
A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 1 (Section 2.1)

Theorem 1. If pω is G equivariant, then ϕθ,ω is G equivariant for arbitrary fθ.

Proof. We prove ϕθ,ω(ρ1(g′)x) = ρ2(g
′)ϕθ,ω(x) for all x ∈ X and g′ ∈ G. From Eq. (4), we have:

ϕθ,ω(ρ1(g
′)x) = Epω(g|ρ1(g′)x)

[
ρ2(g)fθ(ρ1(g)

−1ρ1(g
′)x)

]
. (11)

Let us introduce transformed random variable h = g′−1g ∈ G such that g = g′h. Since the
distribution pω is G equivariant, we can see that pω(g|ρ1(g′)x) = pω(g

′−1g|ρ1(g′−1)ρ1(g
′)x) =

pω(g
′−1g|x) = pω(h|x). Thus, we can rewrite the above expectation with respect to h as follows:

ϕθ,ω(ρ1(g
′)x) = Epω(h|x)

[
ρ2(g

′h)fθ(ρ1(g
′h)−1ρ1(g

′)x)
]

= Epω(h|x)
[
ρ2(g

′)ρ2(h)fθ(ρ1(h)
−1ρ1(g

′)−1ρ1(g
′)x)

]
= ρ2(g

′)Epω(h|x)
[
ρ2(h)fθ(ρ1(h)

−1x)
]

= ρ2(g
′)ϕθ,ω(x), (12)

showing the G equivariance of ϕθ,ω for arbitrary fθ.

A.1.2 Proof of Theorem 2 (Section 2.1)

Theorem 2. If pω is G equivariant and fθ is a universal approximator, then ϕθ,ω is a universal
approximator of G equivariant functions.

Proof. The proof is inspired by universality proofs of prior symmetrization approaches [102, 74, 41].
Let ψ : X → Y be an arbitrary G equivariant function. By equivariance of ψ, we have:

∥ψ(x)− ϕθ,ω(x)∥ =
∥∥ψ(x)− Epω(g|x)

[
ρ2(g)fθ(ρ1(g)

−1x)
]∥∥

=
∥∥Epω(g|x) [ψ(x)]− Epω(g|x)

[
ρ2(g)fθ(ρ1(g)

−1x)
]∥∥

=
∥∥Epω(g|x)

[
ρ2(g)ρ2(g)

−1ψ(x)
]
− Epω(g|x)

[
ρ2(g)fθ(ρ1(g)

−1x)
]∥∥

=
∥∥Epω(g|x)

[
ρ2(g)ψ(ρ1(g)

−1x)
]
− Epω(g|x)

[
ρ2(g)fθ(ρ1(g)

−1x)
]∥∥

=
∥∥Epω(g|x)

[
ρ2(g)ψ(ρ1(g)

−1x)− ρ2(g)fθ(ρ1(g)
−1x)

]∥∥ . (13)

As Y is finite-dimensional, we can assume that the linear operators in GL(Y) are bounded and so is
the induced operator norm of group representation ∥ρ2(g)∥ for all g ∈ G. Thus, we have:

∥ψ(x)− ϕθ,ω(x)∥ ≤ max
h∈G

∥ρ2(h)∥
∥∥Epω(g|x)

[
ψ(ρ1(g)

−1x)− fθ(ρ1(g)
−1x)

]∥∥
≤ c

∥∥Epω(g|x)
[
ψ(ρ1(g)

−1x)− fθ(ρ1(g)
−1x)

]∥∥ . (14)
for some c > 0. If fθ is a universal approximator, for any compact set K ⊆ X and any ϵ > 0, there
exists some θ such that ∥ψ(x)− fθ(x)∥ ≤ ϵ for all x ∈ K. Consider the set Ksym = ∪g∈Gρ1(g)K
where ρ1(g)K denotes the image of the set K under linear transformation by ρ1(g). We use the fact
that Ksym is also a compact set since it is the image of the compact set G×K under continuous map
(g,x) 7→ ρ1(g)x. As a consequence, for any compact set K ⊆ X and any ϵ/c > 0, there exists some
θ such that maxg∈G ∥ψ(ρ1(g)x)− fθ(ρ1(g)x)∥ ≤ ϵ/c for all x ∈ K. Since a group is closed under
inverse, for any compact set K ⊆ X and any ϵ > 0, there exists some θ such that:

∥ψ(x)− ϕθ,ω(x)∥ ≤ c
∥∥Epω(g|x)

[
ψ(ρ1(g)

−1x)− fθ(ρ1(g)
−1x)

]∥∥
≤ cmax

g∈G

∥∥ψ(ρ1(g)−1x)− fθ(ρ1(g)
−1x)

∥∥
= ϵ, (15)

for all x ∈ K, showing that ϕθ,ω is a universal approximator of G equivariant functions.

While we have assumed that the group G is compact in the proof, we conjecture that the results
can be extended to non-compact groups if we make an alternative assumption that the distribution
pω(g|x) is compactly supported for all x ∈ K. We leave proving this as a future work.

15

A.1.3 Proof of Theorem 3 (Section 2.1)

Theorem 3. If qω isG equivariant and p(ϵ) isG invariant under representation ρ′ that |det ρ′(g)| =
1∀g ∈ G, the distribution pω(g|x) characterized by qω : (x, ϵ) 7→ ρ(g) is G equivariant.

Proof. We prove pω(g′g|ρ1(g′)x) = pω(g|x) for all x ∈ X and g, g′ ∈ G. In general, we are
interested in obtaining a faithful representation ρ, i.e., such that ρ(g) is distinct for each g. We can
interpret the probability pω(g|x, ϵ) as a delta distribution centered at the group representation ρ(g):

pω(g|x, ϵ) = δ(ρ(g) = qω(x, ϵ)). (16)

To obtain pω(g|x), we marginalize over p(ϵ):

pω(g|x) =
∫
ϵ

pω(g|x, ϵ)p(ϵ)dϵ

=

∫
ϵ

δ(ρ(g) = qω(x, ϵ))p(ϵ)dϵ. (17)

Let us consider pω(g′g|ρ1(g′)x):

pω(g
′g|ρ1(g′)x) =

∫
ϵ

δ(ρ(g′g) = qω(ρ1(g
′)x, ϵ))p(ϵ)dϵ. (18)

Using the G equivariance of qω , we have:

qω(ρ1(g
′)x, ϵ) = ρ(g′)qω(ρ1(g

′−1)ρ1(g
′)x, ρ′(g′−1)ϵ)

= ρ(g′)qω(x, ρ
′(g′−1)ϵ) (19)

which leads to the following:

pω(g
′g|ρ1(g′)x) =

∫
ϵ

δ(ρ(g′g) = ρ(g′)qω(x, ρ
′(g′−1)ϵ))p(ϵ)dϵ

=

∫
ϵ

δ(ρ(g) = qω(x, ρ
′(g′−1)ϵ))p(ϵ)dϵ. (20)

Note that the second equality follows from invertibility of ρ(g′). We now introduce a change of
variables ϵ′ = ρ′(g′−1)ϵ that ϵ = ρ′(g′)ϵ′:

pω(g
′g|ρ1(g′)x) =

∫
ϵ′
δ(ρ(g) = qω(x, ϵ

′))p(ρ′(g′)ϵ′)
1

|det ρ′(g′−1)|
dϵ′. (21)

With |det ρ′(g′−1)| = 1, and G invariance of p(ϵ) which gives p(ρ′(g′)ϵ′) = p(ϵ′), we get:

pω(g
′g|ρ1(g′)x) =

∫
ϵ′
δ(ρ(g) = qω(x, ϵ

′))p(ϵ′)dϵ′

= pω(g|x), (22)

showing the G equivariance of pω(g|x).

A.1.4 Proof of Validity for Implemented Equivariant Distributions pω (Section 2.2)

We formally show G equivariance of the implemented distributions pω(g|x) presented in Section 2.2.
All implementations have a form of noise-outsourced function qω : (x, ϵ) 7→ ρ(g) using distribution
ϵ ∼ p(ϵ) and map qω which is composed of G equivariant neural network and postprocessing to ρ(g).
From Theorem 3, for G equivariance of pω(g|x), it is sufficient to show G invariance of p(ϵ) under a
representation ρ′ such that |det ρ′(g)| = 1 along with G equivariance of qω , which we show below.

Symmetric Group Sn We recall that pω(g|x) for the symmetric group Sn is implemented as below:

1. Sample node-level noise ϵ ∈ Rn×d from i.i.d. uniform Unif[0, η].

2. Use a GNN to obtain node-level scalar features (x, ϵ) 7→ Z ∈ Rn.

16

3. Assuming Z is tie-free, use argsort [98] to obtain group representation Z 7→ Pg = ρ(g).

Pg = eq(Z1⊤,1sort(Z)⊤), (23)

where eq denotes elementwise equality indicator.

We now show the following:

Proposition 3. The proposed distribution pω(g|x) for the symmetric group Sn is equivariant.

Proof. Given p(ϵ) is elementwise i.i.d., it is Sn invariant under the base representation ρ′(g) = Pg

which satisfies |detPg| = 1 from orthogonality. As a GNN is Sn equivariant, we only need to show
Sn equivariance of argsort : Z 7→ Pg. This can be shown by transforming Z with any permutation
matrix Pg′ . Since sort operator and any row replicated matrices are invariant to Pg′ , we have:

eq(Pg′Z1⊤,1sort(Pg′Z)⊤) = eq(Pg′Z1⊤,1sort(Z)⊤)

= eq(Pg′Z1⊤,Pg′1sort(Z)⊤). (24)

Since eq commutes with Pg′ , we have:

eq(Pg′Z1⊤,1sort(Pg′Z)⊤) = eq(Pg′Z1⊤,Pg′1sort(Z)⊤)

= Pg′eq(Z1⊤,1sort(Z)⊤)
= Pg′Pg, (25)

showing that argsort is Sn equivariant, i.e., it maps Pg′Z 7→ Pg′Pg for all Pg′ ∈ Sn. Combining the
above, by Theorem 3, the distribution pω(g|x) is Sn equivariant.

Orthogonal Group O(n), SO(n) We recall that pω(g|x) for the orthogonal group O(n) or special
orthogonal group SO(n) is implemented as follows:

1. Sample noise ϵ ∈ Rn×d from i.i.d. normal N (0, η2).

2. Use an O(n)/SO(n) equivariant neural network to obtain n features (x, ϵ) 7→ Z ∈ Rn×n.

3. Assuming Z is full-rank, use Gram-Schmidt process [41] to obtain an orthogonal matrix Z 7→ Q.

4. For the O(n) group, use the obtained matrix as group representation Q = Qg = ρ(g).

5. For the SO(n) group, use below scale operator to obtain group representation Q 7→ Q+
g = ρ(g).

scale :

[
Q1 ... Qn

]
7→

[
det(Q) ·Q1 ... Qn

]
. (26)

We now show the following:

Proposition 4. The proposed distribution pω(g|x) for the orthogonal group O(n) is equivariant.

Proof. Without loss of generality, let us omit the scale η for brevity, which gives that each column
ϵi ∈ Rn of the noise ϵ independently follows multivariate standard normal ϵi ∼ N (0, In). Then,
the density p(ϵi) = (2π)−n/2 exp (−∥ϵi∥22/2) is invariant under orthogonal transformation Q since
∥Qϵi∥22 = (Qϵi)

⊤Qϵi = ϵ⊤i Q
⊤Qϵi = ϵ⊤i ϵi = ∥ϵi∥22. Therefore, the distribution p(ϵ) is invariant

under the base representation ρ′(g) = Qg which satisfies |det ρ′(g)| = 1 from orthogonality. As
we use an equivariant neural network to obtain Z, and Gram-Schmidt procedure Z 7→ Qg is O(n)
equivariant (Theorem 5 of [41]), by Theorem 3, the distribution pω(g|x) is O(n) equivariant.

Proposition 5. The proposed distribution pω(g|x) for special orthogonal group SO(n) is equivariant.

Proof. From the proof of Proposition 4, it follows that the distribution p(ϵ) is invariant under the
base representation ρ′(g) = Q+

g which satisfies |det ρ′(g)| = 1 due to orthogonality. As we
use an equivariant neural network to obtain Z, and Gram-Schmidt procedure Z 7→ Q has O(n)
equivariance which implies SO(n) equivariance because of SO(n) ≤ O(n), we only need to show

17

SO(n) equivariance of scale : Q 7→ Q+
g . This can be done by transforming Q with an orthogonal

Q+
g′ of determinant +1. Since det(Q+

g′Q) = det(Q+
g′)det(Q) = det(Q), we have the following:

scale(Q+
g′Q) =

 det(Q+
g′Q) · (Q+

g′Q)1 ... (Q+
g′Q)n


=

 det(Q) · (Q+
g′Q)1 ... (Q+

g′Q)n

 . (27)

Also, scaling the first column of the product Q+
g′Q with det(Q) is equivalent to scaling the first

column of Q with det(Q) then computing the product since (Q+
g′Q)ij =

∑
k Q

+
g′ikQkj . This gives:

scale(Q+
g′Q) = Q+

g′

[
det(Q) ·Q1 ... Qn

]
= Q+

g′scale(Q), (28)

showing that scale operator is SO(n) equivariant. We also note that scale(Q) gives orthogonal matrix
of determinant +1, as it returns Q if det(Q) = +1, otherwise (det(Q) = −1 since Q is orthogonal)
scales the first column by −1 which flips determinant to +1 while not affecting orthogonality.
Combining the above, by Theorem 3, the distribution pω(g|x) is SO(n) equivariant.

Euclidean Group E(n), SE(n) We recall that, unlike the other groups, we handle the Euclidean
group E(n) and special Euclidean group SE(n) at symmetrization level as the translation component
T(n) in E(n) = O(n)⋉ T(n) and SE(n) = SO(n)⋉ T(n) is non-compact. This is done as follows:

ϕθ,ω(x) = Epω(g|x−x̄1⊤)

[
x̄1⊤ + g · fθ(g−1 · (x− x̄1⊤))

]
, (29)

where x̄ ∈ Rn is centroid (mean over channels) of data x ∈ Rn×d and distribution pω is O(n)/SO(n)
equivariant for E(n)/SE(n) equivariant symmetrization, respectively. We now show the following:

Proposition 6. The proposed symmetrization ϕθ,ω for the Euclidean group E(n) is equivariant.

Proof. We prove ϕθ,ω(g′ · x) = g′ · ϕθ,ω(x) for all x ∈ X and g′ ∈ E(n). From Eq. (29), we have:

ϕθ,ω(g
′ · x) = Epω(g|g′·x−g′·x1⊤)

[
g′ · x1⊤ + g · fθ(g−1 · (g′ · x− g′ · x1⊤))

]
. (30)

In general, an element of Euclidean group g′ ∈ E(n) acts on data x ∈ Rn×d via g′ ·x = Qg′x+tg′1⊤

where Qg′ ∈ O(n) is its rotation component and tg′ ∈ Rn is its translation component [74, 41]. With
this, the centroid of the transformed data g′ · x is given as follows:

g′ · x = Qg′x+ tg′1⊤ = Qg′x+ tg′ = Qg′x+ tg′ , (31)

which leads to the following:

g′ · x− g′ · x1⊤ = Qg′x+ tg′1⊤ −Qg′x1⊤ − tg′1⊤

= Qg′(x− x1⊤). (32)

Above shows that subtracting centroid eliminates the translation component of the problem and leaves
O(n) equivariance component. Based on that, we have the following:

ϕθ,ω(g
′ · x) = Epω(g|Qg′ (x−x1⊤))

[
Qg′ x̄1⊤ + tg′1⊤ + g · fθ(g−1 · (Qg′(x− x1⊤)))

]
= Epω(g|g′·(x−x1⊤))

[
g′ · x̄1⊤ + g · fθ(g−1g′ · (x− x1⊤))

]
+ tg′1⊤. (33)

Note that, inside the expectation, we interpret the rotation component of g′ as an element of the
orthogonal group O(n). Similar as in the proof of Theorem 1, we introduce transformed random
variable h = g′−1g ∈ O(n) that g = g′h. Since the distribution pω is O(n) equivariant, we can see

18

that pω(g|g′ ·(x−x1⊤)) = pω(g
′−1g|g′−1g′ ·(x−x1⊤)) = pω(g

′−1g|x−x1⊤) = pω(h|x−x1⊤).
Thus we can rewrite the above expectation with respect to h as follows:

ϕθ,ω(g
′ · x) = Epω(h|x−x1⊤)

[
g′ · x̄1⊤ + g′h · fθ((g′h)−1g′ · (x− x1⊤))

]
+ tg′1⊤

= Epω(h|x−x1⊤)

[
g′ · x̄1⊤ + g′h · fθ(h−1 · (x− x1⊤))

]
+ tg′1⊤

= Qg′Epω(h|x−x1⊤)

[
x̄1⊤ + h · fθ(h−1 · (x− x1⊤))

]
+ tg′1⊤

= Qg′ϕθ,ω(x) + tg′1⊤

= g′ · ϕθ,ω(x), (34)

showing the E(n) equivariance of ϕθ,ω.

Proposition 7. The proposed symmetrization ϕθ,ω for special Euclidean group SE(n) is equivariant.

Proof. We prove ϕθ,ω(g′ · x) = g′ · ϕθ,ω(x) for all x ∈ X and g′ ∈ SE(n), in an analogous manner
to the proof of Proposition 6. From Eq. (29), we have:

ϕθ,ω(g
′ · x) = Epω(g|g′·x−g′·x1⊤)

[
g′ · x1⊤ + g · fθ(g−1 · (g′ · x− g′ · x1⊤))

]
. (35)

In general, an element of special Euclidean group g′ ∈ SE(n) acts on data x ∈ Rn×d via g′ · x =
Q+

g′x+ tg′1⊤ where Q+
g′ ∈ SO(n) is rotation component and tg′ ∈ Rn is translation [74, 41]. With

this, the centroid of the transformed data g′ · x is given as follows:

g′ · x = Q+
g′x+ tg′1⊤ = Q+

g′x+ tg′ = Q+
g′x+ tg′ , (36)

which leads to the following:

g′ · x− g′ · x1⊤ = Q+
g′x+ tg′1⊤ −Q+

g′x1
⊤ − tg′1⊤

= Q+
g′(x− x1⊤). (37)

Similar as in Proposition 6, subtracting centroid only leaves SO(n) component. We then have:

ϕθ,ω(g
′ · x) = Epω(g|Q+

g′ (x−x1⊤))

[
Q+

g′ x̄1
⊤ + tg′1⊤ + g · fθ(g−1 · (Q+

g′(x− x1⊤)))
]

= Epω(g|g′·(x−x1⊤))

[
g′ · x̄1⊤ + g · fθ(g−1g′ · (x− x1⊤))

]
+ tg′1⊤, (38)

where, inside the expectation, we interpret the rotation component of g′ as an element of the
special orthogonal group SO(n). Similar as in Theorem 1, we introduce h = g′−1g ∈ SO(n)
that g = g′h. As the distribution pω is SO(n) equivariant, we have pω(g|g′ · (x − x1⊤)) =
pω(g

′−1g|g′−1g′ · (x− x1⊤)) = pω(h|x− x1⊤). We then rewrite the expectation with respect to h:

ϕθ,ω(g
′ · x) = Epω(h|x−x1⊤)

[
g′ · x̄1⊤ + g′h · fθ((g′h)−1g′ · (x− x1⊤))

]
+ tg′1⊤

= Epω(h|x−x1⊤)

[
g′ · x̄1⊤ + g′h · fθ(h−1 · (x− x1⊤))

]
+ tg′1⊤

= Q+
g′Epω(h|x−x1⊤)

[
x̄1⊤ + h · fθ(h−1 · (x− x1⊤))

]
+ tg′1⊤

= Q+
g′ϕθ,ω(x) + tg′1⊤

= g′ · ϕθ,ω(x), (39)

showing the SE(n) equivariance of ϕθ,ω.

Product Group H ×K For the product group H ×K, we assume that the base representation for
each element g = (h, k) is given as a pair of representations ρ(g) = (ρ(h), ρ(k)). Without loss of
generality, we further assume that the representation ρ(g) can be expressed as the Kronecker product
ρ(g) = ρ(h)⊗ ρ(k) that acts on flattened data vec(x) as x 7→ vec−1(ρ(g)vec(x)). This follows the
standard approach in equivariant deep learning [30, 57] that deals with composite representations
using direct sum and tensor products of base group representations.

Above approach applies to many practical product groups, including sets and graphs with Euclidean
attributes (Sn × O(d)/SO(d)6) and sets of symmetric elements (Sn × H) in general [59]. For

6This is after handling the translation component of the Euclidean group E(d)/SE(d) as in Eq. (29).

19

G

Gxg1

Gxg2

Gxg3

Gxg4

Gxg5

Gxg2

Gxg3

Gxg4

Gxg2
Gxg1

Gxg2

Gxg3

Gxg4

Gxg5

Group G Orbits Gxg Distribution pω(g|x) Frame F(x) Canonicalizer Cω(x)

Figure 3: Visual illustration of the symmetrization methods based on probabilities assigned upon the
partitioning of the group G into orbits Gxg. Note that, while we use concentric circles of different
perimeters to illustrate each orbit, all orbits actually have an identical cardinality |Gxg| = |Gx|.

example, for the group Sn × O(d) on data x ∈ Rn×d, an element g = (h, k) has representation
ρ(g) = ρ(h)⊗ρ(k) ∈ Rnd×nd combined from permutation ρ(h) ∈ Rn×n and rotation ρ(k) ∈ Rd×d,
which acts by x 7→ vec−1(ρ(g)vec(x)) or more simply x 7→ ρ(h)xρ(k)⊤.

Now we recall that the pω(g|x) for the product group H ×K is implemented as follows:

1. Sample noise ϵ ∈ E from i.i.d. normal N (0, η2) such that p(ϵ) is invariant under representations
of H and K that satisfy |det ρ′(h)| = 1 and |det ρ′(k)| = 1, respectively. For example, for
Sn × O(d), the noise ϵ ∈ Rn×d that follows i.i.d. normal N (0, η2) is invariant under base
representations of both Sn and O(d) which are orthogonal.

2. Use a H ×K equivariant neural network to obtain features (x, ϵ) 7→ (ZH ,ZK) where ZH is K
invariant and ZK is H invariant. For example, for Sn×O(d), we expect node-level scalar features
ZSn

∈ Rn to be O(d) invariant and d global rotary features ZO(d) ∈ Rd×d to be Sn invariant.

3. Apply postprocessing for H and K groups onto ZH and ZK respectively to obtain representations
ZH 7→ ρ(h) and ZK 7→ ρ(k) of H and K groups respectively. For example, for Sn × O(d), we
use argsort in Eq. (23) to obtain ZSn

7→ ρ(h) and Gram-Schmidt process to obtain ZO(d) 7→ ρ(k).

4. Combine the representations ρ(g) = (ρ(h), ρ(k)) to obtain a representation for the H ×K group.

We now show the following:

Proposition 8. The proposed distribution pω(g|x) for the product group H ×K is equivariant.

Proof. By assumption, p(ϵ) is invariant under representations ofH andK that satisfy |det ρ′(h)| = 1
and |det ρ′(k)| = 1, respectively. This implies H ×K invariance as well, since p(ϵ) = p(h · ϵ) =
p(k · ϵ) for all ϵ ∈ E , h ∈ H, k ∈ K gives p(k · h · ϵ) = p(k · (h · ϵ)) = p(h · ϵ) = p(ϵ), and
Kronecker product of matrices of determinant 1 gives a matrix of determinant 1. Furthermore, the
map (x, ϵ) 7→ (ρ(h), ρ(k)) = ρ(g) is overall H ×K equivariant, since an input transformed with
g′ = (h′, k′) is first mapped by the equivariant neural network as (g′ · x, g′ · ϵ) 7→ (h′ ·ZH , k

′ ·ZK),
then postprocessed as (h′ ·ZH , k

′ ·ZK) 7→ (ρ(h′)ρ(h), ρ(k′)ρ(k)) = (ρ(h′), ρ(k′)) · (ρ(h), ρ(k)) =
ρ(g′)ρ(g). Combining the above, by Theorem 3, the distribution pω(g|x) is H ×K equivariant.

A.1.5 Proof of Proposition 1 and Proposition 2 (Section 2.4)

Before proceeding to proofs, we recall that the stabilizer subgroupGx of a groupG for x is defined as
{g′ ∈ G : g′ · x = x} and acts on a given group element g ∈ G through left multiplication g 7→ g′g.
For some g ∈ G, by Gxg we denote its orbit under the action by Gx, i.e., the set of elements in G to
which g can be moved by the action of elements g′ ∈ Gx. Importantly, we can show the following:

Property 1. Any group G is a union of disjoint orbits Gxg of equal cardinality.

Proof. Let us consider the equivalence relation ∼ on G induced by the action of the stabilizer Gx,
defined as g ∼ h ⇐⇒ h ∈ Gxg. The orbits Gxg are the equivalence classes under this relation,
and the set of all orbits of G under the action of Gx forms a partition of G (i.e., the quotient G/Gx).
Furthermore, since Gx ≤ G and right multiplication by some g ∈ G is a faithful action of G on itself,
we have |Gxg| = |Gx| for all g ∈ G, which shows that all orbits Gxg have equal cardinality.

20

The partition of group G into disjoint orbits Gxg is illustrated in the first and second panel of Figure 3.
We now show the following:

Property 2. G equivariant pω(g|x) assigns identical probability to all elements on each orbit Gxg.

Proof. With equivariance, we have pω(g|x) = pω(g
′g|g′·x). Since g′·x = x for all g′ ∈ Gx, we have

pω(g|x) = pω(g
′g|x) for all g′ ∈ Gx; all elements on orbit Gxg have an identical probability.

Property 2 characterizes probability distributions over G that can be expressed with pω(g|x), which
we illustrate in the third panel of Figure 3. Intuitively, pω(g|x) assigns constant probability densities
over each of the orbit Gxg that partitions G as shown in Property 1. We now prove Proposition 1 and
Proposition 2 by showing that pω(g|x) can become frame and canonicalizer as special cases:

Proposition 1. Probabilistic symmetrization with G equivariant distribution pω(g|x) can become
frame averaging [74] by assigning uniform density to a set of orbits Gxg for some group elements g.

Proof. A frame is defined as a set-valued function F : X → 2G \ ∅ that satisfies G equivariance
F (g · x) = gF (x) [74]. For some frame F , frame averaging is defined as follows:

1

|F (x)|
∑

g∈F (x)

[
g · fθ(g−1 · x)

]
, (40)

which can be equivalently written as the below expectation:

Eg∼Unif(F (x))

[
g · fθ(g−1 · x)

]
. (41)

From Theorem 3 of [74], we have that F (x) is a disjoint union of equal size orbits Gxg. Therefore,
Unif(F (x)) is a uniform probability distribution over the union of the orbits. This can be expressed
by a G equivariant distribution pω(g|x) by assigning identical probability over all orbits in the
frame F and zero probability to all orbits not in the frame (illustrated in the fourth panel of Figure 3).
Therefore, probabilistic symmetrization can become frame averaging.

Proposition 2. Probabilistic symmetrization with G equivariant distribution pω(g|x) can become
canonicalization [41] by assigning uniform density to a single orbit Gxg of some group element g.

Proof. A canonicalizer is defined as a (possibly stochastic) parameterized map Cω : X → G
that satisfies relaxed G equivariance Cω(g · x) = gg′Cω(x) for some g′ ∈ Gx [41]. For some
canonicalizer Cω , canonicalization is defined as follows:

g · fθ(g−1 · x), g = Cω(x). (42)

From relaxed G equivariance, we have Cω(x) = g′Cω(x) for some g′ ∈ Gx. A valid choice for
the canonicalizer Cω is a stochastic map that samples from the uniform distribution over a frame
Cω(x) ∼ Unif(Fω(x)) where the frame is assumed to always provide a single orbit Fω(x) = Gxg.
In this case, canonicalization is equivalent to a 1-sample estimation of the below expectation:

Eg∼Unif(Fω(x))

[
g · fθ(g−1 · x)

]
. (43)

Furthermore, uniform distribution over the single-orbit frame Unif(Fω(x)) can be expressed by a
G equivariant distribution pω(g|x) by assigning nonzero probability to the single orbit Gxg and
assigning zero probability to the rest (illustrated in the last panel of Figure 3). Therefore, probabilistic
symmetrization can become canonicalization.

A.2 Extended Related Work (Continued from Section 2.4)

Our work draws inspiration from an extensive array of prior research, ranging from equivariant
architectures and symmetrization to general-purpose deep learning with transformers. This section
outlines a comprehensive review of these fields, spotlighting ideas specifically relevant to our work.

21

Equivariant Architectures Equivariant architectures, defined by the group equivariance of their
building blocks, have been a prominent approach for equivariant deep learning [12, 10]. These
architectures have been primarily developed for data types associated with permutation and Euclidean
group symmetries, including images [18, 19], sets, graphs, and hypergraphs [5, 57, 8], and geometric
graphs [23, 84, 91]. Additionally, they have been extended to more general data types under arbitrary
finite group [78] and matrix group symmetries [30]. However, they face challenges such as limited
expressive power [101, 56, 64, 105, 40] and architectural issues like over-smoothing [70, 14, 69] and
over-squashing [92] in graph neural networks. Our work aims to develop an equivariant deep learning
approach that relies less on equivariant architectures, to circumvent these limitations and enhance
parameter sharing and transfer across varying group symmetries.

Symmetrization Our approach is an instance of symmetrization for equivariant deep learning
which aims to achieve group equivariance using base models with unconstrained architectures. This
is in general accomplished by averaging over specific group transformations of the input and output
such that the averaged output exhibits equivariance. This allows us to leverage the expressive power
of the base model e.g., achieve universal approximation using an MLP [35, 20] or a transformer [104],
and potentially share or transfer parameters across different group symmetries. Existing literature has
explored the choices of group transformations and base models for symmetrization. A straightforward
approach is to average over the entire group [102], which is suitable for small, finite groups [4, 65, 42,
94] and requires sampling-based estimation for large groups such as permutations [67, 68, 88, 21].
Recent studies have attempted to identify smaller, input-dependent subsets of the group for averaging.
Frame averaging [74] employs manually discovered set-values functions called frames, which still
demand sampling-based estimation for certain worst-case inputs. Canonicalization [41] utilizes a
single group transformation predicted by a neural network, but sacrifices strict equivariance. Our
approach jointly achieves equivariance and end-to-end learning by utilizing parameterized, input-
conditional equivariant distributions. Furthermore, our approach is one of the first demonstrations of
symmetrization for the permutation group in real-world graph recognition task. Concerning the base
model, previous work mostly examined small base models like an MLP or partial symmetrization of
already equivariant models like GNNs. Few studies have explored symmetrizing pre-trained models
for small finite groups [4, 3], and to our knowledge, we are the first to investigate symmetrization of
a pre-trained standard transformer for permutation groups or any large group generally.

Transformer Architectures A significant motivation of our work is to combine the powerful
scaling and transfer capabilities of the standard transformer architecture [96] with equivariant deep
learning. The transformer architecture has driven major breakthroughs in language and vision do-
mains [96, 24, 13, 75], and proven its ability to learn diverse modalities [39, 38] or transfer knowledge
across them [85, 54, 82, 25, 71, 52]. Although transformer-style architectures have been developed
for symmetric data modalities like sets [51], graphs [103, 45, 43, 50, 66, 63], hypergraphs [17, 44],
and geometric graphs [31, 55], they often require specific architectural modifications to achieve equiv-
ariance to the given symmetry group, compromising full compatibility with transformer architectures
used in language and vision domains. Apart from a few studies on linguistic graph encoding with
language models [79], we believe we are the first to propose a general framework that facilitates full
compatibility of the standard transformer architecture for learning symmetric data. For example, we
have shown that a pre-trained vision transformer could be repurposed to encode graphs.

Learning Distribution of Data Augmentations Since our approach parameterizes a distribution
pω(g|x) on a group for symmetrization of form ϕθ,ω(x) = Eg[g · fθ(g−1 ·x)] and learns it from data,
one may find similarity to Augerino [7] and related approaches [77, 81, 95, 93, 80, 37] that learn
distributions over data augmentations (e.g., pω(g)) for a similar symmetrization. The key difference
is that, while these approaches aim to discover underlying (approximate) symmetry constraint from
data and searches over a space of different group symmetries, our objective aims to obtain an exact
G equivariant symmetrization ϕθ,ω(x) given the known symmetry group G of data (e.g., G = Sn

for graphs). Because of this, the symmetrizing distribution has to be designed differently. In our
case, we parameterize the distribution pω(g|x) itself to be equivariant to a specific given group G,
while for augmentation learning approaches, the distribution pω(g) is parameterized for a different
purpose of covering a range of different group symmetry constraints and their approximations (e.g.,
a set of 2D affine transformations [7]). This leads to advantages of our approach if the symmetry
group G is known, as (1) our approach can learn non-trivial and useful distribution pω(g|x) per input
data x while keeping the symmetrized function ϕθ,ω(x) exactly G equivariant, while augmentation

22

Table 5: Overview of the datasets.

Dataset Symmetry Domain Task Feat. (dim)
GRAPH8c

Sn Invariant Graph Isomorphism Graph Separation Adj. (1)EXP
EXP-classify Graph Classification

n-body Sn × E(3) Equivariant Physics Position Regression Pos. (3) + Vel. (3) + Charge (1)

PATTERN Sn Equivariant Mathematical Modeling Node Classification Rand. Node Attr. (3) + Adj. (1)

Peptides-func Sn Invariant Chemistry Graph Classification Atom (9) + Bond (3) + Adj. (1)Peptides-struct Graph Regression

PCQM-Contact Sn Equivariant Quantum Chemistry Link Prediction Atom (9) + Bond (3) + Adj. (1)

Table 6: Statistics of the datasets.

Dataset Size Max # Nodes Average # Nodes Average # Edges
GRAPH8c 11,117 8 8 28.82
EXP 1,200 64 44.44 110.21EXP-classify

n-body 7,000 5 5 Fully Connected

PATTERN 14,000 188 117.47 4749.15

Peptides-func 15,535 444 150.94 307.30Peptides-struct

PCQM-Contact 529,434 53 30.14 61.09

learning does not guarantee equivariance for a given group in general and often has to reduce to trivial
group averaging pω = Unif(G) to be exactly G equivariant, and (2) while augmentation learning
has to employ regularization [7] or model selection [37] to prevent collapse to trivial symmetry
that is the least constrained and would fit the training data most easily [37], our approach fixes and
enforces equivariance for the given symmetry groupG by construction, which allows us to use regular
maximum likelihood objective for training without the need to address symmetry collapse.

A.3 Experimental Details (Section 3)

We provide details of the datasets and models used in our experiments in Section 3. The details of the
datasets from the original papers [2, 1, 27, 28, 31, 84] can be found in Table 5 and Table 6.

A.3.1 Implementation Details of pω for Symmetric Group Sn (Section 3.1, 3.3, 3.4)

In all experiments regarding the symmetric group Sn, we implement the Sn equivariant distribution
pω(g|x), i.e., qω : (x, ϵ) 7→ Pg as a 3-layer GIN with 64 hidden dimensions [101] that has around
25k parameters. Specifically, given a graph x with node features X ∈ Rn×din and adjacency matrix
A ∈ Rn×n,7 we first augment a virtual node [32] which is connected to all nodes to facilitate global
interaction while retaining Sn equivariance, as follows:

X′ = [X;v] , A′ =

[
A 1
1⊤ 0

]
, (44)

where the feature of the virtual node v ∈ Rdin is a trainable parameter. Then, we prepared the input
node features H ∈ R(n+1)×din to the GIN as H = X′ + ϵ where the noise ϵ ∈ R(n+1)×din is i.i.d.
sampled from Unif[0, η] with scale hyperparameter η. Then, we employ following 3-layer GIN with
64 hidden dimensions to obtain processed node features H′ ∈ R(n+1)×1:

H′ = GINConv64,64,1 ◦ GINConv64,64,64 ◦ GINConvdin,64,64(H), (45)

where each GINConvd1,d2,d3 computes below with a two-layer elementwise MLP : Rn×d1 → Rn×d3

with hidden dimension d2, ReLU activation, batch normalization, and trained scalar e:

H 7→ MLP((A′ + (1 + e)I)H). (46)

7We do not utilize edge attributes in equivariant distribution pω , while we utilize them in base model fθ .

23

Then, from the processed node features H′ ∈ R(n+1)×1, we finally obtain the features Z ∈ Rn for
postprocessing by discarding the feature of the virtual node. Then, postprocessing into a permutation
matrix is done with argsort : Z 7→ Pg ∈ Rn×n as in Eq. (8).

Training To backpropagate through Pg for end-to-end training of pω(g|x), we use straight-through
gradient estimator [6] with an approximate permutation matrix P̂g ≈ Pg .8 For this, we first apply L2
normalization Z 7→ Z̄ and use the below differentiable relaxation of the argsort operator [61, 33, 98]:

P̂g = S(−|Z̄1⊤ − 1sort(Z̄)⊤|/τ), (47)

where S(·/τ) is Sinkhorn operator [61] with temperature hyperparameter τ ∈ R+ that performs
elementwise exponential followed by iterative normalization of rows and columns. Following [61],
we use 20 Sinkhorn iterations which worked robustly in all our experiments. For the correctness of
straight-through gradients, it is desired that P̂g closely approximates the real permutation matrix Pg

during training. For this, we choose the temperature τ to be small, 0.01 in general, and following
prior work [98], employ a regularizer on the mean of row- and column-wise entropy of P̂g with a
strength of 0.1 in all experiments. The Sn equivariance of the relaxed argsort Z 7→ P̂g can be shown
in a similar way to Proposition 3 from the fact that elementwise subtraction, absolute, scaling by
−1/τ , exponential, and iterative normalization of rows and columns all commute with Pg′ ∈ Sn.

A.3.2 Implementation Details of pω for Product Group Sn × E(3) (Section 3.2)

In our n-body experiment on the product group Sn × E(3), we implement the Sn × O(3) equivariant
distribution pω(g|x− x̄1⊤), i.e., qω : (x− x̄1⊤, ϵ) 7→ (Pg,Qg) based on a 2-layer Vector Neurons
version of DGCNN with 96 hidden dimensions [23] that has around 7k parameters. Due to the
architecture’s complexity, we focus on describing input and output of the network and postprocessing,
and guide the readers to the original paper [23] for further architectural details. In a high-level, the
Vector Neurons receives position P ∈ Rn×3 and velocity V ∈ Rn×3 of the zero-centered input
x−x̄1⊤ with noises ϵ1, ϵ2 ∈ Rn×3 i.i.d. sampled from normal N (0, η2) with scale hyperparameter η,
and produces features HSn

∈ Rn×3×d1 and HO(3) ∈ Rn×3×d2 with d1 = 1 and d2 = 3 as follows:

HSn ,HO(3) = VN-DGCNN(P+ ϵ1,V + ϵ2). (48)

Then, we apply O(3) invariant pooling on HSn and Sn invariant pooling on HO(3), both supported as
a part of [23], to obtain features for postprocessing ZSn ∈ Rn×1 and ZO(3) ∈ R3×3, respectively:

ZSn
= PoolO(3)(HSn

), ZO(3) = PoolSn
(HO(3)). (49)

Then, postprocessing with argsort : ZSn 7→ Pg ∈ Rn×n and Gram-Schmidt orthogonalization
ZO(3) 7→ Qg ∈ R3×3 is performed identically as described in the main text (Section 2.2). For
the straight-through gradient estimation of the argsort operator, we use relaxed argsort described in
Appendix A.3.1, with the only difference of using the temperature τ = 0.1.

A.3.3 Graph Isomorphism Learning with MLP (Section 3.1)

Base Model fθ For EXP and EXP-classify, the model is given adjacency matrix A ∈ R64×64

and binary node features X ∈ R64 which are zero-padded to maximal number of nodes 64. For
GRAPH8c, the input graphs are all of size 8 without node features, and the model is given adjacency
matrix A ∈ R8×8. For EXP-classify, the prediction target is a scalar binary classification logit.

For the base model for EXP-classify, we use a 5-layer MLP fθ : R64×64+64 → R on flattened and con-
catenated adjacency matrix and node features, with an identical architecture to other symmetrization
baselines (MLP-GA and MLP-FA [74]) as in below:

fθ = FC1,10 ◦ FC10,2048 ◦ FC2048,4096 ◦ FC4096,2048 ◦ FC2048,4160, (50)

where FCd2,d1 : Rd1 → Rd2 denotes a fully-connected layer and ReLU activation is omitted. For
EXP, we drop the last layer to obtain 10-dimensional output. For GRAPH8c, we use the following
architecture fθ : R8×8 → R10 that takes flattened adjacency to produce 10-dimensional output [74]:

fθ = FC10,64 ◦ FC64,128 ◦ FC128,64. (51)
8In PyTorch [72], one can simply replace Pg with (Pg − P̂g).detach()+ P̂g during forward passes.

24

Training For EXP-classify, we train our models with binary cross-entropy loss using Adam
optimizer [46] with batch size 100 and learning rate 1e-3 for 2,000 epochs, which takes around 30
minutes on a single RTX 3090 GPU with 24GB using PyTorch [72]. We additionally apply 200
epochs of linear learning rate warm-up and gradient norm clipping at 0.1, which we found helpful for
stabilizing the training. For the equivariant distribution pω , we use noise scale η = 1. Since EXP and
GRAPH8c concern randomly initialized models, we do not train the models for these tasks.

A.3.4 Particle Dynamics Learning with Transformer (Section 3.2)

Base Model fθ The model is given zero-centered position P ∈ R5×3 and velocity V ∈ R5×3 of 5
particles at a time point with pairwise charge difference C ∈ R5×5 and squared distance D ∈ R5×5.
We set the prediction target as difference of position ∆P ∈ R5×3 after a certain time.

For the base model, we use a 8-layer transformer encoder fθ : R25×8 → R25×3 that operates on
sequences of length 25 with dimension 8. At each prediction, we first organize the input into a single
tensor ∈ R5×5×8 by placing P and V on the diagonals of C and D, and then turn the tensor into
a sequence of 25 tokens ∈ R25×8 by flattening the first two axes. Analogously, we organize the
output of the model into a tensor ∈ R5×5×3 and take the diagonal entries as the predictions. For
the transformer, we use the standard implementation provided in PyTorch [72, 96], with 64 hidden
dimensions, 4 attention heads, GELU activation [34] in feedforward networks, PreLN [100], learnable
1D positional encoding, and an MLP prediction head with 1 hidden layer. The model has around
208k trainable parameters, around 2.3× compared to the GNN backbones of E(3) symmetrization
baselines in the benchmark (GNN-FA and GNN-Canonical.) with 92k parameters.

Training We train our models with MSE loss using Adam optimizer [46] with batch size 100 and
learning rate 1e-3 for 10,000 epochs, which takes around 8.5 hours on a single RTX 3090 GPU with
24GB using PyTorch [72]. We use weight decay with strength 1e-12 and dropout on the distribution
pω with probability 0.08. For the equivariant distribution pω , we use noise scale η = 1.

A.3.5 Graph Pattern Recognition with Vision Transformer (Section 3.3)

Base Model fθ The model is given adjacency matrix A ∈ R188×188 and node features X ∈ R188×3

zero-padded to maximal 188 nodes. The prediction target is node classification logits Y ∈ R188×2.

For the base model, we use a transformer with an identical architecture to ViT-Base [26] that operates
on 224×224 images with 16×16 patch, using configuration from HuggingFace [99] model hub.
We first remove the input patch projection and output head layers, which gives us a backbone
transformer : R(14×14)×768 → R(14×14)×768 on sequences of (224/16) × (224/16) = 14 × 14
tokens. Then, we use the following as the base model fθ : (A,X) 7→ Y:

fθ(A,X) = detokenize (transformer (tokenize(A,X))) , (52)

where, for tokenize : R188×188×1 × R188×3 → R(14×14)×768 we organize the input into a single
tensor ∈ R188×188×4 by placing X on the diagonals of A and apply 2D convolution with kernel size
and stride 14, and for detokenize : R(14×14)×768 → R188×2 we apply transposed 2D convolution
with kernel size and stride 14 to obtain a tensor ∈ R188×188×2 and take its diagonal entries as output.

Training We train our models with binary cross-entropy loss weighted inversely by class size [27]
using AdamW [53] optimizer with batch size 128, learning rate 1e-5, and weight decay 0.01. We train
the models for 25k steps under learning rate warm-up for 5k steps then linear decay to 0 with early
stopping based on validation loss, which usually takes less than 5 hours on 8 RTX 3090 GPUs with
24GB using PyTorch Lightning [29]. For the equivariant distribution pω we use noise scale η = 1
and dropout with probability 0.1. For probabilistic symmetrization that involves sampling-based
estimation, we use sample size 1 for training. For group averaging, sample size 1 for training led to
optimization challenges, and therefore we use sample size 10 for training which yielded better results.

A.3.6 Real-World Graph Learning with Vision Transformer (Section 3.4)

Base Model fθ For Peptides-func/struct, the model is given adjacency matrix A ∈ R444×444, node
features X ∈ R444×64, and edge features E ∈ R444×444×7, zero-padded to maximal 444 nodes. The
prediction target is binary classification logits Y ∈ R10 for Peptides-func, and regression targets

25

Table 7: Supplementary results for Sn invariant graph separation with Sn symmetrized GIN-ID base
function. Baseline scores for GIN-ID-GA and GIN-ID-FA are taken from [74].

method arch. sym. GRAPH8c ↓ EXP ↓ EXP-classify ↑
GIN-ID-GA - Sn 0 0 50%
GIN-ID-FA - Sn 0 0 100%
GIN-ID-Canonical. - Sn 0 0 84%
GIN-ID-PS (Ours) - Sn 0 0 100%

Table 8: Supplementary results for Sn × E(3) equivariant n-body with E(3) symmetrized GNN base
function. Baseline scores for GNN-FA and GNN-Canonical. are from [74] and [41], respectively.

method arch. sym. Position MSE ↓
GNN-FA Sn E(3) 0.0057
GNN-Canonical. Sn E(3) 0.0043
GNN-Canonical. (Reproduced) Sn E(3) 0.00457
GNN-GA Sn E(3) 0.00408 ± 0.00002
GNN-PS (Ours) Sn E(3) 0.00386 ± 0.00001

Y ∈ R11 for Peptides-struct. For PCQM-Contact, the model is given adjacency matrix A ∈ R53×53,
node features X ∈ R53×68, and edge features E ∈ R53×53×6, zero-padded to maximal 53 nodes.
The prediction target is binary edge classification logit Y ∈ R53×53×1.

For the base model, we use a transformer with an identical architecture to ViT-Base that operates
on 14× 14 tokens, same as in Appendix A.3.5. For Peptides-func and Peptides-struct, we use the
following as the base model fθ : (A,X,E) 7→ Y:

fθ(A,X,E) = detokenize[cls] (transformer (tokenize2D(A,E) + tokenize1D(X))) , (53)

where tokenize2D : R444×444×(1+7) → R(14×14)×768 is 2D convolution with kernel size and
stride 32, tokenize1D : R444×64 → R196×768 is 1D convolution with kernel size and stride 3, and
detokenize[cls] performs linear projection of the global [cls] token [26] to the target dimensionality.
For PCQM-Contact, we use the following as base model fθ : (A,X,E) 7→ Y:

fθ(A,X,E) = detokenize2D (transformer (tokenize2D(A,E) + tokenize1D(X))) , (54)

where tokenize2D : R53×53×(1+6) → R(14×14)×768 is 2D convolution with kernel size and stride 4,
tokenize1D : R53×64 → R196×768 is 1D convolution with kernel size and stride 1, and detokenize2D :
R(14×14)×768 → R53×53×1 is transposed 2D convolution with kernel size and stride 4.

Training We train our models with cross-entropy for classification and L1 loss for regression
using AdamW [53] optimizer with batch size 128, learning rate 1e-5 except for PCQM-Contact
where we use 5e-5, and weight decay 0.01. We train the models for 50k steps under learning rate
warm-up for 5k steps then linear decay to 0 with early stopping based on validation loss, which
usually takes less than 12 hours on 8 RTX 3090 GPUs with 24GB using PyTorch Lightning [29]. For
the equivariant distribution pω , we use noise scale η = 1, and use dropout with probability 0.1 except
for PCQM-Contact where we do not use dropout. We use 10 samples for estimation during training.

A.4 Supplementary Experiments (Continued from Section 3)

In this section, we present additional experimental results that supplement the experiments in Section 3
but could not be included in the main text due to space constraints.

A.4.1 Graph Isomorphism Learning (Section 3.1)

In our experiments on graph isomorphism learning in Section 3.1, we mainly experimented for Sn

symmetrization of an MLP. Here, we provide supplementary results on Sn symmetrization of a GIN
base model with node identifiers, following [74]. The results can be found in Table 7. In accordance
with Section 3.1, our approach successfully performs Sn symmetrization of GIN-ID.

26

1 10 50
Train sample size

90

95

100

Test accuracy (%)

Figure 4: Test accuracy of MLP fθ symmetrized by equivariant distribution pω(g|x) trained on
EXP-classify dataset across a range of training sample sizes. Inference sample size is set to 10.

1 10 50
Train sample size

5.0

5.5

6.0

6.5

7.0
Entropy of sampled permutation

Figure 5: Row- and column-wise entropy of aggregated permutation matrices Pg ∼ pω(g|x) after
trained on EXP-classify dataset across a range of training sample sizes. Dashed line indicates entropy
measured with random permutation matrices from Unif(G).

A.4.2 Particle Dynamics Learning (Section 3.2)

In our experiments on n-body dataset in Section 3.2, we experimented for Sn × E(3) symmetrization
using a 1D sequence transformer architecture which has 2.3× parameters compared to baselines. To
provide parameter-matched comparison against baselines in literature, we apply our approach for
E(3) symmetrization of Sn equivariant GNN base model that is widely used in literature [74, 41].
We faithfully follow [74, 41] on the experimental setups including training hyperparameters and
the configuration of GNN base model, and only add E(3) equivariant distribution pω(g|x− x̄1⊤),
i.e., qω : (x − x̄1⊤, ϵ) 7→ Qg by utilizing the 2-layer Vector Neurons architecture described in
Appendix A.3.2 using only its O(3) prediction head. We use 20 samples for training and testing.
The results can be found in Table 8. In accordance with the results in Section 3.2, our approach
outperforms other symmetrization approaches and achieves a new state-of-the-art of 0.00386 MSE.

A.4.3 Effect of Sample Size on Training and Inference

In this section, we provide additional analysis on how the sample size for estimation of symmetrized
function (Eq. (4)) affects training and inference. We use the experimental setup of EXP-classify
(Section 3.1; Sn invariance) and analyze the behavior of MLP-PS with identical initialization and
hyperparameters, only controlling sample sizes ∈ {1, 2, 5, 10, 20, 50} for training. Specifically, we
analyze (1) variance of permutation matrices Pg ∼ pω(g|x) measured indirectly by the entropy of
their aggregation P̄ =

∑
Pg/N as in Section 3.1, (2) sample variance of the unbiased estimator

g · fθ(g−1 · x) of the symmetrized function ϕθ,ω(x) as in Eq. (4), and (3) sample mean and variance

27

1 10 50
Train sample size

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Output variance

1 10 50
Train sample size

10 5

10 3

10 1

101

Loss variance

1 10 50
Train sample size

10 2

10 1

100

Loss mean

1

10

50

200

In
fe

re
nc

e
sa

m
pl

e
siz

e

Figure 6: Variance of estimation of MLP fθ symmetrized by equivariant distribution pω(g|x) and
trained on EXP-classify dataset for a range of training and inference sample sizes.

of the estimated task loss L(y, g · fθ(g−1 · x)) where L is binary cross entropy. All measurements
are repeated 100 times and averaged over the inputs and labels (x,y) of the validation dataset.

Observations are as follows. First, models trained with smaller sample sizes need more iterations to
converge, but after sufficient training (2000 epochs), all achieve > 95% test accuracy when evaluated
with 10 samples (Figure 4). Second, models trained with smaller sample sizes tend to be more sample
efficient, i.e., tend to perform a lower variance estimation. Their distribution pω(g|x) tend to learn
more low-variance permutations (Figure 5), and the models tend to learn low-variance estimation
of output and loss (left and center panels of Figure 6). This indicates that small sample size may
serve as a regularizer that encourages lower variance of the estimator. However, this regularization
effect is not always beneficial in terms of task loss (right panel of Figure 6), as training sample size 1
achieves a poor task loss for all sample sizes presumably due to the optimization challenge caused
by over-regularization. In other words, the sample size for training introduces a tradeoff; a small
sample size takes more training iterations to converge, but serves as a regularizer that encourages
lower variance of the estimator and thus a better inference time sample efficiency. On the other hand,
larger sample sizes for inference consistently benefits all models (Figure 6).

Interestingly, this observed tendency is consistent with the theoretical claims in literature [67, 68]
on the sampling based training of symmetrized models, which we reprise here. When training the
symmetrized model ϕθ,ω(x) in Eq. (4), we cannot directly observe ϕθ,ω(x), but observe samples of
its unbiased estimator g · fθ(g−1 · x). Thus, it can be questionable what objective we are actually
optimizing during the sampling-based training. Based on [67, 68], it turns out that minimizing a
convex loss function L on the estimated output g · fθ(g−1 · x) is equivalent to minimizing an upper
bound to the true objective on the symmetrized output ϕθ,ω(x). This is because our estimation is no
longer unbiased when computing loss, as we have the following from Jensen’s inequality:

Epω(g|x)[L(y, g · fθ(g−1 · x))] ≥ L(y,Epω(g|x)[g · fθ(g−1 · x)]) = L(y, ϕθ,ω(x)). (55)

That is, minimizing the sampling-based loss is minimizing an upper-bound surrogate to the true
objective. It has been claimed that optimizing this upper bound has an implicit low-variance reg-
ularization effect [67, 68], which is consistent with our observations. This also roughly explains
why our distribution pω(g|x) does not collapse to uniform distribution although we do not impose
any low-variance regularization explicitly; training to directly minimize the task loss with samples
implicitly nudges the distribution towards low-variance solutions.

A.4.4 Additional Comparison to Group Averaging

In this section, we provide additional analysis of our approach in comparison to sampling-based
group averaging in terms of sample variance and convergence. We use the experimental setup of
EXP-classify (Section 3.1; Sn invariance) and experiment with MLP-PS and MLP-GA.

We first analyze whether using the equivariant distribution pω(g|x) for symmetrization offers a lower
variance estimation, i.e., a better sample efficiency, compared to group averaging with Unif(G).
This supplements the results in Figure 2 that pω(g|x) learns to produce low-variance permutations
compared to Unif(G). Specifically, we fix a randomly initialized MLP fθ and symmetrize it using our
approach and group averaging. We then measure (1) the sample variance of the unbiased estimator

28

1 10 100 200
Inference sample size

10 9

10 8

10 7

Output variance

GA
PS (Ours)

1 10 100 200
Inference sample size

10 8

10 7

10 6

Loss variance

GA
PS (Ours)

Figure 7: Sample variance of output g · fθ(g−1 · x) (left) and loss L(y, g · fθ(g−1 · x)) (right) of an
identical MLP fθ symmetrized by equivariant distribution (PS) and uniform distribution (GA).

100 1000 2000
Train epoch

10 4

10 3

10 2

10 1

100

101
Gradient direction norm

GA
PS (Ours)

Figure 8: Norm of full gradient over training epochs with respect to the parameters of an identically
initialized MLP symmetrized by equivariant distribution (PS) and uniform distribution (GA).

g · fθ(g−1 · x) of the symmetrized function (Eq. (1) and Eq. (4)), and (2) the sample variance of
the estimated task loss L(y, g · fθ(g−1 · x)) where L is binary cross entropy. All measurements are
repeated 100 times and averaged over the inputs and labels (x,y) of the validation dataset. The results
are in Figure 7, showing that symmetrization with equivariant distribution pω(g|x) consistently offers
a lower variance estimation than group averaging across inference sample sizes.

In addition, we analyze whether the equivariant distribution pω(g|x) for symmetrization offers more
stable gradients for the base function fθ during training compared to group averaging, as conjectured
in Section 2. For this, we fix a randomly initialized MLP fθ and symmetrize it using our approach
and group averaging. For every few training epochs, we measure the full gradient of the task loss over
the entire training dataset with respect to the parameters of the base MLP fθ. This averages out the
variance from individual data points and provides the net direction of the gradient on the base function
offered by pω(g|x) or Unif(G). The results are in Figure 8, showing that that symmetrization with
equivariant distribution pω(g|x) offers a consistently larger magnitude of the net gradient, while
group averaging with Unif(G) leads to near-zero net gradients. This indicates, for Unif(G), the
gradients from each training data instances are oriented in a largely divergent manner and therefore
the training signal is collectively not very informative, while using pω(g|x) for symmetrization leads
to more consistent gradient across training data instances, i.e., it offers a more stable training signal.

A.4.5 Additional Comparison to Canonicalization

In this section, we provide additional analysis of our approach in comparison to canonicalization [41]
that uses a single group element g from an equivariant canonicalizer Cω : x 7→ ρ(g). The main claim
is that there always exist certain inputs that canonicalization fails to guarantee exact G equivariance,
while our approach guarantees equivariance for all inputs in expectation as in Theorem 1.

29

0

1

2

3

4

5

6
0.0

0.2

0.4

0.6

0.8

1.0

(a) Inner-symmetric nodes

0

1

2

3

4

5

6 0.025

0.020

0.015

0.010

0.005

0.000

0.005

(b) MLP-PS (Ours)

0

1

2

3

4

5

6 0.02

0.01

0.00

0.01

0.02

(c) MLP-Canonical.

Figure 9: A graph x with stabilizer subgroup Gx
∼= S6.

0

1

2

3

4

5
6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) Inner-symmetric nodes

0

1

2

3

4

5
6

0.02

0.01

0.00

0.01

(b) MLP-PS (Ours)

0

1

2

3

4

5
6

0.02

0.01

0.00

0.01

0.02

(c) MLP-Canonical.

Figure 10: A graph x with stabilizer subgroup Gx
∼= S3 × S2.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0

2

4

6

8

(a) Inner-symmetric nodes

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0.010

0.005

0.000

0.005

(b) MLP-PS (Ours)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0.03

0.02

0.01

0.00

0.01

0.02

(c) MLP-Canonical.

Figure 11: A graph x with stabilizer subgroup Gx
∼= D4.

More specifically, let us recall the definition ofG equivariant canonicalizer from [41]. A canonicalizer
Cω is G equivariant if Cω(g · x) = ρ(g)Cω(x) for all g ∈ G and x ∈ X . Consider an input x which
has a non-trivial stabilizer Gx = h ∈ G|h · x = x, i.e., has inner symmetries. It can be shown that
equivariant canonicalizers are ill-defined for these inputs. To see this, let g1 = gh1 and g2 = gh2
for some g ∈ G and any h1, h2 ∈ Gx where h1 ̸= h2. Then we have Cω(g1 · x) = Cω(gh1 · x) =
Cω(g · x) = Cω(gh2 · x) = Cω(g2 · x), implying that ρ(g1)Cω(x) = ρ(g2)Cω(x). Since g1 ̸= g2,
this contradicts the group axiom, and thus an equivariant canonicalizer cannot exist for inputs with
non-trivial inner-symmetries. To handle all inputs, canonicalization [41] adopts relaxed equivariance:
a canonicalizer Cω satisfies relaxed equivariance if Cω(g · x) = ρ(gh)Cω(x) up to arbitrary action
from the stabilizer h ∈ Gx. As a result, the symmetrization ϕθ,ω(x) = g · fθ(g−1 · x) performed
using a relaxed canonicalizer Cω only guarantees relaxed equivariance ϕθ,ω(g · x) = gh · ϕθ,ω(x) up
to arbitrary action from the stabilizer h ∈ Gx (Theorem A.2 of [41]). In other words, canonicalization
does not guarantee equivariance for inputs with inner symmetries.

To visually demonstrate this, we perform a minimal experiment using several graphs x with non-
trivial stabilizers Gx, i.e., inner symmetries, taken from [90]. We fix a randomly initialized MLP

30

fθ : Rn×n → Rn and symmetrize it using our approach and canonicalization. When symmetrized,
the MLP is expected to provide scalar embedding of each node, which we color-code for visualization.
The results are in Figures 9, 10, and 11. For each graph, we illustrate three panels: the leftmost one
illustrates the color-coding of the inner symmetry of nodes (automorphism), the middle one illustrates
node embedding from MLP-PS, and the rightmost one illustrates embedding from MLP-Canonical.
If a method is G equivariant, it is expected to give identical embeddings for automorphic nodes, since
an equivariant model cannot distinguish them in principle [88]. As in the Figures 9, 10, and 11, in the
presence of inner symmetry (left panels), MLP with probabilistic symmetrization (middle panels)
achieves G equivariance and produces close embeddings for automorphic nodes. However, the same
MLP with canonicalization produces relatively unstructured embeddings (right panels). The result
illustrates a potential advantage of probabilistic symmetrization over canonicalization when learning
data with inner symmetries, which is often found in applications such as molecular graphs [60].

A.5 Limitations and Broader Impacts (Continued from Section 4)

While the equivariance, universality, simplicity, and scalability of our approach offers a potential
for positive impact for deep learning for chemistry, biology, physics, and mathematics, it also has
limitations and potential negative impacts. The main limitation of our work is that it trades off certain
desirable traits in equivariant deep learning in favor of achieving architecture agnostic equivariance.
For example, (1) our approach is less interpretable compared to equivariant architectures due to
less structured computations in the base model, (2) our approach is presumably less parameter
and data efficient compared to equivariant architectures due to less imposed prior knowledge on
parameterization, and (3) our approach is expected to be challenged when input size generalization
is required, partially because the maximum input size has to be specified in advance. Another
genuine weakness compared to canonicalization is that, our method is stochastic and therefore incurs
O(N) cost when using N samples for estimation. These limitations might lead to potential negative
environmental impacts, since less interpretability and lower efficiency implies higher reliance on
larger models with more computation cost. We acknowledge the aforementioned limitations and
impacts of our work, and will make effort to address them in follow-up research. For example,
we believe data efficiency of our approach could improve with pretrained knowledge transfer from
other domains, as it would impose a strong prior on the hypothesis space and may work similarly
to architectural priors that benefit data efficiency. Also, for the sampling cost, since the sampling is
completely parallelizable and analogous to using a larger batch size, we believe it can be overcome to
some degree by leveraging parallel computing techniques developed for scaling batch size.

31

	Appendix
	Proofs
	Proof of Theorem 1 (Section 2.1)
	Proof of Theorem 2 (Section 2.1)
	Proof of Theorem 3 (Section 2.1)
	Proof of Validity for Implemented Equivariant Distributions p_ω (Section 2.2)
	Proof of Proposition 1 and Proposition 2 (Section 2.4)

	Extended Related Work (Continued from Section 2.4)
	Experimental Details (Section 3)
	Implementation Details of p_ω for Symmetric Group S_n (Section 3.1, 3.3, 3.4)
	Implementation Details of p_ω for Product Group S_n × E(3) (Section 3.2)
	Graph Isomorphism Learning with MLP (Section 3.1)
	Particle Dynamics Learning with Transformer (Section 3.2)
	Graph Pattern Recognition with Vision Transformer (Section 3.3)
	Real-World Graph Learning with Vision Transformer (Section 3.4)

	Supplementary Experiments (Continued from Section 3)
	Graph Isomorphism Learning (Section 3.1)
	Particle Dynamics Learning (Section 3.2)
	Effect of Sample Size on Training and Inference
	Additional Comparison to Group Averaging
	Additional Comparison to Canonicalization

	Limitations and Broader Impacts (Continued from Section 4)

