

A.1 Proof of Proposition.12

Proposition 1. Given x ∈ (0, 1), ∀T ∈ N we have hT (x) ∈ (0, 1) and h′
T (x) > 0.3

Proof. We know the iterative function fT (x) satisfies4

fk+1(x) =
3

2
fk(x)−

1

2
xfk

3(x), k ≥ 0; f0(x) = 1 (1)

We define hT (x) = xfT
2(x). When x = 1, it is easy to verify ∀T ∈ N, hT (1) = fT (1) = 1. We5

first prove fT (x) > 0 and h′
T (x) > 0 by mathematical induction.6

(1) When T = 0, we have f0(x) = 1 > 0, and h0(x) = x, h′
0(x) = 1 > 0.7

(2) Assuming it holds when T = k, we have fk(x) > 0 and h′
k(x) > 0. Based on h′

k(x) =8

fk(x)[fk(x) + 2xf ′
k(x)], we have:9

fk(x) + 2xf ′
k(x) > 0 (2)

Since hk(1) = 1, h′
k(x) > 0 and hk(x) is continuous, we have ∀x ∈ (0, 1), hk(x) < 1. We thus can10

obtain:11

fk+1(x) =
1

2
fk(x)[3− xf2

k (x)]

=
1

2
fk(x)[3− hk(x)]

> 0 (3)

Furthermore, h′
k+1(x) = fk+1(x)[fk+1(x) + 2xf ′

k+1(x)], where

fk+1(x) + 2xf ′
k+1(x)

=
3

2
[fk(x) + 2xf ′

k(x)]−
3

2
xf3

k (x)− 3x2f2
k (x)f

′
k(x)

=
3

2
[fk(x) + 2xf ′

k(x)]−
3

2
xf2

k (x)[fk(x) + 2xf ′
k(x)]

=
3

2
[1− xf2

k (x)][fk(x) + 2xf ′
k(x)]

=
3

2
[1− hk(x)][fk(x) + 2xf ′

k(x)]

So we have h′
k+1(x) =

3
2fk+1(x)[1−hk(x)][fk(x)+2xf ′

k(x)] > 0. Combining the result in Eqn. 3,12

we thus have it holds when T = k + 1.13

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



As a result, we have ∀T ∈ N, fT (x) > 0 and h′
T (x) > 0, when x ∈ (0, 1).14

Since hT (1) = 1 and hT (x) is continuous, we have hT (x) < 1. Besides, we have hT (x) =15

xfT
2(x) > 0, then hT (x) ∈ (0, 1).16

A.2 Proof of Proposition.217

Proposition 2. Given x ∈ (0, 1), ∀T ∈ N, we have hT+1(x) > hT (x).18

Proof. According to proof of Proposition.1, we have that when x ∈ (0, 1) and ∀T ∈ N, fT (x) > 019

and hT (x) = xfT
2(x) ∈ (0, 1).20

Therefore, we have hT+1(x) > hT (x) ⇐⇒ fT+1(x) > fT (x). It is obvious that

fk+1(x)− fk(x) =
3

2
fk(x)−

1

2
xf3

k (x)− fk(x)

=
1

2
fk(x)−

1

2
xf3

k (x)

=
1

2
fk(x)[1− xf2

k (x)]

=
1

2
fk(x)[1− hk(x)]

> 0

So given x ∈ (0, 1), ∀T ∈ N, we have hT+1(x) > hT (x).21

B Proofs of Theorem22

B.1 Proof of Theorem 1.23

Theorem 1. Define one-variable iterative function fT (x), satisfying24

fk+1(x) =
3
2fk(x)−

1
2xfk

3(x), k ≥ 0; f0(x) = 1.25

The mapping function of IterNorm is26

g(λ) = fT (
λ

tr(Σ) )/
√

tr(Σ),27

so that ∀λi ∈ λ(Z), IterNorm maps it to λ̂i =
λi

tr(Σ)fT
2( λi

tr(Σ) ).28

Proof. Given Σ = UΛUT , Λ = diag(λ1, . . . , λd), U = [u1, . . . ,ud]. Following the calculation29

steps of IterNorm, we have30

ΣN = Σ/tr(Σ) =

d∑
i=1

λi

tr(Σ)
uiui

T (4)

Define31

Φ′
T =

d∑
i=1

1√
tr(Σ)

fT (
λi

tr(Σ)
)uiui

T (5)

Based on ΦT =
d∑

i=1

g(λi)uiui
T , if we can prove Φ′

T = ΦT , we will have32

g(λ) = 1√
tr(Σ)

fT (
λ

tr(Σ) )33

Define P′
T =

√
tr(Σ)Φ′

T , then we have Φ′
T = ΦT ⇐⇒ P′

T = PT . We can prove P′
T = PT by34

mathematical induction.35

(1) When T = 0,36

2



f0(
λi

tr(Σ) ) = 1,P′
0 = P0 = I37

(2) When T ≥ 1, assume that P′
T−1 = PT−1, thus38

PT =
3

2
PT−1 −

1

2
P3

T−1ΣN

=
3

2
P′

T−1 −
1

2
(P′

T−1)
3ΣN

According to the definition of P′
T ,39

P′
T−1 =

d∑
i=1

fT−1(
λi

tr(Σ)
)uiui

T

Because ∀i,ui
Tui = 1 and ∀i ̸= j,ui

Tuj = 0,40

P3
T−1ΣN = (P′

T−1)
3ΣN

=

(
d∑

i=1

fT−1(
λi

tr(Σ)
)uiui

T

)3( d∑
i=1

λi

tr(Σ)
uiui

T

)

=

d∑
i=1

f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)
uiui

T

Therefore, we have41

PT =
3

2
P′

T−1 −
1

2
(P′

T−1)
3ΣN

=
3

2

d∑
i=1

fT−1(
λi

tr(Σ)
)uiui

T − 1

2

d∑
i=1

f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)
uiui

T

=

d∑
i=1

{
3

2
fT−1(

λi

tr(Σ)
)− 1

2
f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)

}
uiui

T

Note42

fT (
λi

tr(Σ)
) =

3

2
fT−1(

λi

tr(Σ)
)− 1

2
f3
T−1(

λi

tr(Σ)
)

λi

tr(Σ)

So that43

PT =

d∑
i=1

fT (
λi

tr(Σ)
)uiui

T = P′
T

We obtain that44

ΦT = Φ′
T =

d∑
i=1

1√
tr(Σ)

fT (
λi

tr(Σ)
)uiui

T = U
1√
tr(Σ)

fT (
Λ

tr(Σ)
)UT

Thus, the mapping function of IterNorm is g(λ) = fT (
λ

tr(Σ) )/
√
tr(Σ). The whitened output is45

Ẑ = ΦTZc = U 1√
tr(Σ)

fT (
Λ

tr(Σ) )U
TZc. The covariance matrix of Ẑ is46

ΣẐ =
1

m
ẐẐT = U

Λ

tr(Σ)
fT

2(
Λ

tr(Σ)
)UT =

d∑
i=1

λi

tr(Σ)
fT

2(
λi

tr(Σ)
)uiui

T

So that ∀λi ∈ λ(Z), IterNorm maps it to λ̂i = λi

tr(Σ)fT
2( λi

tr(Σ) ) which is a special instance of47

Spectral Transformation.48

3



B.2 Proof of Theorem 2.49

Theorem 2. Let x ∈ [0, 1]d, ∀T ∈ N+, INTL(x) shown in Eqn. 7 is a strictly convex function.50

x∗ = [ 1d , · · · ,
1
d ]

T is the unique minimum point as well as the optimal solution to INTL(x).51

Proof. The INTL can be viewed as the following optimization problem:52

min
θ∈Θ

INTL(Z) =

d∑
j=1

(1− (ΣẐ)jj)
2 (6)

where Z = Fθ(·) and Ẑ = IterNorm(Z). Eqn. 6 can be viewed as a optimization problem over θ53

to encourage the trace of Ẑ to be d.54

Let (x1, · · · , xd) = φ(Z), where xi = λi/tr(Σ) as defined in the submitted paper. If Z ∈ Rd×m,55

φ(·) will be surjective from Rd×m to Dx = {x ∈ [0, 1]d : x1 + · · ·+ xd = 1}. When the range of56

Fθ(·) is wide enough, for example, Fθ(·) is surjective from θ ∈ Θ to Z ∈ Rd×m. Here we can view57

Fθ(·) as a function over θ, since the input is given and fixed. Then φ(Fθ(·)) is surjective from θ ∈ Θ58

to x ∈ Dx, meaning that if we find the optimal solution x∗, we are able to get the corresponding59

θ∗ ∈ Θ, subject to x∗ = φ(Fθ∗(·)). On the contrary, for any θ ∈ Θ, we can get x = φ(Fθ(·)) ∈ Dx.60

Therefore, the optimization expression for minimizing INTL can be written as follows which have61

the same range and optimal value as Eqn. 6:62

(PINTL)


min INTL(x) =

d∑
j=1

(
d∑

i=1

[1− hT (xi)]u
2
ji

)2

s.t.
d∑

i=1

xi = 1

xi ≥ 0, i = 1, · · · , d

(7)

We denote the Lagrange function of PINTL is that

L(x;α, µ) = INTL(x) +

d∑
i=1

αi(−xi) + µ

(
d∑

i=1

xi − 1

)

B.2.1 Convexity and Concavity of hT (x)63

Before calculating extreme points of PINTL, we first consider the convexity and concavity of hT (x)64

which is critical to proof.65

When T = 0, we have h0(x) = x, so h′′
0(x) = 0.66

(1) When T = 1, we have h1(x) = f1
2(x) = 9

4x− 3
2x

2 + 1
4x

3, so h′′
1(x) =

3
2 (x− 2) < 0.67

(2) Assume that when T = k, h′′
k(x) < 0 holds. We can easily get following propositions by68

derivation:69

f ′
k+1(x) =

3

2
f ′
k(x)−

1

2
f3
k (x)−

3

2
xf2

k (x)f
′
k(x) (8)

f ′′
k+1(x) =

3

2
f ′′
k (x)− 3f2

k (x)f
′
k(x)−

3

2
xf2

k (x)f
′′
k (x)− 3xfk(x)[f

′
k(x)]

2 (9)

h′′
k+1(x) = 4fk+1(x)f

′
k+1(x) + 2x[f ′

k+1(x)]
2 + 2xfk+1(x)f

′′
k+1(x) (10)

For convenience in our calculation, let a = fk(x), b = f ′
k(x), c = f ′′

k (x), and h = hk(x) = xa2.70

4



We split Eqn. 10 into three parts and take Eqn. 8 and 9 into calculation:

4fk+1(x)f
′
k+1(x) = 4(

3

2
a− 1

2
ah)(

3

2
b− 1

2
a3 − 3

2
bh)

= a(3− h)(3b− a3 − 3bh)

2x[f ′
k+1(x)]

2 = 2x(
3

2
b− 1

2
a3 − 3

2
bh)2

=
1

2
x(3b− a3 − 3bh)2

2xfk+1(x)f
′′
k+1(x) = 2(

3

2
a− 1

2
ah)[

3

2
c(1− h)− 3a2b− 3xab2]

=
1

2
ax(3− h)[3c(1− h)− 6a2b− 6xab2]

Considering to construct the form of h′′
k(x) = 2(2ab+ xac+ xb2), we first calculate that

4fk+1(x)f
′
k+1(x) + 2xfk+1(x)f

′′
k+1(x)

=
1

2
(3− h)[6ab− 2a4 − 6abh+ 3xac(1− h)− 6abh− 6xb2h]

=
1

2
(3− h)[3xac(1− h) + 6ab(1− h) + 3xb2(1− h)

− 3xb2(1− h)− 2a4 − 6abh− 6xb2h]

=
3

4
(3− h)(1− h)h′′

k(x)−
1

2
(3− h)(3xb2h+ 3xb2 + 2a4 + 6abh)

Then we calculate the left part

2x[f ′
k+1(x)]

2 =
1

2
x(3b− a3 − 3bh)2

=
1

2
(9xb2 + xa6 + 9xb2h2 − 6xa3b− 18xb2h+ 6xa3bh)

=
1

2
(9xb2 + a4h+ 9xb2h2 − 6abh− 18xb2h+ 6abh2)

For convenience, let

S =− 1

2
(3− h)(3xb2h+ 3xb2 + 2a4 + 6abh)

=
1

2
(3xb2h2 + 3xb2h+ 2a4h+ 6abh2 − 9xb2h− 9xb2 − 6a4 − 18abh)

Then we have

2x[f ′
k+1(x)]

2 + S =
1

2
(3a4h+ 12xb2h2 − 24abh− 24xb2h+ 12abh2 − 6a4)

=
3

2
(h− 2)(a4 + 4abh+ 4xb2h)

=
3

2
(h− 2)(a4 + 4xa3b+ 4x2a2b2)

=
3

2
(h− 2)(a2 + 2xab)2

=
3

2
[hk(x)− 2][h′

k(x)]
2

Here we obtain h′′
k+1(x) = 3

4 [3 − hk(x)][1 − hk(x)]h
′′
k(x) +

3
2 [hk(x) − 2][h′

k(x)]
2. Based on71

Lemma.1, we know hk(x) ∈ (0, 1), so h′′
k+1(x) < 0. Therefore, when x ∈ (0, 1), then ∀T ∈ N+,72

hT (x) = xfT
2(x) is a strictly concave function that satisfies h′′

T (x) < 0 and h′′
0(x) = 0.73

5



B.2.2 Optimal Solution for the Lagrange Function74

Based on Section B.2.1, when x ∈ (0, 1), then ∀T ∈ N+, hT (x) = xfT
2(x) is a strictly concave75

function that satisfies h′′
T (x) < 0. So 1− hT (x) is a strictly convex function.76

We discuss gj(x1, · · · , xd) =
d∑

i=1

[1 − hT (xi)]u
2
ji first. Denote that the Hessen Matrix of

gj(x1, · · · , xd) about x is

∇2gj =

−u2
j1h

′′
T (x1)

. . .
−u2

jdh
′′
T (xd)


and the Hessen Matrix of g2j (x1, · · · , xd) about x is

∇2(g2j ) = ∇(2gj∇gj) = 2gj∇2gj + 2(∇gj)(∇gj)
T

We denote that all eigenvalues of (∇gj)(∇gj)
T are (∇gj)

T (∇gj), 0, · · · , 0. All eigenvalues are77

non-negtive, denoting that 2(∇gj)(∇gj)
T is semi-positive.78

Now we denote that the Hessen Matrix of INTL(x) is

∇2INTL(x) =

d∑
j=1

∇2(g2j )

= 2

d∑
j=1

(∇gj)(∇gj)
T + 2

d∑
j=1

gj∇2gj

where

2

d∑
j=1

gj∇2gj = 2


−

d∑
j=1

u2
j1h

′′
T (x1)gj

. . .

−
d∑

j=1

u2
jdh

′′
T (xd)gj


We denote that h′′

T (xi) < 0, gj > 0, and uji are not all zeros for a certain i (since
d∑

j=1

u2
ji = 1).79

Therefore, −
d∑

j=1

u2
jih

′′
T (xi)gj > 0 and 2

d∑
j=1

gj∇2gj must be a positive matrix.80

Since 2
d∑

j=1

(∇gj)(∇gj)
T is semi-positive, then we can denote that ∇2INTL is positive.81

Therefore, INTL(x) is strictly convex about x on (0, 1)d.82

And for INTL(x) is continuous, the minimum point on [0, 1]d is the same as that on (0, 1)d.83

While the constraints of (PINTL) form a convex set, (PINTL) must be a convex programming, which84

means that the KKT point of (PINTL) is its unique extreme point, and the global minimum point in85

the same time.86

We denote that the KKT conditions of (PINTL) is that

∂L
∂xi

= 0, i = 1, · · · , d
αi(−xi) = 0, i = 1, · · · , d
αi ≥ 0, i = 1, · · · , d
d∑

i=1

xi − 1 = 0

6



We can identify one of the solutions to the KKT conditions is that
x = [ 1d , · · · ,

1
d ]

T

α = 0

µ = −2h′
T (

1
d )[hT (

1
d )− 1]

It is easy to identify the last three equations in KKT conditions. As for the first equation, for all
t = 1, · · · , d, we have

∂L

∂xt
= 2h′

T (xt)

d∑
i=1

d∑
j=1

[hT (xi)− 1]u2
jiu

2
jt − αi + µ

= 2h′
T (

1

d
)

d∑
i=1

d∑
j=1

[hT (
1

d
)− 1]u2

jiu
2
jt + µ

= 2h′
T (

1

d
)

d∑
j=1

[hT (
1

d
)− 1]

(
d∑

i=1

u2
ji

)
u2
jt + µ

= 2h′
T (

1

d
)

d∑
j=1

[hT (
1

d
)− 1]u2

jt + µ

= 2h′
T (

1

d
)[hT (

1

d
)− 1]

 d∑
j=1

u2
jt

+ µ

= 2h′
T (

1

d
)[hT (

1

d
)− 1] + µ

= 0

Therefore, x∗ = [ 1d , · · · ,
1
d ]

T is the optimal solution to (PINTL). INTL promotes the equality of all87

eigenvalues in the optimization process, which provides a theoretical guarantee to avoid dimensional88

collapse.89

C Algorithm of INTL90

The description of our paper is based on batch whitening (BW) [8, 13], and it can extend similarly for91

channel whitening (CW) [20], where the covariance matrix of Z is calculated as Σ = 1
dZ

T
c Zc. We92

implement INTL based on CW, considering CW is more effective when the batch size m is relatively93

small.94

Given the centralized embedding of two positive pairs Z(v)
c := (I− 1

d1 · 1T )Z(v),Z(v) ∈ Rd×m and95

v ∈ {1, 2}, we first calculate the covariance matrix Σ(v) = 1
dZ

(v)
c

T
Z

(v)
c and then use IterNorm to96

obtain the approximately whitened output Ẑ(v) = [ẑ
(v)
1 , . . . , ẑ

(v)
m ]. The loss functions used in our97

method are98

LMSE =
1

m

∑
i

∥ ẑ
(1)
i

∥ẑ(1)i ∥2
− ẑ

(2)
i

∥ẑ(2)i ∥2
∥22 (11)

99

INTL(Z(v)) =

m∑
i=1

(1− 1

d
ẑ
(v)
i

T

ẑ
(v)
i )2 (12)

100

L = LMSE + β

2∑
v=1

INTL(Z(v)), (13)

where LMSE indicates MSE of L2−normalized vectors which minimizes the distance between Ẑ(1)101

and Ẑ(2). Here we simplify the expression of INTL in Eqn. 6, because off-diagonal elements of ΣẐ102

does not need to be calculated. β is the trade-off between LMSE and INTL. We empirically set that103

7



# f: backbone + projection
# bs: batch size
# aug: random augmentation

for x in loader: # load a minibatch x with m samples
z1, z2 = f(aug(x)), f(aug(x)) # embedding
t1, t2 = IterNorm(z1), IterNorm(z2)
# trade_off between MSE and INTL Loss
trade_off = (log2(bs) - 3) * 0.01
loss = norm_mse(t1, t2) + trade_off * (INTL(t1) + INTL(t2))
return loss

def IterNorm(x, iters=4): # Iterative Normalization
M, D = x.size() # x: m * d
x = x - x.mean(dim=1).reshape(M, 1)
sigma = (x @ x.T) / (D - 1) # covariance matrix
trace = sigma.diagonal().sum()
sigma_norm = sigma / trace # normalize sigma
P = eye(M) # identity matrix: m * m
for _ in range(iters):

P = 1/2 * (3 * P - matrix_power(P, 3) @ sigma_norm)
return P / trace.sqrt() @ x

def INTL(x): # Iterative Normalization with Trace Loss
_, D = x.size()
d = torch.pow(x, 2).sum(axis = 1) / (D - 1)
tl = d.add_(-1).pow_(2).sum()
return tl

def norm_mse(x0, x1):
x0 = normalize(x0) # L2-normalize
x1 = normalize(x1) # L2-normalize
return 2 - 2 * (x0 * x1).sum(dim=-1).mean()

(a)

# f: backbone + projection
# g: momentum backcone + momentum projection
# bs: batch size
# multicrop: crop each image to 6 views:
2 x 224 + 192 + 160 + 128 + 96

# m: momentum increases from 0.996 to 1.0 as cosine
# Function IterNorm, INTL and norm_mse are totally
the same as Algorithm 1

for x in loader: # load a minibatch x with m samples
s = multicrop(x) # s = [x1, x2, x3, x4, x5, x6]
update_momentum_encoder(m)

tk = IterNorm(g(s[0])) # use x1 to be the target
# use x2 ~ x6 to match the target
tq = [IterNorm(f(s[i])) for i in range(1,len(s))]

# trade_off between MSE and INTL Loss
trade_off = (log2(bs) - 3) * 0.01

for i in range(len(tq)):
loss += norm_mse(tk, tq[i]) + trade_off * INTL(tq[i])

loss /= len(tq)
return loss

@torch.no_grad()
def update_momentum_encoder(m): # Momentum update

for param_f, param_g in zip(f.parameters(),
g.parameters()):

param_g.data = param_g.data * m +
param_f.data * (1. - m)

(b)
Figure I: Algorithm of INTL, PyTorch-style Pseudocode. (a) shows training INTL with 2 views
generated from each sample. (b) shows training INTL with multi-crop and exponential moving
average.

β = 0.01 ∗ (log2bs− 3) where bs means the batch size, and the iteration number T = 4 for all of104

our experiments.105

For clarity, we describe the algorithm of INTL in PyTorch-style pseudocode, shown in Figure I(a).106

Our INTL can also work well by combining with multi-crop [1] and exponential moving average107

(EMA) [3, 10] (see Section E). Figure I(b) shows the algorithm of our INTL combining with multi-108

crop and EMA.109

D Analytical Experiments110

D.1 Experiments on Synthetic 2D dataset111

In section 3.2 of the submitted paper, we conduct experiments on the 2D dataset and report the results112

on with varying p. Here, we provide the details of the experimental setup, and further show the results113

of IterNorm [14] for SSL in this 2D dataset.114

D.1.1 Details of Experimental Setups115

We synthesize a two-dimensional dataset with isotropic Gaussian blobs containing 512 sample points116

as shown in Figure II(a). We construct a toy Siamese network (a simple three-layer neural network,117

including three fully connected (FC) layers, with BN and ReLU appended to the first two) as the118

encoder for this dataset. The dimensions of the network are (2− 16)− (16− 16)− (16− 2) that119

each bracket represents the input and output dimensions of each FC layer respectively. We then use120

MSE as the loss function and do not normalize the features before calculating the loss function.121

We train the model by randomly shuffling the data into mini-batches, and set the batch size to 32. We122

use the stochastic gradient descent (SGD) algorithm with a learning rate of 0.1. In terms of the data123

8



8 6 4 2 0 2 4 6 88

6

4

2

0

2

4

6

8 2D dataset distribution 

(a)
1.5 1.0 0.5 0.0 0.5 1.03.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0 Initial network output

(b)

Figure II: Visualization of our synthetic 2D dataset. We show (a) the distribution of our 2D dataset;
(b) the initial output of the toy Siamese network.

transformation, we only apply Gaussian noise as data augmentation and generate 2 views from each124

sample point in mini-batches. We visualize the output of the initialized network without training in125

Figure II(b). All runs are performed under the same random seed.126

0 10 20 30 40 50
Epochs

2

1

0

Lg
 o

f e
ig

en
va

lu
e

T=1
T=3
T=5

(a)

0 10 20 30 40 50
Epochs

6

4

2

0

2

4
Lg

 o
f e

ig
en

va
lu

e

T=5
T=7
T=9

(b)

Figure III: Investigate the spectrum of transformed output Ẑ (solid lines) and the corresponding
embedding Z (dashed lines) using IterNorm for SSL with different iteration numbers T . We show
the evolution of eigenvalues during training on the toy 2D dataset (Note that there are only two
eigenvalues and we ignore the larger one because it always remains a high value during training).
In particular, (a) shows the results with a well-conditioned initial spectrum while (b) with a ill-
conditioned one.

D.1.2 Results of IterNorm for SSL127

To figure out the failure of IterNorm [14] for SSL, we further conduct experiments to investigate the128

spectrum of the whitened output Ẑ using IterNorm on this synthetic 2D dataset for intuitive analyses.129

The output dimension of the toy model is 2, so there are only two eigenvalues of the covariance130

matrix of the output. We then track alterations of the two eigenvalues during training. IterNorm can131

obtain an idealized whitened output with a small iteration number (e.g.,T=5, as recommend in [14])132

and avoid collapse, if the embedding Z has a well-conditioned spectrum1 (Figure III(a)). However, if133

the embedding Z has a ill-conditioned spectrum as shown in Figure III(b), IterNorm fails to pull the134

small eigenvalue to approach 1 which results in dimensional collapse.135

D.2 Experiments on CIFAR-10136

In section 3 and 4 of the submitted paper, we conduct several experiments on CIFAR-10 to illustrate137

our analysis. We provide a brief description of the setup in the caption of Figure 1 and 2 of the138

submitted paper. Here, we describe the details of these experiments. All experiments are uniformly139

based on the following training settings, unless otherwise stated in the figures of the submitted paper.140

1A well-conditioned spectrum means that the condition number c = λ1
λd

is small. Note λ1 is the maximum
eigenvalue and λd is the minimum one.

9



0 1000 2000 3000 4000 5000 6000
Iteration

15.0

12.5

10.0

7.5

5.0

2.5

Lg
 o

f c
1

64
128
256
512
1024
2048

(a)

0 1000 2000 3000 4000 5000 6000
Iteration

12

10

8

6

4

2

Lg
 o

f c
1

(b)

Figure IV: Investigate numerical instability of spectral transformation using power functions for SSL.
The numbers in the legend represent embedding dimensions and the batch size is fixed to 512. (a)
trains models on ImageNet with ResNet-50; (b) trains models on CIFAR-10 with ResNet-18; The
models are trained for 6000 iterations, and we track the inverse of condition number (c−1 = λd

λ1
) in

logarithmic scale with base 10 to judge whether the the covariance matrix is ill-conditioned. The
models that were interrupted before the end of the training indicate training crash caused by numerical
instability.

Training Settings. We use the ResNet-18 as the encoder (the dimension of encoding is 512.), a141

two layer MLP with ReLU and BN appended as the projector (the dimension of the hidden layer and142

embedding are 1024 and 128 respectively). The model is trained on CIFAR-10 with a batch size of143

256, using Adam optimizer [15] with a learning rate of 3× 10−3, and learning rate warm-up for the144

first 500 iterations and a 0.2 learning rate drop at the last 50 and 25 epochs. The weight decay is set145

as 10−6. All transformations are performed with 2 positives extracted per image with standard data146

argumentation (see Section E.3 for details). We use the same evaluation protocol as in W-MSE [8].147

Method Settings. We use MSE of L2−normalized vectors to be the loss function in all experiments.148

Specifically, in Figure 3 of the paper for the experiments of training the models with INTL, we simply149

set the trade-off parameter β between MSE and INTL as follows: β = 0.05 for T = 5, β = 0.5150

for T = 3 and β = 5 for T = 1 without fine-tuning. The details of INTL algorithm please refer to151

Section C.152

D.3 Numerical Instability of Spectral Transformation Using Power Functions153

One problem in using spectral transformation g(λ) = λ−p (p is around 0.5) is the numerical instability,154

when calculating eigenvalues λ and eigenvectors U using eigen-decomposition if the covariance155

matrix is ill-conditioned [18]. Here, we experimentally confirm the existence of this phenomenon156

during self-supervised pre-training. It is worth noting that when we set p to around 0.5, similar157

phenomena can be observed. We thus only display the results of the special instance p = 0.5, which158

is the so-called hard whitening.159

To confirm that this phenomenon could occur on different scenarios, we conduct experiments on160

ImageNet with ResNet-50, as well as on CIFAR-10 with ResNet-18. The batch size m is fixed to 512,161

and we can control the shape of the covariance matrix by adjusting the embedding dimension d (The162

shape of the covariance matrix is d × d). The models are trained for 6000 iterations, and we track the163

inverse of condition number (c−1 = λd

λ1
) to judge whether the the covariance matrix is ill-conditioned.164

The experimental results are shown in Figure IV and our main observations are as follows:165

(a) The training will crash, when the embedding dimension is greater than the batch size (e.g., d =166

1024 or 2048). In this case, the covariance matrix must be singular theoretically and the calculation167

of inverse of the eigenvalue will cause numerical errors. However,it is likely that the minimum168

eigenvalue of the covariance matrix is a very small non-zero value in practice, due to precision169

rounding or using an extra small constant. This situation may lead to the covariance matrix being170

ill-conditioned from the beginning of training. As shown in both Figure IV(a) and (b), when d =171

1024 or 2048, the inverse of condition number is around 10−12 ∼ 10−10, which demonstrates that172

the covariance matrix is almost ill-conditioned from the start and the training quickly breaks down.173

(b) The training will probably crash, when the embedding dimension is equal to the batch size174

(d = 512). In this case, it is difficult to determine whether the covariance matrix is singular. But from175

10



the results in Figure IV, we observe that the covariance matrix is close to be ill-conditioned when176

d = 512. The inverse of condition number tends to decline during training, ultimately leading to the177

crash of the training.178

(c) There is possibility that the training will crash, when the embedding dimension is less then the179

batch size. In this case, we observe that the covariance matrix is almost always well-conditioned180

during the initial training stage. However, the well-condition does not seem to be always maintained181

during training. We observe that the well-condition will suddenly be broken in a few iterations and182

the models will collapse for d = 64 or d = 128. We indeed observe that the training does not crash183

when d = 256. This phenomenon was also mentioned slightly in [8], indicating that the training can184

be more stable by setting m = 2d.185

We show that numerical instability indeed exists when using hard whitening [8], from the above186

analysis. Although one can alleviate this numerical instability by using an empirical setting with187

m = 2d, we observe training crashes caused by numerical instability can still occur at any stage of188

training through our experiments (we run 10 random seeds by setting m = 2d with longer training189

iterations, and the numerical problems may occur 3 − 4 times in the early, mid, or even towards190

the end of training.). Even though one can continue the training by using the saved checkpoints if191

training crashes in practice, it greatly limits the practical application in long-term pre-training.192

E Details of Experiments on Standard SSL Benchmark193

In this section, we provide the details of implementation and training protocol for the experiments194

on large-scale ImageNet [7], medium-scale ImageNet-100 [19] and small-scale CIFAR-10/100 [16]195

classification as well as transfer learning to COCO [17] object detection and instance segmentation.196

We also provide computational overhead of INTL pre-training on ImageNet.197

E.1 Datasets198

• CIFAR-10 and CIFAR-100 [16], two small-scale datasets composed of 32 × 32 images with 10 and199

100 classes, respectively.200

• ImageNet-100 [19], a random 100-class subset of ImageNet [7].201

• ImageNet [7], the well-known largescale dataset with about 1.3M training images and 50K test202

images, spanning over 1000 classes.203

• COCO2017 [17], a large-scale object detection, segmentation, and captioning dataset with 330K204

images containing 1.5 million object instances.205

E.2 Experiment on ImageNet206

In section 5.1 of the paper, we compare our INTL to the state-of-the-art SSL methods on large-scale207

ImageNet classification. Here, we describe the training details of these experiments.208

Backbone and Projection. We use the ResNet-50 [12] as the backbone and the output dimension209

is 2048. We use a 3-layers MLP as the projection: two hidden layers with BN and ReLU applied to it210

and a linear layer as output. The dimensions of the hidden layer and embedding are all 8192.211

Table A: Parameters used for image augmenta-
tions on ImageNet and ImageNet-100.

s
Parameter T1 T2

crop size 224× 224 224× 224
maximum scale of crops 1.0 1.0
minimum scale of crops 0.08 0.08
brightness 0.4 0.4
contrast 0.4 0.4
saturation 0.2 0.2
hue 0.1 0.1
color jitter prob 0.8 0.8
horizontal flip prob 0.5 0.5
gaussian prob 1.0 0.1
solarization prob 0.0 0.2

Image Transformation Details. In image trans-212

formation, We use the same augmentation param-213

eters as BYOL [10]. Each input image is trans-214

formed twice to produce the two distorted views.215

The image augmentation pipeline consists of the216

following transformations: random cropping, resiz-217

ing to 224× 224, horizontal flipping, color jittering,218

converting to grayscale, Gaussian blurring, and so-219

larization. The details of parameters are shown in220

Table A.221

Optimizer and Learning Rate Schedule. We222

apply the SGD optimizer, using a learning rate of223

base-lr × BatchSize / 256 and cosine decay schedule.224

11



Table B: Parameters used for multi-crop of INTL on ImageNet.

Parameter T1 T2 T3 T4 T5 T6

crop size 224× 224 224× 224 192× 192 160× 160 128× 128 96× 96
maximum scale of crops 1.0 1.0 0.857 0.714 0.571 0.429
minimum scale of crops 0.2 0.2 0.171 0.143 0.114 0.086
brightness 0.4 0.4 0.4 0.4 0.4 0.4
contrast 0.4 0.4 0.4 0.4 0.4 0.4
saturation 0.2 0.2 0.2 0.2 0.2 0.2
hue 0.1 0.1 0.1 0.1 0.1 0.1
color jitter prob 0.8 0.8 0.8 0.8 0.8 0.8
horizontal flip prob 0.5 0.5 0.5 0.5 0.5 0.5
gaussian prob 0.5 0.5 0.5 0.5 0.5 0.5
solarization prob 0.1 0.1 0.1 0.1 0.1 0.1

Table D: Comparisons on ImageNet linear classification with various training epochs. All are based
on ResNet-50 backbone. The table is mostly inherited from [4].

Method Bs EMA Multi-Crop 100 eps 200 eps 400 eps 800 eps
SimCLR 4096 # # 66.5 68.3 69.8 70.4
MoCo v2 256 ! # 67.4 69.9 71.0 72.2
BYOL 4096 ! # 66.5 70.6 73.2 74.3

SwAV
4096 # # 66.5 69.1 70.7 71.8
4096 # ! 72.1 73.9 74.6 75.3
256 # ! - 72.7 74.3 -

SimSiam 256 # # 68.1 70.0 70.8 71.3
W-MSE 4096 # ! 69.4 - 72.6 -
CW-RGP 512 # ! 69.7 71.0 - -

INTL (ours)

512 # # 69.5 71.1 72.4 73.1
256 ! # 69.2 71.5 - 74.3
256 # ! 72.4 74.3 74.9 -
256 ! ! 73.5 75.2 76.1 76.6

The base-lr for 100-epoch pre-training is 0.5, for 200(400)-epoch is 0.4 and for 800-epoch is 0.3. The225

weight decay is 10−5 and the SGD momentum is 0.9. In addition, we use learning rate warm-up for226

the first 2 epochs of the optimizer.227

Table C: Parameters used for INTL pre-training
on ImageNet-100.

Parameter Value
max epoch 400
backbone ResNet-18
projection layers 3
projection hidden dimension 4096
projection output dimension 4096
optimizer SGD
SGD momentum 0.9
learning rate 0.5
learning rate warm-up 2 epochs
learning rate schedule cosine decay
weight decay 2.5e-5
batch size 128

Evaluation Protocol. For linear classification, we228

train the linear classifier for 100 epochs with SGD229

optimizer (using a learning rate of base-lr × Batch-230

Size / 256 with a base-lr of 0.2) and using Multi-231

StepLR scheduler with γ = 0.1 dropping at the last232

40 and 20 epochs. While for semi-supervised clas-233

sification, we fine-tune our pre-trained INTL back-234

bone and train the linear classifier for 20 epochs.235

We use SGD optimizer (base-lr for backbone is236

0.006 and for classifier is 0.2) and cosine decay237

schedule. The batch size and weight decay for both238

are 256 and 0 respectively.239

Multi-Crop and Exponential Moving Average.240

Note that multi-crop [1] and exponential moving241

average (EMA) [3, 10] are commonly acknowledged strategies that can improve the performance242

of SSL methods. e.g., BYOL achieves a high Top-1 accuracy of 74.3% by applying EMA and243

SwAV achieves 75.3% with multi-crop. We thus also experiment with INTL that uses these two244

strategies. We propose an efficient multi-crops variety that crops each image to 6 views with the245

size of 2× 224 + 192 + 160 + 128 + 96 (details of parameters are shown in Table B). Meanwhile,246

12



EMA we used is asymmetric as MoCo that reduces memory overhead and accelerates training speed.247

We set the base coefficient for momentum updating to 0.996 for all-epoch training. The momentum248

coefficient follows a cosine increasing schedule with final value of 1.0 as BYOL [10]. Note that for249

linear classification, the base-lr is 0.4 and for semi-supervised classification, the base-lr for backbone250

is 0.004. The other settings are the same as the baseline. Benefiting from these two strategies, our251

INTL achieves a Top-1 accuracy of 75.2% with only 200-epoch pre-training. For long-term training252

of 800 epochs, our INTL achieves a Top-1 accuracy of 76.6% which exceeds the performance of the253

supervised baseline [2] and other SSL methods. We also provide the results using various epochs in254

Table D, from which we observe that INTL improves the performance steadily as the training epoch255

increases.256

E.3 Experiments for Small and Medium Size Datasets257

In section 5.1 of the paper, we provide the classification results of INTL pre-training on small and258

medium size datasets such as CIFAR-10, CIFAR-100 and ImageNet-100. Here, We describe the259

details of implementation and training protocol for the experiments on these datasets as follows. For260

fairness, most of hyper-parameters we used such as batch size, projection settings, data augmentation261

and so on are consistent with solo-learn [6]. For these datasets, we use the basic INTL shown in262

Algorithm I(a).263

Experimental setup on ImageNet-100. Details of implementation and training protocol for INTL264

pre-training on ImageNet-100 are shown in Table C. The image transformation and evaluation265

protocol are the same as ones on ImageNet.266

Table E: Parameters used for INTL pre-training
on CIFAR-10/100.

Parameter Value
max epoch 1000
backbone ResNet-18
projection layers 3
projection hidden dimension 2048
projection output dimension 2048
optimizer SGD
SGD momentum 0.9
learning rate 0.3
learning rate warm-up 2 epochs
learning rate schedule cosine decay
weight decay 1e-4
batch size 256

Experimental setup on CIFAR-10/100. Then267

Details of implementation and training protocol for268

INTL pre-training on CIFAR-10/100 are shown in269

Table E. The details of image transformation are270

shown in Table F. For evaluation, we use the same271

setup of protocol as in W-MSE [8]: training the272

linear classifier for 500 epochs using the Adam op-273

timizer and the labeled training set of each specific274

dataset, without data augmentation; the learning275

rate is exponentially decayed from 10−2 to 10−6276

and the weight decay is 5× 10−6.277

In addition, we also evaluate the accuracy of a k-278

nearest neighbors classifier (k-NN, k = 5) in these279

experiments. For other methods, we evaluate the280

models provided by [6] to obtain k-NN accuracy281

which does not require additional parameters and training.282

E.4 Experiments for Transfer Learning283

In this part, we describe the training details of experiments for transfer learning. Our implementation284

is based on the released codebase of MoCo [11] 2 for transfer learning to object detection and285

instance segmentation tasks. We use the default hyper-parameter configurations from the training286

scripts provided by the codebase for INTL, using our 200-epoch and 800-epoch pre-trained model on287

ImageNet.288

For the experiments of COCO detection and COCO instance segmentation, we use Mask R-CNN (1×289

schedule) fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. The Mask R-CNN model290

is with the C4-backbone. Our INTL is performed with 3 random seeds, with mean and standard291

deviation reported.292

E.5 Computational Overhead293

In Table G, we report compute and GPU memory requirements based on our implementation for294

different settings. We train each model with 2 A100-PCIE-40GB GPUs, using mixed precision295

2https://github.com/facebookresearch/moco/tree/main/detection under the CC-BY-NC 4.0 license.

13



Table F: Parameters used for image augmentations on CIFAR-10/100.

Parameter T1 T2

crop size 32× 32 32× 32
maximum scale of crops 1.0 1.0
minimum scale of crops 0.08 0.08
brightness 0.4 0.4
contrast 0.4 0.4
saturation 0.2 0.2
hue 0.1 0.1
color jitter prob 0.8 0.8
horizontal flip prob 0.5 0.5
gaussian prob 0 0
solarization prob 0.0 0.2

and py-torch optimized version of synchronized batch-normalization layers. We report results with296

ResNet-50 and a batch size of 256.297

Table G: Computational cost. We report time and GPU memory requirements of our implementation
for INTL trained per epoch.

Method EMA Multi-Crop time / 1 epoch peak memory / GPU

INTL

# # 29min11 16.0 G
! # 24min46 11.8 G
# ! 57min33 25.9 G
! ! 50min52 21.2 G

F Licenses of Datasets298

ImageNet [7] is subject to the ImageNet terms of access: [5]299

COCO [17]. The annotations are under the Creative Commons Attribution 4.0 License. The images300

are subject to the Flickr terms of use [9].301

References302

[1] Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of303

visual features by contrasting cluster assignments. In: NeurIPS (2020)304

[2] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning305

of visual representations. In: ICML (2020)306

[3] Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive307

learning. arXiv preprint arXiv:2003.04297 (2020)308

[4] Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR (2021)309

[5] contributors, I.: Imagenet terms of access (2020), https://image-net.org/download310

[6] da Costa, V.G.T., Fini, E., Nabi, M., Sebe, N., Ricci, E.: solo-learn: A library of self-supervised311

methods for visual representation learning. Journal of Machine Learning Research 23(56), 1–6312

(2022), http://jmlr.org/papers/v23/21-1155.html313

[7] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale314

Hierarchical Image Database. In: CVPR (2009)315

[8] Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised representation316

learning. In: ICML (2021)317

[9] Flickr, I.: Flickr terms and conditions of use (2020), http://aiweb.techfak.318

uni-bielefeld.de/content/bworld-robot-control-software/319

14

https: //image-net.org/download
http://jmlr.org/papers/v23/21-1155.html
http:// aiweb.techfak.uni-bielefeld.de/content/ bworld-robot-control-software/
http:// aiweb.techfak.uni-bielefeld.de/content/ bworld-robot-control-software/
http:// aiweb.techfak.uni-bielefeld.de/content/ bworld-robot-control-software/


[10] Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,320

Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., kavukcuoglu, k., Munos, R., Valko, M.:321

Bootstrap your own latent - a new approach to self-supervised learning. In: NeuraIPS (2020)322

[11] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual323

representation learning. In: CVPR (2020)324

[12] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR325

(2016)326

[13] Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., Zhao, H.: On feature decorrelation in self-327

supervised learning. In: ICCV (2021)328

[14] Huang, L., Zhou, Y., Zhu, F., Liu, L., Shao, L.: Iterative normalization: Beyond standardization329

towards efficient whitening. In: CVPR (2019)330

[15] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980331

(2014)332

[16] Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep. (2009)333

[17] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, L.:334

Microsoft coco: Common objects in context. In: ECCV (2014)335

[18] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,336

Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning337

library. Advances in neural information processing systems 32 (2019)338

[19] Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: European conference on339

computer vision (2020)340

[20] Weng, X., Huang, L., Zhao, L., Anwer, R.M., Khan, S., Khan, F.: An investigation into341

whitening loss for self-supervised learning. In: NeurIPS (2022)342

15


	Proofs of Proposition
	Proof of Proposition.1
	Proof of Proposition.2

	Proofs of Theorem
	Proof of Theorem 1.
	Proof of Theorem 2.
	Convexity and Concavity of hT(x)
	Optimal Solution for the Lagrange Function


	Algorithm of INTL
	Analytical Experiments
	Experiments on Synthetic 2D dataset
	Details of Experimental Setups
	Results of IterNorm for SSL

	Experiments on CIFAR-10
	Numerical Instability of Spectral Transformation Using Power Functions

	Details of Experiments on Standard SSL Benchmark
	Datasets
	Experiment on ImageNet
	Experiments for Small and Medium Size Datasets
	Experiments for Transfer Learning
	Computational Overhead

	Licenses of Datasets

