
A Prototype-oriented Clustering for Domain Shift
with Source Privacy: Appendix

A FULL EXPERIMENTAL RESULTS

A.1 STANDARD SETTING

Table 6: Clustering accuracy (%) on different datasets for ResNet-18-based methods (supervised
pre-training for all methods below the mid line) and (random initialization for all methods above the
mid line).

Settings Office-31 Office-Home PACS

R → A R →W R → D Avg R → Ar R → Cl R → Pr R → Rw Avg R → P R → A R → C R → S Avg

DeepCluster 19.6 18.9 18.7 19.1 8.9 11.1 16.9 13.3 12.6 27.9 22.2 24.4 27.1 25.4
IIC 31.9 37.0 34.0 34.4 12.0 15.2 22.5 15.9 16.4 70.6 39.8 39.6 46.6 49.2

ACIDS 33.4 37.5 36.1 35.7 12.0 16.2 23.9 15.7 17.0 64.4 42.1 44.5 51.1 50.5

PO 14.1± 1.6 17.9± 2.0 18.3± 2.9 16.8 11.4± 1.6 9.0± 1.6 12.9± 2.8 10.8± 1.7 11.0 30.5± 3.1 24.1± 0.6 19.8± 3.7 20.8± 1.7 23.8
SO 34.5± 0.5 46.7± 2.9 43.0± 2.9 41.4 23.6± 1.6 15.6± 1.9 23.1± 3.7 21.8± 2.9 21.0 30.8± 8.2 35.7± 3.9 27.6± 8.3 26.0± 3.7 30.0
TO 38.0± 3.2 46.6± 1.6 45.3± 1.5 43.3 21.3± 2.6 12.2± 0.7 30.6± 4.1 24.2± 0.7 22.1 88.4± 3.9 56.5± 4.1 56.5± 11.1 49.1± 2.8 62.6
AO 42.8± 0.9 58.4± 3.7 55.8± 1.9 52.3 30.0± 1.7 22.7± 1.6 29.3± 4.1 24.4± 2.6 26.6 91.5± 5.9 47.7± 5.7 52.3± 1.2 49.1± 3.0 60.2

PCD 46.8± 1.7 60.0± 2.6 57.8± 5.9 54.9 33.3± 1.0 24.4± 1.5 31.4± 4.7 28.1± 2.5 29.3 92.6± 2.4 49.7± 5.0 56.7± 2.6 53.4± 5.9 63.4

Table 7: Clustering accuracy (%) on different datasets for ResNet-18-based methods (supervised
pre-training).

Settings PACS

R → P R → A R → C R → S Avg

ACIDS 80.9 48.2 50.5 56.7 59.1

PCD 92.6 49.7 56.7 53.4 63.4

Table 8: Clustering accuracy (%) on different initialization strategies for ResNet-50-based methods
(supervised pre-training).

Settings PACS

R → P R → A R → C R → S Avg

Self-supervised pre-training 82.1 53.4 50.8 43.6 57.5

Supervised pre-training 93.3 54.6 59.1 56.8 66.0

Table 9: Clustering accuracy (%) on different datasets for ResNet-50-based methods (self-supervised
pre-training).

Settings Office-31 Office-Home PACS

R → A R →W R → D Avg R → Ar R → Cl R → Pr R → Rw Avg R → P R → A R → C R → S Avg

PO 13.5± 0.9 16.7± 0.3 19.3± 2.4 16.5 10.5± 0.6 8.4± 0.2 10.5± 0.7 9.1± 0.9 9.6 28.3± 7.4 22.9± 2.6 24.0± 1.2 29.1± 2.3 26.1
SO 19.0± 5.0 26.3± 2.0 27.5± 3.0 24.3 18.3± 1.2 11.2± 0.3 16.4± 1.3 16.7± 1.7 15.7 40.7± 12.2 25.0± 1.4 29.7± 5.7 35.0± 5.0 32.6
TO 31.6± 1.8 34.3± 4.3 33.7± 2.8 33.2 17.9± 2.0 10.1± 0.1 20.7± 1.9 16.6± 1.8 16.3 80.4± 6.8 51.9± 2.4 44.8± 1.3 32.8± 1.3 52.5
AO 33.3± 0.6 37.6± 5.3 41.9± 2.7 37.6 21.7± 2.2 17.9± 0.8 20.8± 3.7 27.5± 3.4 22.0 80.0± 3.8 38.9± 3.6 55.6± 3.4 43.5± 3.7 54.5

PCD 37.8± 1.5 48.2± 5.4 51.0± 4.8 45.6 23.8± 0.9 18.4± 0.4 30.6± 1.5 27.6± 1.2 25.1 82.1± 4.0 53.4± 4.4 50.8± 4.5 43.6± 4.7 57.5

A.2 MODEL TRANSFER SETTING

Table 10: Clustering accuracy (%) on Office-31 for different model transfer methods.

Settings ViT-B/16 (ssl)→ ResNet-50 (ssl) ViT-B/16 (ssl)→ ResNet-50 (sup) ViT-B/16 (ssl)→ ResNet-18 (sup)

R → A R →W R → D Avg R → A R →W R → D Avg R → A R →W R → D Avg

PO 20.1± 0.2/13.5± 0.9 26.7± 0.8/16.7± 0.3 27.2± 0.3/19.3± 2.4 24.7/16.5 20.1± 0.2/15.7± 0.7 26.7± 0.8/24.2± 3.5 27.2± 0.3/18.8± 2.2 24.7/19.6 20.1± 0.2/14.1± 1.6 26.7± 0.8/17.9± 2.0 27.2± 0.3/18.3± 2.9 24.7/16.8
SO 43.2± 5.0 46.4± 4.5 37.2± 9.0 42.3 43.2± 5.0 46.4± 4.5 37.2± 9.0 42.3 43.2± 5.0 46.4± 4.5 37.2± 9.0 42.3±
TO 32.6± 1.8 34.3± 4.3 33.7± 2.8 33.5 43.7± 1.6 55.8± 2.1 52.0± 3.8 50.5 38.0± 3.2 45.3± 1.6 46.6± 1.5 43.3
AO 50.6± 3.7 49.7± 4.0 36.4± 5.0 45.6 52.5± 3.5 53.7± 1.9 44.2± 4.1 50.1 53.0± 3.8 47.2± 3.3 43.9± 4.9 48.0

PCD 51.7± 2.9 51.7± 2.0 41.8± 3.2 48.4 54.4± 2.4 60.8± 2.1 49.2± 3.3 54.8 54.6± 2.5 53.6± 5.4 46.7± 4.8 51.6

A.3 LIMITED-DATA AND CLUSTER-IMBALANCED AND SETTING

Due to space constraints, we provide additional results for the sub-sampled versions of all three
datasets in the appendix. PCD again outperforms other alternative methods consistently. AO, on
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Table 11: Clustering accuracy (%) on sub-sampled versions of different datasets for ResNet-50-based
methods (self-supervised pre-training).

Settings Office-31 Office-Home PACS

R → sub-A R → sub-W R → sub-D Avg R → sub-Ar R → sub-Cl R → sub-Pr R → sub-Rw Avg R → sub-P R → sub-A R → sub-C R → sub-S Avg

PO 14.6± 1.2 16.7± 1.4 21.5± 1.5 17.6 12.5± 0.8 9.3± 0.8 14.4± 1.1 12.2± 1.3 12.1 43.0± 8.9 32.3± 5.9 29.1± 1.1 39.8± 3.7 36.1
SO 21.1± 3.0 32.5± 2.6 36.0± 3.2 29.9 26.2± 1.3 19.5± 0.3 23.9± 1.0 26.9± 1.1 24.1 54.8± 4.4 37.8± 4.2 41.0± 5.5 47.2± 6.8 45.2
TO 31.4± 3.0 41.9± 3.6 45.1± 3.1 39.5 21.6± 1.8 11.9± 1.0 28.7± 1.3 22.8± 5.3 21.2 65.1± 2.8 46.4± 2.3 47.8± 5.4 40.9± 1.2 50.0
AO 34.7± 3.5 40.8± 3.9 43.9± 3.6 39.8 28.1± 0.6 21.8± 0.6 30.3± 2.6 29.4± 2.1 27.4 65.4± 5.4 43.2± 6.7 51.1± 1.8 43.4± 2.3 50.7

PCD 37.8± 3.6 46.4± 3.3 47.0± 3.7 43.7 28.7± 1.0 22.3± 0.4 32.7± 2.6 31.2± 3.2 28.7 66.1± 4.7 48.0± 1.5 51.8± 2.0 43.4± 1.9 52.4

average, performs better than TO, meaning that knowledge from the source can benefit target training.
Similarly, SO improves upon PO in all cases. PCD achieves higher clustering accuracy than AO
(1− 4%), illustrating that target model refinement is crucial for PCD’s success.

A.4 ABLATION STUDY

Table 12: Full ablation study on Office-31 dataset.

1lightgraylightgray
Settings R →W diff R → A diff R → D diff

Full 60.0 0.0 46.8 0.0 57.8 0.0
w/o prototype clustering 49.7 −10.3 43.2 −3.6 53.2 −4.6

w/o MI 52.7 −7.3 39.1 −7.7 54.79 −3.01
w/o CutMix 54.5 −5.5 46.1 −0.7 54.6 −3.2

w/o Temporal Ensemble 58.3 −1.7 46.6 −0.2 57.3 −0.5
w/o model privacy 63.1 3.1 49.2 2.4 61.4 3.6

pooled source 57.8 −2.2 45.6 −1.2 57.0 −0.8

Table 13: Clustering accuracy (%) on the taskR→W (Office-31) under different variants (ResNet-
18).

Full w/o prototype clustering w/o MI w/o CutMix w/o Temporal Ensemble w/o model privacy pooled source

60.0± 2.6 49.7± 2.8 52.7± 3.0 54.5± 5.2 58.3± 2.4 63.1± 2.1 57.8± 2.5

B SENSITIVITY PLOT

In Figure 4, we plot the sensitivity of the target clustering accuracy when we vary the coefficient in
front of the loss. We can see that our method is not sensitive to different values of the coefficients
except for when the λmix coefficient is set to 5. This result is expected since the λmix is used as a
regularization term and should not be set too high. We also observe that the performance can get even
better via oracle validation by setting the λmi to 2 or 5. However, we set the coefficient to 1 for all
three losses for all experiments.

C RUNNING TIME AND PARAMETER SIZE

Table 14: Number of parameters and average running time per step for different clustering approaches
for ResNet-18-based models.

Methods Parameter size (millions) Running time (s/step)

ACIDS 11.94 M head1 - 0.52 s/step / head2 - 0.44 s/step
PCD 11.32 M 0.16 s/step

D CONNECTION WITH DEEPCLUSTER AND SELA

Caron et al. (2018) propose DeepCluster to perform clustering and representation learning simulta-
neously. This method alternates between K-means for clustering and cross-entropy minimization
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Figure 4: Sensitivity plot for the coefficient of the losses. We fix the coefficient of the two losses to
1.0 while varying the third loss from 0.6 to 5.0 and plot the clustering accuracy on the target data.

Table 15: Average running time per step for different clustering approaches for ResNet-18-based
models.

ACIDS PCD

head1 - 0.52 s/step / head2 - 0.44 s/step 0.16 s/step

for representation learning. While compatible with deep learning frameworks, the approach does
have an obvious degenerate solution where all the samples get assigned to one cluster, yielding a
constant representation. To overcome this, Asano et al. (2019) invent SeLa, which is similar to
DeepCluster in the cross-entropy minimization step but differs from it in the pseudo-label assignment
step. The authors explain that solving the K-means problem with equal partitioning constraints
can avoid the degenerate solution. Asano et al. (2019) further recognize this as an instance of an
optimal transport problem. Our clustering method is similar to SeLa in that we also solve the optimal
transport problem during the pseudo-label assignment step. Unlike SeLa, we do not use the simplistic
assumption that each cluster contains an equal number of data points. Instead, we dynamically update
the cluster proportions using the predicted cluster probabilities. We also offer the interpretation of our
method from the distribution alignment perspective. Moreover, our method is designed specifically
for multi-domain data, and we also explore the use of our framework under the domain shift scenario.

E PSEUDO-CODE

F FULL IMPLEMENTATION DETAILS

We follow the standard protocols for source-free unsupervised domain adaptation (Liang et al., 2020).
Specifically, we use mini-batch SGD with a momentum of 0.9 and weight decay of 0.001. Both
source and target encoders are initialized with ImageNet pre-trained networks (Russakovsky et al.,
2015), but the prototypes are initialized with a random linear layer. The initial learning rates are set
to 0.001 for the pre-trained encoders and 0.01 for the randomly initialized layer. The learning rates,
η, follows the following schedule: η = η0(1 + 10p)−0.75 where η0 is the initial learning rate. We use
the batch size of 64 in both source and target learning. The initial value β0 to learn domain-specific
proportions is set to 0.9999 for source clustering and 0.99 for target clustering in all settings. We
set the entropic regularization parameter, ϵ, to 0.01. The concentration parameter, α, in the CutMix
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Algorithm 1: Pseudo code for our framework.
1. Source model training
Input: source data - X s = {X s

d }Dd=1, source model - Gs = Cµs(Fθs(.)) (a randomly initialized
Cµs and a pre-trained Fθs )
Output: updated θs, µs

for t = 1 to T do
• Sample a mini-batch of source data
• Update the proportions B with Eq. (2)
• Solve the optimal transport problem in Eq. (1) to obtain the transport map for each domain
• Update the encoder and prototypes using Eq. (4) with the transport map from the previous step

end for
2. Target model clustering
Input: target data - X t = {xt

j}
nt
j=1, cluster labels from the source model - Gs(xt), target model -

Gt = Cµt(Fθt(.)) (a randomly initialized Cµt and a pre-trained Fθt )
Output: updated θt, µt

for t = 1 to T do
• Sample a mini-batch of target data
• Refine the hard-label with label smoothing and temporal ensemble
• Update the the target model with the loss in Eq. (2.3.1)

end for
3. Target model refinement
Input: X t = {xt

j}
nt
j=1, target model - Gt (Cµt and Fθt from step 2’s output)

Output: updated θt, µt

for t = 1 to T do
• Sample a mini-batch of target data
• Update the proportions B with Eq. (2)
• Solve the optimal transport problem in Eq. (1) to obtain the transport map for the target
domain
• Update the encoder and prototype using Eq. (2.3.2) with the transport map from the previous
step

end for

loss is set to 0.3. The temporal ensemble coefficient, τ , is equal to 0.6. The source model and
hyper-parameters are selected using the validation set of the source domain. The target model is
trained using all the target data. We run our method with three different random seeds to calculate the
standard deviation. We implement our method in PyTorch.
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