Supplementary Materials: Modulate Your Spectrum
in Self-Supervised Learning

Anonymous Author(s)
Affiliation
Address

email

1 A Proofs of Proposition

2 A.1 Proof of Proposition.1

s Proposition 1. Given z € (0,1), VI' € N we have hr(z) € (0,1) and hip(z) > 0.
4 Proof. We know the iterative function fr(x) satisfies

frr1(x) = >

1
S fe(@) = 5efi (@), k> 0; fo(z) =1 (1
s We define hp(z) = 2 fr?(x). When z = 1, it is easy to verify VT € N, hp(1) = fr(1) = 1. We
6 first prove fr(z) > 0 and h/-(z) > 0 by mathematical induction.

7 (1) When T = 0, we have fo(z) =1 > 0, and ho(z) =z, hi(z) =1 > 0.

8 (2) Assuming it holds when T' = k, we have fi(xz) > 0 and h}(xz) > 0. Based on hj(z) =
o fr(@)[fr(z)+ 2xf](x)], we have:

fr(x) + 22 f(x) > 0 2

10 Since hy(1) = 1, h}.(z) > 0 and hy(x) is continuous, we have Vo € (0, 1), hx(z) < 1. We thus can
11 obtain:

i () = 3 o) — (2]

1

= S @) = (@)

>0 3)
Furthermore, 1,1 (2) = fisa (r)[fira(2) + 2 ff, ()], where
fra1(z) + 22 fiy s (2)
=2 fule) + 20 (w)] — S f(a) — 307 () i)
=2 1fule) + 20 ()] — S fRa) i) + 207)]
=201~ 2 @) el) + 20)]
L y(@)][felw) + 20 (2]

3
_5[

12 Sowehave hj, (2) = 3 fe1(2)[1 — he(2)][fr(x) + 22 f; ()] > 0. Combining the result in Eqn. [3|

13 we thus have it holds when T = k + 1.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

21

22

23

24

25

26

27

28

29
30

31

32

33

34
35
36

As aresult, we have VI' € N, fp(z) > 0 and h/.(z) > 0, when x € (0, 1).

Since hr(1) = 1 and hp(z) is continuous, we have hr(x) < 1. Besides, we have hp(z) =
xfr*(x) > 0, then hr(x) € (0,1). O

A.2 Proof of Proposition.2

Proposition 2. Given z € (0,1), VT € N, we have hp11(x) > hr(x).

Proof. According to proof of Proposition.1, we have that when z € (0,1) and VT € N, fr(xz) > 0
and ho(x) = zfr(x) € (0,1).

Therefore, we have hyi1(z) > hr(z) <= fri1(z) > fr(z). Itis obvious that

fia(@) = fule) = S (o) = 3aA@) = fula)
= (@) — 5o fi@)

= @)1~ 2]

= k(@)1 = (@)

>0
So given z € (0,1), VT € N, we have hpy1(z) > hr(z). O
B Proofs of Theorem

B.1 Proof of Theorem 1.

Theorem 1. Define one-variable iterative function fr(x), satisfying
Ferr(@) = 2 fula) = Lafi(@),k = 0; fola) = 1.
The mapping function of IterNorm is

g()\) = fT(trE\E))/ V t (E)’

so thatV\; € N(Z), IterNorm maps it to = %fTQ(trA(iE)).

Proof. Given ¥ = UAUT, A = diag()\1,...,Aq), U = [uy,...,uy]. Following the calculation
steps of IterNorm, we have

Ai

Sy =3/tr(3) = ;) 4)
Define
P | by .
O = Z‘; OO L (5)

d
Based on 7 = 3" g(\;)u;u; T, if we can prove ®. = &1, we will have
i=1

Define P/, = /tr(X)®7., then we have &}, = & <= P/, = Pp. We can prove P/, = Py by
mathematical induction.
(1) When T = 0,

37

38

39

40

41

42

43

44

45

46

47
48

foli7s) = LPy =Py =1
(2) When T' > 1, assume that P/._, = Pp_1, thus

3 1
Pp = Pr - §P%712N

3
= 7P/T71

1
5 - -(Pr_1)°SN

2

According to the definition of P/,

d

Ai
T-1= Zfol(tT(E))uiuiT

i=1

Because Vi, u;Tu; = 1and Vi # j,u;7u; =0,

P%’—lz:N :(IT—1)3EN

d A
- (Zle(tr ¥))

d
by T
z::fT 1 T(E) u;u;
Therefore, we have
3 1
Pr = 5 /T 1 5(/T—1)BEN
d
3 i i
= §ZfT l(tT'(E uluz ZfT 1 T(E)uzuzT
i=1
3)\i 1 3 >\z)\’i
- ; {2fT_1(tr(E)) RETE A emesIRes) } Hithi
Note
i 3 Y 1 .4 A i
fT(t?"(Z)) QfTil(t’l"(Z)) QfT—l(E))tr(Z)
So that
d A
_ ? T /
PT = ZfT(tr(Z))uluZ = PT

‘We obtain that

>

N
—_
-

d
1 : B
R Mo o v T

Thus, the mapping function of IterNorm is g(A) = fT(ﬁ) /+/tr(X2). The whitened output is
7 _ _ 1 A T . . - -
Z =dr7Z,. = Ui\/@fi’”(itr(z) YU* Z.. The covariance matrix of Z is

T _ Ai 2, i T
)Y _Ztr(Z)fT gy

=1

fr¥(

1
m - Utr(E)

So that V\; € A(Z), IterNorm maps it to N = tr)(\T) fre(tr?%l)) which is a special instance of
Spectral Transformation. O

49

50
51

52

53
54

55
56
57
58
59
60

61
62

63

64
65

66

67

68
69

70

B.2 Proof of Theorem 2.

Theorem 2. Let x € [0,1]%, VT € N, INTL(x) shown in Eqn. E] is a strictly convex function.

x* = [%, cee %]T is the unique minimum point as well as the optimal solution to INT L(x).

Proof. The INTL can be viewed as the following optimization problem:

d
min INTL(Z) = ;(1 - (332)55)° (6)

where Z = Fy(-) and Z = Iter Norm(Z). Eqn. @can be viewed as a optimization problem over
to encourage the trace of Z to be d.

Let (x1, - ,24) = @(Z), where x; = \;/tr(2) as defined in the submitted paper. If Z € RIX™,
¢(-) will be surjective from R™™ to Dy = {x € [0,1]% : &1 + - -+ + 24 = 1}. When the range of
Fy(+) is wide enough, for example, Fy(-) is surjective from 6 € © to Z € R¥*™, Here we can view
Fy(+) as a function over 0, since the input is given and fixed. Then @ (Fy(-)) is surjective from 6 € ©
to x € Dy, meaning that if we find the optimal solution x*, we are able to get the corresponding
0* € O, subject to x* = ¢(Fp~(-)). On the contrary, for any 6 € O, we can get x = ©(Fy(-)) € Dx.

Therefore, the optimization expression for minimizing INTL can be written as follows which have
the same range and optimal value as Eqn. [6}

min INTL(x) = i (i[l - hﬂ%)]ﬂi)
(PrnTL) st d ‘)

We denote the Lagrange function of P;y7y, is that
d d
L(x;o,) = INTL(x) + Zai(—xi) +u <Z x; — 1>
i=1 i=1

B.2.1 Convexity and Concavity of i (x)

Before calculating extreme points of Py, we first consider the convexity and concavity of hp(z)
which is critical to proof.

When T = 0, we have ho(x) = x, so hj(z) = 0.
(1) When T' = 1, we have hy(2) = fi*(2) = 2 — 222 + L2, s0 0 (z) = 3(z — 2) < 0.

(2) Assume that when 7' = k, h{/(z) < 0 holds. We can easily get following propositions by
derivation:

3 1 3
Flosle) = 2A@) — L@ - e) ®
11 3 11 ! 3 1 !
k() = 57k () = 3fi (x) fi(x) — §$f13(x) i (x) = 3afi(@)[fi(2)]? ©)
w1 (2) = 4fn11(2) fior (@) + 22 fi g (0] + 22 i1 (2) il (2) (10)
For convenience in our calculation, let a = fx(z),b = fi.(x),c = f{(x), and h = hy(z) = za®.

We split Eqn. [I0]into three parts and take Eqn. [§]and [9into calculation:

41 (@) (2) = 4G — 5oh) (5 — 50 = Sbh)

2
=a(3 — h)(3b — a® — 3bh)
3 1 3
2z[fr 4 (2))° = Qx(§ - §a3 - §bh)2
1
= 5m(3b — a® — 3bh)?
" 3 1 3 2 2
22 frq1 () frpr () = 2(§a — Eah)[gc(l — h) — 3a°b — 3zab”|

= %am(?u — h)[3¢(1 — h) — 6ab — 6xab?]

Considering to construct the form of h}/(z) = 2(2ab + wac + xb*), we first calculate that

Afri1 (@) fr 40 (2) + 22 fra (2) fil11 ()

1
:5(3 — h)[6ab — 2a* — 6abh + 3zac(1 — h) — 6abh — 6xb>h]

1
25(3 — h)[3zac(1 — h) + 6ab(1 — h) + 3zb*(1 — h)
— 32b%(1 — h) — 2a* — 6abh — 6xb>h]

3

=,B-m0- R () — = (3 — h)(3xb®h + 3xb* + 2a* + 6abh)

!
2
Then we calculate the left part
2x(f1 41 (2)]? :%x(?)b — a® — 3bh)?
Z%(9$b2 + za® + 92b°h? — 62a3b — 18xb%h + 62a>bh)
:%(9xb2 + a*h + 9zb*h* — 6abh — 18xb*h + 6abh?)

For convenience, let

1
— Z(3 = h)(3zb%h + 3xb% + 2a* + 6abh
2

S =
:%(3351)%2 + 32b%h + 2a%h + Gabh? — 9zbh — 9zb* — 6a* — 18abh)
Then we have
22 (ff 1 (x))? + S :%(3a4h + 122b°h? — 24abh — 24xb*h 4 12abh® — 6a*)
:%(h — 2)(a’ + dabh + 4zb%h)
:g(h — 2)(a* + zab + d22a%b?)
:g(h —2)(a* + 2zab)*
= lhe(@) — 2 @)

71 Here we obtain b, (x) = 2[3 — hi(2)][1 — he(2)]h(z) + 3[he(x) — 2][h},(x)]*>. Based on
72 Lemma.l, we know h(x) € (0,1), so hy,,(x) < 0. Therefore, when x € (0, 1), then VT" € N,
73 hp(z) = zfr?(z) is a strictly concave function that satisfies h/x(z) < 0 and hfj(z) = 0.

74

75
76

7
78

79

80

81

82

83

84
85
86

B.2.2 Optimal Solution for the Lagrange Function

Based on Section[B.2.1) when 2 € (0,1), then VI' € N, hy(2) = 2 fr*(z) is a strictly concave
function that satisfies h7.(x) < 0. So 1 — hp(z) is a strictly convex function.

We discuss g;(x1, - ,xq) = _Zd:[l — hr(x;)]u; first. Denote that the Hessen Matrix of
gj(z1,---,xq) about x is =
*Uilh%(ﬁ)
VQQJ‘ =
_“?dh%(l"d)
and the Hessen Matrix of gJQ- (z1,-- ,xq) about x is

V2(g7) = V(29;Vg;) = 29;V?g; + 2(Vg;)(Vg;)"

We denote that all eigenvalues of (Vg;)(Vg;)T are (Vg;)T(Vyg;),0,---,0. All eigenvalues are
non-negtive, denoting that 2(Vg;)(Vg;)” is semi-positive.
Now we denote that the Hessen Matrix of INT'L(x) is

d
VZINTL(x) =Y V*(g?)
j=1

d d
=2 (Vg;))(Vg)" +2Y_g;V?;
Jj=1 j=1
where
d
- U?Jl%(fﬁ)gj
d j=1
2% g;V3g; =2
j=1 d
- ujdhljl’(xd)gj
j=1
d
We denote that h//.(x;) < 0, g; > 0, and u;; are not all zeros for a certain ¢ (since Zl u?z =1).
J:

d d
Therefore, — Y u3;h7(x;)g; > 0and 2 Y g;V?g; must be a positive matrix.
j=1 j=1
d
Since 2 Y (Vg;)(Vg;)? is semi-positive, then we can denote that VZINT'L is positive.
j=1
Therefore, I NT L(x) is strictly convex about x on (0, 1)%.
And for INTL(x) is continuous, the minimum point on [0, 1]¢ is the same as that on (0, 1)¢.

While the constraints of (P; ;) form a convex set, (P; yrr,) must be a convex programming, which
means that the KKT point of (Pryy,) is its unique extreme point, and the global minimum point in
the same time.

We denote that the KKT conditions of (Pry7y,) is that

35’:07 i=1,---.,d
ai(—:vi):Q i:17~-~ ,d
a; >0, i=1,-.d
d

Zl‘i—lzo

i=1

87
88
89

90

91
92
93
94

95

96

97
98

99

100

101
102
103

We can identify one of the solutions to the KKT conditions is that

It is easy to identify the last three equations in KKT conditions. As for the first equation, for all
t=1,---,d, we have

L
377%/ ZZ [hp(2s) — Nufud, — i + p
83)25 1=1 j=1
1 d d
=207 (5) D (5 —1uﬂuﬂ+u
i=1 j=1
1L 1 4
—QhT(d)Z (g)—l] (Zu?i>ut+ﬂ
j=1 i=1
1 d
= Qh/T(a) Z[hT(d) — 1Juf, + p

<.
—

d
=2 (hr() — 1) (Yo |+

= W)l (5) ~ 1] 4 4
-0

TR é]T is the optimal solution to (P; 7y,). INTL promotes the equality of all
eigenvalues in the optimization process, which provides a theoretical guarantee to avoid dimensional
collapse. O

Therefore, x* = [1

C Algorithm of INTL

The description of our paper is based on batch whitening (BW) [8l [13]], and it can extend similarly for
channel whitening (CW) [20], where the covariance matrix of Z is calculated as X = éZcTZC. We
implement INTL based on CW, considering CW is more effective when the batch size m is relatively
small.

Given the centralized embedding of two positive pairs Z" := (I — 11.17Z®) Z(") € R™™ and

T
v € {1,2}, we first calculate the covariance matrix »nw) =1 Z(U) ng) and then use IterNorm to
obtain the approximately whitened output Zo) = [i(v) zgff)] The loss functions used in our
method are

A(l) A(2)
ZH| O T3 (Q)H 13 (11)

INTL(Z™) = ;(1 - ézgw 2{"))2 (12)
2
L=Lysg+BY INTL(Z™), (13)
v=1

where L5k indicates MSE of L, —normalized vectors which minimizes the distance between VAL
and Z(®). Here we simplify the expression of INTL in Eqn. @, because off-diagonal elements of X5
does not need to be calculated. (3 is the trade-off between L5 and INTL. We empirically set that

f: backbone + projection

bs: batch size # f: backbone + projection
aug: random augmentation # g: momentum backcone + momentum projection
bs: batch size
for x in loader: # load a minibatch x with m samples # multicrop: crop each image to 6 views
z1, z2 = f(aug(x)), f(aug(x)) # embedding 2 x 224 + 192 + 160 + 128 + 96
t1, t2 = IterNorm(z1), IterNorm(z2) # m: momentum increases from 0.996 to 1.9 as cosine
trade_off between MSE and INTL Loss # Function IterNorm, INTL and norm_mse are totally
trade_off = (log2(bs) - 3) * 0.01 the same as Algorithm 1
loss = norm_mse(tl, t2) + trade_off * (INTL(tl) + INTL(t2))
return loss for x in loader: # load a minibatch x with m samples
s = multicrop(x) # s = [x1, x2, x3, x4, x5, x6]
def IterNorm(x, iters=4): # Iterative Normalization update_momentum_encoder(m)
M, D = x.size() # x: m * d
X = X - x.mean(dim=1).reshape(M, 1) tk = IterNorm(g(s[@])) # use x1 to be the target
sigma = (x @ x.T) / (D - 1) # covariance matrix # use x2 ~ x6 to match the target
trace = sigma.diagonal().sum() tq = [IterNorm(f(s[i])) for i in range(l,len(s))]
sigma_norm = sigma / trace # normalize sigma
P = eye(M) # identity matrix: m * m # trade_off between MSE and INTL Loss
for _ in range(iters): trade_off = (log2(bs) - 3) * @.01
P =1/2 * (3 * P - matrix_power(P, 3) @ sigma_norm)
return P / trace.sqrt() @ x for i in range(len(tq)):
loss += norm_mse(tk, tq[i]) + trade_off * INTL(tq[i])
def INTL(x): # Iterative Normalization with Trace Loss loss /= len(tq)
_, D = x.size() return loss
d = torch.pow(x, 2).sum(axis = 1) / (D - 1)
tl = d.add_(-1).pow_(2).sum() @torch.no_grad()
return tl def update_momentum_encoder(m): # Momentum update
for param_f, param_g in zip(f.parameters(),
def norm_mse(x0, x1): g.parameters()):
X0 = normalize(x®) # L2-normalize param_g.data = param_g.data * m +
x1 = normalize(x1) # L2-normalize param_f.data * (1. - m)

return 2 - 2 * (x@ * x1).sum(dim=-1).mean()

104
105

106
107
108
109

110

111

112
113
114

115

116
17
118
119
120
121

122
123

(a) (b)
Figure I: Algorithm of INTL, PyTorch-style Pseudocode. (a) shows training INTL with 2 views
generated from each sample. (b) shows training INTL with multi-crop and exponential moving
average.

B = 0.01 % (log,bs — 3) where bs means the batch size, and the iteration number T = 4 for all of
our experiments.

For clarity, we describe the algorithm of INTL in PyTorch-style pseudocode, shown in Figure[I(a).
Our INTL can also work well by combining with multi-crop [1]] and exponential moving average
(EMA) [3[10] (see Section [E). Figure[[(b) shows the algorithm of our INTL combining with multi-
crop and EMA.

D Analytical Experiments

D.1 Experiments on Synthetic 2D dataset

In section 3.2 of the submitted paper, we conduct experiments on the 2D dataset and report the results
on with varying p. Here, we provide the details of the experimental setup, and further show the results
of IterNorm [14]] for SSL in this 2D dataset.

D.1.1 Details of Experimental Setups

We synthesize a two-dimensional dataset with isotropic Gaussian blobs containing 512 sample points
as shown in Figure[[T(a). We construct a toy Siamese network (a simple three-layer neural network,
including three fully connected (FC) layers, with BN and ReLU appended to the first two) as the
encoder for this dataset. The dimensions of the network are (2 — 16) — (16 — 16) — (16 — 2) that
each bracket represents the input and output dimensions of each FC layer respectively. We then use
MSE as the loss function and do not normalize the features before calculating the loss function.

We train the model by randomly shuffling the data into mini-batches, and set the batch size to 32. We
use the stochastic gradient descent (SGD) algorithm with a learning rate of 0.1. In terms of the data

124
125
126

127

128

129
130
131
132
133
134
135

136

137
138
139
140

2D dataset distribution Initial network output

-1.0 -0.5 0.0 0.5 1.0

(b)

Figure II: Visualization of our synthetic 2D dataset. We show (a) the distribution of our 2D dataset;
(b) the initial output of the toy Siamese network.

transformation, we only apply Gaussian noise as data augmentation and generate 2 views from each
sample point in mini-batches. We visualize the output of the initialized network without training in
Figure[l{b). All runs are performed under the same random seed.

41~
1TV ML AT AN TV
o 0 © 2{] 1 1l
= = 1 Ly _ 1l
z = o] I 1 T=5 1]
5 g 1 1 — T=7 1
201 20] — T u
o o]
G Y
o 5] A et
£ o0 _4 VAAA <
— -2 — 2%\ A WAy JEg D24y
¢ 1 v 4
—6 y N
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
(@ (b)

Figure III: Investigate the spectrum of transformed output Z (solid lines) and the corresponding
embedding Z (dashed lines) using IterNorm for SSL with different iteration numbers 7". We show
the evolution of eigenvalues during training on the toy 2D dataset (Note that there are only two
eigenvalues and we ignore the larger one because it always remains a high value during training).
In particular, (a) shows the results with a well-conditioned initial spectrum while (b) with a ill-
conditioned one.

D.1.2 Results of IterNorm for SSL

To figure out the failure of IterNorm [14] for SSL, we further conduct experiments to investigate the
spectrum of the whitened output Z using IterNorm on this synthetic 2D dataset for intuitive analyses.
The output dimension of the toy model is 2, so there are only two eigenvalues of the covariance
matrix of the output. We then track alterations of the two eigenvalues during training. IterNorm can
obtain an idealized whitened output with a small iteration number (e.g.,T=5, as recommend in [14])
and avoid collapse, if the embedding Z has a well-conditioned spectrum' | (Figure [[Il{a)). However, if
the embedding Z has a ill-conditioned spectrum as shown in Figure [[T[(b), IterNorm fails to pull the
small eigenvalue to approach 1 which results in dimensional collapse.

D.2 Experiments on CIFAR-10

In section 3 and 4 of the submitted paper, we conduct several experiments on CIFAR-10 to illustrate
our analysis. We provide a brief description of the setup in the caption of Figure 1 and 2 of the
submitted paper. Here, we describe the details of these experiments. All experiments are uniformly
based on the following training settings, unless otherwise stated in the figures of the submitted paper.

'A well-conditioned spectrum means that the condition number ¢ = i‘—}i is small. Note \; is the maximum
eigenvalue and)4 is the minimum one.

141
142
143
144
145
146
147

148
149
150
151
152

153

154
155

157
158
159

160
161
162
163
164
165

166
167
168
169
170
171
172
173

174
175

-5.0

-7.5

Lgofc™t

-10.0

-12.5

-15.0

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Iteration Iteration

(@) (b)

Figure IV: Investigate numerical instability of spectral transformation using power functions for SSL.
The numbers in the legend represent embedding dimensions and the batch size is fixed to 512. (a)
trains models on ImageNet with ResNet-50; (b) trains models on CIFAR-10 with ResNet-18; The
models are trained for 6000 iterations, and we track the inverse of condition number (¢! = :\\—‘:) in
logarithmic scale with base 10 to judge whether the the covariance matrix is ill-conditioned. The
models that were interrupted before the end of the training indicate training crash caused by numerical
instability.

Training Settings. We use the ResNet-18 as the encoder (the dimension of encoding is 512.), a
two layer MLP with ReLU and BN appended as the projector (the dimension of the hidden layer and
embedding are 1024 and 128 respectively). The model is trained on CIFAR-10 with a batch size of
256, using Adam optimizer [15] with a learning rate of 3 x 103, and learning rate warm-up for the
first 500 iterations and a 0.2 learning rate drop at the last 50 and 25 epochs. The weight decay is set
as 1075, All transformations are performed with 2 positives extracted per image with standard data
argumentation (see Section @ for details). We use the same evaluation protocol as in W-MSE [8]].

Method Settings. We use MSE of L,—normalized vectors to be the loss function in all experiments.
Specifically, in Figure 3 of the paper for the experiments of training the models with INTL, we simply
set the trade-off parameter /3 between MSE and INTL as follows: 8 = 0.05 for T = 5, 8 = 0.5
forT = 3 and $ = 5 for T' = 1 without fine-tuning. The details of INTL algorithm please refer to
Section

D.3 Numerical Instability of Spectral Transformation Using Power Functions

One problem in using spectral transformation g(A\) = A~P (pis around 0.5) is the numerical instability,
when calculating eigenvalues A and eigenvectors U using eigen-decomposition if the covariance
matrix is ill-conditioned [[18]. Here, we experimentally confirm the existence of this phenomenon
during self-supervised pre-training. It is worth noting that when we set p to around 0.5, similar
phenomena can be observed. We thus only display the results of the special instance p = 0.5, which
is the so-called hard whitening.

To confirm that this phenomenon could occur on different scenarios, we conduct experiments on
ImageNet with ResNet-50, as well as on CIFAR-10 with ResNet-18. The batch size m is fixed to 512,
and we can control the shape of the covariance matrix by adjusting the embedding dimension d (The
shape of the covariance matrix is d x d). The models are trained for 6000 iterations, and we track the
inverse of condition number (¢~ = i—‘f) to judge whether the the covariance matrix is ill-conditioned.
The experimental results are shown in Figure [[V]and our main observations are as follows:

(a) The training will crash, when the embedding dimension is greater than the batch size (e.g., d =
1024 or 2048). In this case, the covariance matrix must be singular theoretically and the calculation
of inverse of the eigenvalue will cause numerical errors. However,it is likely that the minimum
eigenvalue of the covariance matrix is a very small non-zero value in practice, due to precision
rounding or using an extra small constant. This situation may lead to the covariance matrix being
ill-conditioned from the beginning of training. As shown in both Figure [V[a) and (b), when d =
1024 or 2048, the inverse of condition number is around 10712 ~ 10719, which demonstrates that
the covariance matrix is almost ill-conditioned from the start and the training quickly breaks down.

(b) The training will probably crash, when the embedding dimension is equal to the batch size
(d = 512). In this case, it is difficult to determine whether the covariance matrix is singular. But from

10

176
177
178

179
180
181
182
183
184

186
187
188
189
190
191
192

193

194
195
196
197

198

199
200

201

202
203

204
205

206

207
208

209
210
211

212
213
214
215
216
217
218
219
220
221

222
223
224

the results in Figure [V} we observe that the covariance matrix is close to be ill-conditioned when
d = 512. The inverse of condition number tends to decline during training, ultimately leading to the
crash of the training.

(c) There is possibility that the training will crash, when the embedding dimension is less then the
batch size. In this case, we observe that the covariance matrix is almost always well-conditioned
during the initial training stage. However, the well-condition does not seem to be always maintained
during training. We observe that the well-condition will suddenly be broken in a few iterations and
the models will collapse for d = 64 or d = 128. We indeed observe that the training does not crash
when d = 256. This phenomenon was also mentioned slightly in [§], indicating that the training can
be more stable by setting m = 2d.

We show that numerical instability indeed exists when using hard whitening [8], from the above
analysis. Although one can alleviate this numerical instability by using an empirical setting with
m = 2d, we observe training crashes caused by numerical instability can still occur at any stage of
training through our experiments (we run 10 random seeds by setting m = 2d with longer training
iterations, and the numerical problems may occur 3 — 4 times in the early, mid, or even towards
the end of training.). Even though one can continue the training by using the saved checkpoints if
training crashes in practice, it greatly limits the practical application in long-term pre-training.

E Details of Experiments on Standard SSL. Benchmark

In this section, we provide the details of implementation and training protocol for the experiments
on large-scale ImageNet [[7], medium-scale ImageNet-100 [19] and small-scale CIFAR-10/100 [16]]
classification as well as transfer learning to COCO [17] object detection and instance segmentation.
We also provide computational overhead of INTL pre-training on ImageNet.

E.1 Datasets

* CIFAR-10 and CIFAR-100 [16], two small-scale datasets composed of 32 x 32 images with 10 and
100 classes, respectively.

* ImageNet-100 [19]], a random 100-class subset of ImageNet [7]].

* ImageNet [7]], the well-known largescale dataset with about 1.3M training images and 50K test
images, spanning over 1000 classes.

* COCO2017 [I17]], a large-scale object detection, segmentation, and captioning dataset with 330K
images containing 1.5 million object instances.

E.2 Experiment on ImageNet
In section 5.1 of the paper, we compare our INTL to the state-of-the-art SSL methods on large-scale
ImageNet classification. Here, we describe the training details of these experiments.

Backbone and Projection. We use the ResNet-50 [[12] as the backbone and the output dimension
is 2048. We use a 3-layers MLP as the projection: two hidden layers with BN and ReLU applied to it
and a linear layer as output. The dimensions of the hidden layer and embedding are all 8192.

Image Transformation Details. In image trans- Table A: Parameters used for image augmenta-

formation, We use the same augmentation param- tions on ImageNet and ImageNet-100.
eters as BYOL [10]. Each input image is trans- s
formed twice to produce the two distorted views. _Parameter Ty 1
The image augmentation pipeline consists of the Crop size 224 x 224 224 x 224
following transformations: random cropping, resiz- ~ Maximum scale of crops 1.0 1.0
ing to 224 x 224, horizontal flipping, color jittering, trilimhn:;:lsscale of crops 00(218 %048
converting to grayscale, Gaussian blurring, and so- co ftras ¢ 04 04
larization. The details of parameters are shownin oo 02 02
Table[Al hue 0.1 0.1
color jitter prob 0.8 0.8
Optimizer and Learning Rate Schedule. We horizontal flip prob 0.5 0.5
apply the SGD optimizer, using a learning rate of ~ gaussian prob 1.0 0.1
base-Ir x BatchSize / 256 and cosine decay schedule. _solarization prob 0.0 0.2

11

225
226
227

228
229
230
231
232
233
234
235
236
237
238

240
241
242
243
244
245
246

Table B: Parameters used for multi-crop of INTL on ImageNet.

Parameter Ty Ts T3 Ty Ts Ts
crop size 224 x 224 224 x 224 192 x 192 160 x 160 128 x 128 96 x 96
maximum scale of crops 1.0 1.0 0.857 0.714 0.571 0.429
minimum scale of crops 0.2 0.2 0.171 0.143 0.114 0.086
brightness 0.4 0.4 0.4 0.4 0.4 0.4
contrast 0.4 0.4 0.4 0.4 0.4 0.4
saturation 0.2 0.2 0.2 0.2 0.2 0.2
hue 0.1 0.1 0.1 0.1 0.1 0.1
color jitter prob 0.8 0.8 0.8 0.8 0.8 0.8
horizontal flip prob 0.5 0.5 0.5 0.5 0.5 0.5
gaussian prob 0.5 0.5 0.5 0.5 0.5 0.5
solarization prob 0.1 0.1 0.1 0.1 0.1 0.1

Table D: Comparisons on ImageNet linear classification with various training epochs. All are based
on ResNet-50 backbone. The table is mostly inherited from [4].

Method Bs EMA Multi-Crop 100eps 200eps 400eps 800 eps
SimCLR 4096 | X X 66.5 68.3 69.8 70.4
MoCo v2 256 | v X 67.4 69.9 71.0 722
BYOL 4096 | vV X 66.5 70.6 73.2 743
4096 | X X 66.5 69.1 70.7 71.8
SWAV 4096 | X v 72.1 73.9 74.6 75.3
256 | X v - 72.7 74.3 -
SimSiam 256 | X X 68.1 70.0 70.8 71.3
W-MSE 4096 | X v 69.4 - 72.6 -
CW-RGP 512 | X v 69.7 71.0 - -
512 | X X 69.5 71.1 72.4 73.1
INTL (ours) 256 | v/ X 69.2 71.5 - 74.3
256 | X v 72.4 743 74.9 -
256 | v v 73.5 75.2 76.1 76.6

The base-Ir for 100-epoch pre-training is 0.5, for 200(400)-epoch is 0.4 and for 800-epoch is 0.3. The
weight decay is 10~° and the SGD momentum is 0.9. In addition, we use learning rate warm-up for
the first 2 epochs of the optimizer.

Evaluation Protocol. For linear classification, we Table C: Parameters used for INTL pre-training
train the linear classifier for 100 epochs with SGD on ImageNet-100.

optimizer (using a learning rate of base-Ir x Batch- Parameter Value
Size / 256 with a base-Ir of 0.2) and using Multi- max epoch 400
StepLR scheduler with v = 0.1 dropping at the last backbone ResNet-18
40 and 20 epochs. While for semi-supervised clas- ~ projection layers 3
sification, we fine-tune our pre-trained INTL back- ~ Projection hidden dimension 4096
bone and train the linear classifier for 20 epochs. Projection output dimension 4096
We use SGD optimizer (base-Ir for backbone is optimizer SGD
0.006 and for classifier is 0.2) and cosine decay SGD momentum 0.9

. . learning rate 0.5
schedule. The batch size and weight decay for both learning rate warm-up 2 epochs
are 256 and 0 respectively. learning rate schedule cosine decay

weight decay 2.5e-5

Multi-Crop and Exponential Moving Average. _ batch size 128

Note that multi-crop [1]] and exponential moving

average (EMA) [3l [10]] are commonly acknowledged strategies that can improve the performance
of SSL methods. e.g., BYOL achieves a high Top-1 accuracy of 74.3% by applying EMA and
SWAV achieves 75.3% with multi-crop. We thus also experiment with INTL that uses these two
strategies. We propose an efficient multi-crops variety that crops each image to 6 views with the
size of 2 x 224 4 192 + 160 + 128 + 96 (details of parameters are shown in Table [B]). Meanwhile,

12

247
248
249
250
251
252

254
255
256

257

258
259

261
262
263

264
265
266

267
268
269
270
271
272
273
274
275
276
277

278
279

281
282

283

284
285
286
287
288

290
291
292

293

294
295

EMA we used is asymmetric as MoCo that reduces memory overhead and accelerates training speed.
We set the base coefficient for momentum updating to 0.996 for all-epoch training. The momentum
coefficient follows a cosine increasing schedule with final value of 1.0 as BYOL [10]. Note that for
linear classification, the base-Ir is 0.4 and for semi-supervised classification, the base-Ir for backbone
is 0.004. The other settings are the same as the baseline. Benefiting from these two strategies, our
INTL achieves a Top-1 accuracy of 75.2% with only 200-epoch pre-training. For long-term training
of 800 epochs, our INTL achieves a Top-1 accuracy of 76.6% which exceeds the performance of the
supervised baseline [2] and other SSL methods. We also provide the results using various epochs in
Table D] from which we observe that INTL improves the performance steadily as the training epoch
increases.

E.3 Experiments for Small and Medium Size Datasets

In section 5.1 of the paper, we provide the classification results of INTL pre-training on small and
medium size datasets such as CIFAR-10, CIFAR-100 and ImageNet-100. Here, We describe the
details of implementation and training protocol for the experiments on these datasets as follows. For
fairness, most of hyper-parameters we used such as batch size, projection settings, data augmentation
and so on are consistent with solo-learn [6]. For these datasets, we use the basic INTL shown in
Algorithm [(a).

Experimental setup on ImageNet-100. Details of implementation and training protocol for INTL
pre-training on ImageNet-100 are shown in Table [C] The image transformation and evaluation
protocol are the same as ones on ImageNet.

Experimental setup on CIFAR-10/100. Then
Details of implementation and training protocol for
INTL pre-training on CIFAR-10/100 are shown in

Table E: Parameters used for INTL pre-training
on CIFAR-10/100.

Table [E| The details of image transformation are Parameterh \]/gl(;lg
shown in Table[F For evaluation, we use the same Eq ax epoc
. .. ackbone ResNet-18

setup of prptocol as in W-MSE .[8]: training the projection layers 3
linear classifier for 500 epochs using the Adam op- prgjection hidden dimension 2048
timizer and the labeled training set of each specific projection output dimension 2048
dataset, without data augmentation; the learning optimizer SGD
rate is exponentially decayed from 1072 to 10~° SGD momentum 0.9
and the weight decay is 5 x 1076, learning rate 0.3

. learning rate warm-up 2 epochs
In addition, we also evaluate the accuracy of a k- learning rate schedule cosine decay
nearest neighbors classifier (k-NN, k = 5) in these weight decay le-4
experiments. For other methods, we evaluate the batch size 256

models provided by [6] to obtain k-NN accuracy
which does not require additional parameters and training.

E.4 Experiments for Transfer Learning

In this part, we describe the training details of experiments for transfer learning. Our implementation
is based on the released codebase of MoCo [11]] E]for transfer learning to object detection and
instance segmentation tasks. We use the default hyper-parameter configurations from the training
scripts provided by the codebase for INTL, using our 200-epoch and 800-epoch pre-trained model on
ImageNet.

For the experiments of COCO detection and COCO instance segmentation, we use Mask R-CNN (1x
schedule) fine-tuned in COCO 2017 train, evaluated in COCO 2017 val. The Mask R-CNN model
is with the C4-backbone. Our INTL is performed with 3 random seeds, with mean and standard
deviation reported.

E.5 Computational Overhead

In Table |G| we report compute and GPU memory requirements based on our implementation for
different settings. We train each model with 2 A100-PCIE-40GB GPUs, using mixed precision

2https://github.com/facebookresearch/moco/tree/main/detection under the CC-BY-NC 4.0 license.

13

297

299

300
301

302

303
304

305
306

307
308

309

310

311
312
313

314
315

316
317

318
319

Table F: Parameters used for image augmentations on CIFAR-10/100.

Parameter T Ts
crop size 32 x 32 32 x 32
maximum scale of crops 1.0 1.0
minimum scale of crops 0.08 0.08
brightness 0.4 0.4
contrast 0.4 0.4
saturation 0.2 0.2
hue 0.1 0.1
color jitter prob 0.8 0.8
horizontal flip prob 0.5 0.5
gaussian prob 0 0
solarization prob 0.0 0.2

and py-torch optimized version of synchronized batch-normalization layers. We report results with
ResNet-50 and a batch size of 256.

Table G: Computational cost. We report time and GPU memory requirements of our implementation
for INTL trained per epoch.

Method | EMA Multi-Crop time/ 1 epoch peak memory / GPU
X X 29min11 160G

INTL v X 24mind6 118G
X v 57min33 259G
v v 50min52 212G

F Licenses of Datasets

ImageNet [7] is subject to the ImageNet terms of access: [3]

COCO [17]]. The annotations are under the Creative Commons Attribution 4.0 License. The images
are subject to the Flickr terms of use [9].

References

[1] Caron, M., Misra, 1., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of
visual features by contrasting cluster assignments. In: NeurIPS (2020)

[2] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning
of visual representations. In: ICML (2020)

[3] Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297 (2020)

[4] Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR (2021)
[5] contributors, I.: Imagenet terms of access (2020), https://image-net.org/download

[6] da Costa, V.G.T., Fini, E., Nabi, M., Sebe, N., Ricci, E.: solo-learn: A library of self-supervised
methods for visual representation learning. Journal of Machine Learning Research 23(56), 1-6
(2022), http://jmlr.org/papers/v23/21-1155.html

[7] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR (2009)

[8] Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised representation
learning. In: ICML (2021)

[9] Flickr, I.. Flickr terms and conditions of use (2020), http://aiweb.techfak,
uni-bielefeld.de/content/bworld-robot-control-software/

14

https: //image-net.org/download
http://jmlr.org/papers/v23/21-1155.html
http:// aiweb.techfak.uni-bielefeld.de/content/ bworld-robot-control-software/
http:// aiweb.techfak.uni-bielefeld.de/content/ bworld-robot-control-software/
http:// aiweb.techfak.uni-bielefeld.de/content/ bworld-robot-control-software/

320
321
322

323
324

326

327
328

329

331
332

333

334
335

336
337
338

339
340

341
342

[10] Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C.,
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., kavukcuoglu, k., Munos, R., Valko, M.:
Bootstrap your own latent - a new approach to self-supervised learning. In: NeuralPS (2020)

[11] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual
representation learning. In: CVPR (2020)

[12] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR
(2016)

[13] Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., Zhao, H.: On feature decorrelation in self-
supervised learning. In: ICCV (2021)

[14] Huang, L., Zhou, Y., Zhu, F., Liu, L., Shao, L.: Iterative normalization: Beyond standardization
towards efficient whitening. In: CVPR (2019)

[15] Kingma, D.P.,, Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980
(2014)

[16] Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep. (2009)

[17] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., Zitnick, L.:
Microsoft coco: Common objects in context. In: ECCV (2014)

[18] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems 32 (2019)

[19] Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: European conference on
computer vision (2020)

[20] Weng, X., Huang, L., Zhao, L., Anwer, R.M., Khan, S., Khan, F.: An investigation into
whitening loss for self-supervised learning. In: NeurIPS (2022)

15

	Proofs of Proposition
	Proof of Proposition.1
	Proof of Proposition.2

	Proofs of Theorem
	Proof of Theorem 1.
	Proof of Theorem 2.
	Convexity and Concavity of hT(x)
	Optimal Solution for the Lagrange Function

	Algorithm of INTL
	Analytical Experiments
	Experiments on Synthetic 2D dataset
	Details of Experimental Setups
	Results of IterNorm for SSL

	Experiments on CIFAR-10
	Numerical Instability of Spectral Transformation Using Power Functions

	Details of Experiments on Standard SSL Benchmark
	Datasets
	Experiment on ImageNet
	Experiments for Small and Medium Size Datasets
	Experiments for Transfer Learning
	Computational Overhead

	Licenses of Datasets

