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A PRELIMINARY OBSERVATION
In order to control necessary variables and obtain more accurate
statistical results, more effort in observing the following variables
during the experiment has been made.

A.1 Area of target region
Both traditional segmentation and existing audio-visual segmenta-
tion methods often disregard small objects and display a preference
towards objects of a larger area, which is a prevalent factor impact-
ing the mIoU.

To demonstrate the impact of this issue, we also conducted a
statistical analysis on the influence of object area on mIoU within
AVS. It is found that the proportion of object area to the total image
area also affects mIoU.

Figure A1: The impact on mIoU on the area of the target
object in V1S. The red line is the fitted curve over the data
points. Each point in Figure (a) corresponds to a class of ob-
jects and its average area ratio, while each point in Figure
(b) corresponds to a video sample and its area ratio with nor-
malization. In Figure (a), we calculate the mean area of each
semantics and observe its overall impact on mIoU. On the
sample level, in Figure (b), by conducting statistical analy-
sis on the area and mIoU of each sample, we found that the
phenomenon of a larger area usually results in higher mIoU.
Therefore, controlling the proportion of the object area is
essential for analysis.

Therefore, when assessing the influence of audio semantics on
mIoU, it is necessary to scale the original images. So we scaled
each target object to occupy 30% to 40% of the overall image for
observation and experimentation in Figure 2 of the main paper.

A.2 Number of instances per sample
In traditional segmentation, it is commonly believed that the com-
plexity will bring difficulty to the model. It is not clear about the
complexity. For a better understanding of this in AVS, observations
have been made to prove that both the number of target semantics

and target instances in a video sample will cause variance in the
performance of segmentation in Figure A2.

Figure A2: The impact on mIoU by the number of target
semantics or target instances in a video sample in V1M. In
the graph, the blue curve represents the fluctuation of the
mean value, while the blue shade represents the variance.
The orange color indicates the number of samples. (a) The
increase in the number of target semantics in a video tends to
result in a decrease in mIoU. (b) The increase in the number
of target instances in a video tends to result in a decrease in
mIoU.

Therefore, when constructing theCo-AVS dataset, our goal was to
demonstrate the cooperative capability over semantics. To control
variables, we specifically selected scenarios where there are only
two semantic categories, and each category has only one instance,
to build the dataset.

B IMPLEMENTATION DETAIL
B.1 Avoid permanent dormant queries

Figure B3: The illustration of simple dilation taking 𝑑=2 as
an example.

The learnable queries function to generate a sufficient set of
potential regions to acquire suitable regions. However, our active
query strategy has resulted in a reduction number of effective
proposed regions, consequently decreasing the number of valid
proposals. To address this issue, we introduce the simple dilation
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method in Fig. B3 with a dilation factor of 𝑑 , enabling one latent se-
mantic marker to align with multiple active queries. This approach
guarantees that the mask of the same semantic is proposed by the
same set of specified queries while providing flexibility of focus on
any one of the multiple active queries.

B.2 Minor adjustment between binary and
semantic segmentation

The debias strategy for semantic segmentation reorganizes themask
and class logits distribution separately. However, during the imple-
mentation of binary segmentation, the operation of the mask and
class logits is equivalent to the reorganization of only the mask log-
its without background. Further detail about logits reorganization
is discussed in Sec.D.3.

B.3 Curriculum learning for AVSS
During the training process of AVSS, we employed a curriculum
learning training strategy that involved using V1S, V2 (samples not
in V1S and V1M), and V1M subsets in sequential order from easy
to difficult.

C ABLATION OBSERVATION
C.1 Mask generated by each query
In previous AVS models that used per-mask segmentation, each
query can generate masks with various semantics, as shown in
the first row of the figure. However, this approach is unable to
accommodate the additional tasks of perception and interaction
that the transformer decoder needs to handle in the AVS task.

As mentioned in Sec.3.1 of the paper, we aim to assign specific se-
mantic perception tasks to each learnable query in order to further
regularize semantic interactions within the transformer decoder
to the designated queries. The observation on each active query
is shown in Figure C4. From Ex.1 to Ex.5, we can observe the se-
mantic similarities between the masks generated by same query,
and the segmentation results are also intact. This demonstrates that
the model is able to follow and update the semantic information
we allocate. Moreover, each mask result is intact and satisfactory,
which provides qualitative supplementary evidence for Figure 5 in
the paper, further confirming the effectiveness of using learnable
queries to capture latent audio corporations.

In summary, although the masks generated by active queries
may be partially influenced by the perception module, we believe
that the coarse filtering is sufficient to improve model performance.
Additionally, a small number of anomalous semantic masks do not
necessarily lead to errors of categories in semantic segmentation, as
the result categories depend on the class logits. Therefore, a small
number of anomalous semantic masks do not hinder the overall
effectiveness.

D DISCUSSION
D.1 Possible Versatility on Ref-VOS
What’s also interesting is that we conducted experiments on Re-
ferring Video Object Segmentation (Ref-VOS) [1] without validat-
ing the existence of visual priors. Similar to AVS, Ref-VOS, as a
Cross-Model Guided Video Segmentation approach, also achieved

a limited increase of 0.9% in the score (the product of mIoU and
Fscore).

Table D1: Possible versatility on Ref-VOS. Both AVS and Ref-VOS
are a task of cross-model guided segmentation. “↑” signifies a
positive effect achieved by employing the contrastive debiased
strategy compared to the vanilla method, while “↓” indicates a
negative effect.

Ref-VOS Backbone Method †Score
Referformer [1] Swin None 56.2
Referformer [1] Swin Debias (Logits ensemble) 55.7 ↓
Referformer [1] Swin Debias (Bias-Only) 56.3 ↑
Referformer [1] Swin Debias (Uncertainty-based) 57.1 ↑
†
Score: The scores mentioned here are reproduced by us. Due to our
limited GPU resources, we made modifications to Referformer to
accommodate these constraints, resulting in lower overall perfor-
mance than the original paper. However, the comparisons between
different versions still remain representative.

D.2 Contrastive of the audio of other semantic
Suppose we directly use audio with random semantics to replace
the mute or noise-only guidance in the biased branch in Sec.4.4 (like
using violin sound instead of mute or noise-only audio to get the
visual prior in the bus video). In that case, certain negative effect
occurs on bias handling. Without any audio semantic guidance, the
results can fully reflect the visual bias. However, using audio cues
with random semantics introduces redundant audio semantic in-
formation rather than just visual prior to the logits distribution,
often failing to reflect pure visual bias. In the experiment, we also
attempted to use random audio guidance as guidance in the biased
branch, but the performance in addressing the bias suffered from
a decrease from 0.8% to 2.1% on V1M using the contrastive debias
method mentioned in Sec.4.4. So, the contrastive learning by con-
structing positive and negative audio-visual pairs does not apply
to the purpose of bias handling here.

D.3 Debias strategy operation on logits
The debias strategy for AVSS (semantic segmentation) reorganizes
both mask logits and class logits, but when treated as binary seg-
mentation, it is equivalent to reorganizing only the mask logits.
It makes us wonder about which reorganization is actually func-
tioning, mask logits, class logits, or both. To investigate the actual
mechanisms of our debias strategy, we conducted further explo-
ration.

When performing per-mask semantic segmentation, there are
obviously four operation schemes: reorganize ① mask logits, ②

class logits, ③ mask and class logits separately, and ④ overall logits
(multiplication of mask and class logits). If we simplify the basic
debias strategy to directly subtracting the logits, it is important to
note that from the perspective of matrix multiplication, ③ and ④

are clearly not equivalent as

(𝑙𝑜𝑔𝑖𝑡𝑠𝑚𝑎𝑠𝑘 − 𝑙𝑜𝑔𝑖𝑡𝑠𝑏
𝑚𝑎𝑠𝑘

) × (𝑙𝑜𝑔𝑖𝑡𝑠𝑐𝑙𝑎𝑠𝑠 − 𝑙𝑜𝑔𝑖𝑡𝑠𝑏
𝑐𝑙𝑎𝑠𝑠

)

≠𝑙𝑜𝑔𝑖𝑡𝑠𝑚𝑎𝑠𝑘 × 𝑙𝑜𝑔𝑖𝑡𝑠𝑐𝑙𝑎𝑠𝑠 − 𝑙𝑜𝑔𝑖𝑡𝑠𝑏
𝑚𝑎𝑠𝑘

× 𝑙𝑜𝑔𝑖𝑡𝑠𝑏
𝑐𝑙𝑎𝑠𝑠

). (1)
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Figure C4: The binary mask generated by active queries in both single-source and multi-source audio scenery. The masks in
each row are generated by the same learnable query. In the perception process, we assign semantic information to specific
learnable queries as active queries. From Ex.1 to Ex.5, we can observe the semantic similarities between the masks, and the
segmentation results are also intact. This demonstrates that the model is able to follow and update the semantic information
we allocate. Additionally, since we obtain latent semantic information through the audio perception module, there may be
some interference from similarities in sounds produced by different objects. Therefore, it is inevitable that the model will also
aggregate a small number of similar-sounding semantics. For example, the bell sound and piano sound with Query 6, and the
bird sound and cat sound with Query 7.
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while 𝑙𝑜𝑔𝑖𝑡𝑠𝑚𝑎𝑠𝑘 and 𝑙𝑜𝑔𝑖𝑡𝑠𝑐𝑙𝑎𝑠𝑠 are the logits from vanilla audio-
visual method, 𝑙𝑜𝑔𝑖𝑡𝑠𝑏

𝑚𝑎𝑠𝑘
and 𝑙𝑜𝑔𝑖𝑡𝑠𝑏

𝑐𝑙𝑎𝑠𝑠
are the logits from biased

branch.
In our empirical result, we evaluated all four methods and de-

termined that ③ produced the most favorable outcomes. However,
④ exhibited a decrease of 1.4%. This can be attributed to the per-
mask training approach, which inherently optimizes class and mask
independently. So, in per mask segmentation, debiasing must be
operated on each type of logit individually.

However, when it comes to versatility experiments focusing
on per-pixel segmentation, there is no such thing as class logits
and mask logits. So, for all other per-pixel segmentation methods,
overall logits are reorganized based on the debias strategy.
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