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1 OVERVIEW
This supplementary material serves to provide further explanations
and results to complement themainmanuscript. Initially, we discuss
how to add additional visual features to our model in Section 2.
Subsequently, in Section 3, we present more implementation details
regarding how to train our model and how to detect video relations
during inference. Further ablations are outlined in Section 4. Finally,
we include extra visualization examples in Section 5.

2 ADDING ADDITIONAL FEATURES
Our VrdONE utilizes a pretrained object detector [2] to extract
visual features 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑁 } for entities, together with their
corresponding spatial positions Θ = {𝜃1, 𝜃2, ..., 𝜃𝑁 }, where 𝑁 de-
notes the total entity count in a single video. For each subject-object
pair, we process their features (𝑓𝑠 , 𝜃𝑠 , 𝑓𝑜 , 𝜃𝑜 ) using the Bilateral
Spatiotemporal Aggregation (BSA) Module to fully perceive spa-
tiotemporal interactions and integrate the dual entities into unified
features. Subsequently, a one-stage relation detector is applied to
encode the features across multiple scales and decode them for
both relation classification and temporal boundary localization
simultaneously.

In TABLE 1 of the main manuscript, we augment our VrdONE
model with additional visual features extracted from CLIP [5]. This
process is done before the BSA, which merges visual features from
different sources to enhance their representation. By cropping the
original images based on 𝜃𝑖 , we employ CLIP image encoder to
encode the cropped images into powerful visual feature representa-
tions 𝑓 𝑐

𝑖
. A simple fusion method is applied by a multilayer percep-

tron (MLP), which is

𝑓𝑖 := MLP(Concat(𝑓𝑖 , 𝑓 𝑐𝑖 )), (1)

where Concat(·, ·) is concatenation along feature dimensions, and
:= means the old ones will be replaced by the new ones. Fused fea-
tures replace the original ones and undergo subsequent processing
by the BSA and one-stage relation detector. Incorporating extra
visual features demonstrates further improvement. More designs
of feature integration are reserved for future exploration.

3 MORE IMPLEMENTATION DETAILS
In this section, we first introduce more training and inferencing
details on howwe conduct the experiments on VidOR and Imagenet-
VidVRD.

3.1 VidOR
Parameter Settings. We initialize the feature dimension 𝐶 as 512,
which is then projected to 256 at the beginning of the decoder.
The maximum length of overlapped subject-object durations 𝑙𝑠𝑜
is set to 512. For those overlapped durations that are less than
512, we mask the extra parts to prevent attention calculation. The
Multiscale Transformer Encoder incorporates 3 blocks, along with

the output from the Subject-Object Synergy (SOS) block, resulting
in a 4-layer feature pyramid. With a downsampling ratio of 2, the
feature pyramid comprises lengths of [512, 256, 128, 64] respectively.
The decoder consists of 4 layers, with the number of queries 𝑁𝑞

set to 9. All attention heads in both the encoder and decoder are
8. The dimension of the hidden layer in the Feedforward Network
(FFN) following local attention calculation is 4× the dimension of
the input features.

When calculating a Local Attention, the attention range for each
token is restrictedwithin awindow size𝑘𝑤 , as well as the kernel size
of the Conv1D layer before Local Attention. We set the window
size 𝑘𝑤 to 9. Since there are 2 SOS layers and 3 downsampling
layers before decoding, the attention range of each token will be
[9, 81, 512, 512, 512] after the layers, respectively. The attention
range is restricted by the maximum token length. As query tokens
are parallel to each other and lack strict sequential order, when
computing local cross attention in the decoder, we set the kernel
size of Conv1D for the queries to 1.
Training Details. We sample frames uniformly with a stride of 4.
When the overlapped length between subject and object 𝑙𝑠𝑜 exceeds
512, we randomly truncate it to 512. Relations occurring within the
truncated 𝑙𝑠𝑜 , with durations less than half of the original length,
are excluded from model learning. Additionally, We omit the learn-
ing of some pairs with more relations than 𝑁𝑞 . Employing a batch
size of 48, we conduct training for 10 epochs. Before Local Attention
and MLP computation, LayerNorm [1] is implemented. Drop-out
and Drop-path [4] rates are specified as 0 and 0.1, respectively.
Training of VrdONE employs the AdamW [21] optimizer with a
learning rate of 2×10−4, where the learning rate for each parameter
group follows a cosine annealing schedule, eventually dropping to
2 × 10−5. Warmup and Exponential Moving Average (EMA) tech-
niques are employed to enhance and stabilize the training process.
No positional encoding is added to the learnable query tokens, con-
sistent with the approach in [7]. The parameters 𝜆𝑐𝑙𝑠 , 𝜆𝑚𝑓 , 𝜆𝑚𝑑 are
assigned values of 2, 2, and 5, respectively.
Inference Details. During inference, we keep the entities with
confidence scores > 0.4 and enumerate the remaining entities to
compose all possible subject-object pairs. Pairs with no overlapping
length are discarded. All pairs within a video are divided into two
groups based on their lengths: those with lengths ≤ 512 and the
left. For the former, the same processing steps as during training
are applied. For the latter, the 𝑙𝑠𝑜 is set to the maximum length
among all pairs. Following prior studies [3, 6], we retain top-6
predicate classification results for each detected instance. For each
video, we retain the top 200 results across all detected instances.
Foreground probability > 0.5 in the localization masks indicates
where relation instances happen. The temporal boundaries of the
relation instances are indicated by the first positive masks and
the last positive masks. Typically, no further processing of the
localization masks is necessary, as we find that filling holes or
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Table 1: Comparison of oracle detection results. The “-oracle” postfix means the model is trained with ground-truth detection
trajectories and entities’ categories provided.

Method Relation Detection Relation Tagging
mAP ΔmAP R@50 ΔR@50 R@100 ΔR@100 P@1 ΔP@1 P@5 ΔP@5 P@10 ΔP@10

Imagenet-VidVRD

VidVRD [6] 8.58 5.54 6.37 43.00 28.90 20.80
VidVRD-orcale [6] 15.53 +6.95 12.51 +6.97 16.55 +10.18 43.50 +0.50 29.70 +0.80 23.20 +2.40

VrdONE 31.33 18.20 21.61 80.50 59.40 44.17
VrdONE-orcale 43.15 +11.82 30.67 +12.47 38.30 +16.69 82.50 +2.00 62.10 +2.70 46.55 +2.38

VidOR

VrdONE 11.86 11.13 14.21 66.11 54.92 43.90
VrdONE-orcale 41.75 +29.89 35.93 +24.80 47.79 +33.58 85.10 +18.99 71.37 +16.45 58.43 +14.53

Table 2: Ablation of the window size 𝑘𝑤 , whose values are
varying within [5, 11].

𝑘𝑤
Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

5 11.77 11.11 14.00 67.31 54.84 44.14
7 11.83 11.04 14.14 66.11 55.23 43.87
9∗ 11.86 11.13 14.21 66.11 54.92 43.90
11 11.86 11.12 14.05 66.59 54.75 43.42

Table 3: Ablation of the positional representaions 𝜃s.

𝜃𝑎 𝜃𝑟
Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

– – 10.84 10.46 13.45 65.62 54.46 43.24
– ✓ 11.45 10.75 13.85 66.11 54.36 43.82
✓ – 11.83 11.06 13.98 66.91 54.64 43.60
✓ ✓ 11.86 11.13 14.21 66.11 54.92 43.90

applying morphological methods (e.g. erosion or dilation) yields
minimal improvements.

3.2 Imagenet-VidVRD
When shifts to Imagenet-VidVRD, some settings of the hyper-
parameters are slightly different. For Imagenet-VidVRD, we set
𝑙𝑠𝑜 to 96, resulting in feature pyramid lengths of [96, 48, 24, 12]. The
window size 𝑘𝑤 is set to 7, with corresponding attention ranges of
[7, 49, 96, 96, 96]. We employ a sampling stride of 1, a batch size of
24, and conduct training for 12 epochs. During inference, we retain
the top-8 predicate classification results for each detected instance.

4 ADDITIONAL EXPERIMENTS
In this section, we provide more experimental evidence for explor-
ing the potential of our framework under the limited quality of
pretrained trackers. Extra ablations are also conducted to verify the
influences of the varying kernel size 𝑘𝑤 , positional representations
𝜃𝑎 and 𝜃𝑟 , and the weight factors 𝜆𝑐𝑙𝑠 , 𝜆𝑚𝑓 , and 𝜆𝑚𝑑 using in Eq. 19.

Tracklets. Before proceeding to our VrdONE, the input videos are
pre-processed by pretrained object detector, which results in lists of
detection bounding boxes for each entity. These bounding boxes are
further used for consolidating precise spatial context information
into the feature of entity tracklets.

We empirically find that the accuracy of the detection results
significantly affects the upper bound of our model’s performance.
Therefore, we propose to provide the ground-truth bounding boxes
and the corresponding class label of the entity trajectories to our
model. As shown in Table 1, after perceiving accurate tracklets, our
model has witnessed a giant progress on both Imagenet-VidVRD
and VidOR. The performances of our VrdONE on both relation
detection and temporal localization are significantly boosted. In the
Imagenet-VidVRD dataset, the gains of our model on 5 out of the
6 metrics surpass VidVRD [6] significantly. A similar trend is also
observed in the VidOR dataset, with tremendous improvements of
29.89 on mAP and 24.8 on R@50.

The averaging temporal length of videos in VidOR ismuch longer
than those in Imagenet-VidVRD, which incurs a more difficult de-
tection for trackers, leading to worse performance. However, even
in such a challenging scenario, our model can still perform precise
relation classification and temporal localization assisted by accu-
rate tracklets. These experimental results imply the potential of our
proposed VrdONE facilitated by the advancement of modern object
trackers.
Window Size of Local Attention. In Table 2, we estimate the
influences of varying the window size 𝑘𝑤 . In all our experiments,
we select 𝑘𝑤 as 9 for more balanced performances on RelDet and
RelTag.
Positional Representation. In our spatiotemporal synergistic
learning, incorporating the positional representations 𝜃𝑎 and 𝜃𝑟

can help the model perceive the spatial variances of relations be-
tween independent entities. We illustrate the results of ablation
on the absolute positional representations 𝜃𝑎 and the relative posi-
tional representations 𝜃𝑟 in Table 3. Both 𝜃𝑎 and 𝜃𝑟 are crucial in
promoting the detecting ability, while 𝜃𝑎 exhibits more progress.
These results highlight the influence of temporal changes of posi-
tions for relation classification, demonstrating the rationality and
necessity of our spatiotemporal learning in video relation detection.
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Figure 1: Ablations on varying weight factors of 𝜆𝑐𝑙𝑠 , 𝜆𝑚𝑓 , and 𝜆𝑚𝑑 , which are applied to (a) Cross Entropy Loss for relation
classification, (b) Mask Focal Loss and (c) Dice Loss for relation localization, respectively.

Loss Factors. In all our experiments, we set the 𝜆𝑐𝑙𝑠 , 𝜆𝑚𝑓 , and 𝜆𝑚𝑑

as 2, 2, and 5 respectively based on the performance on mAP. In
this section, we ablate the loss factors of 𝜆𝑐𝑙𝑠 , 𝜆𝑚𝑓 , and 𝜆𝑚𝑑 , by
varying one of them and setting the rest two frozen.

The results are depicted in Fig. 1. The curves validate that the
performance of our model remains robust when the loss factors
vary within a reasonable range. Otherwise, either 𝜆𝑐𝑙𝑠 is too small
or 𝜆𝑑𝑖𝑐𝑒 is too large will lead to drastic drops in performance.

5 VISUALIZATION
Additional qualitative results are illustrated in Fig. 2 and Fig. 3.
We show the spatiotemporal form of the detection results on both
Imagenet-VidVRD (Fig. 2(a)) and VidOR (Fig. 2(b)) datasets. We find
that our method can accurately learn the categories of relations,
especially those related to spatial positions, demonstrating the
effectiveness of our spatiotemporal learning. Moreover, it is obvious
in this form that our method is hindered heavily by the tracker. For
example, in Fig. 2(a), our method accurately finds that the preson is
ridding the bicycle in the whole tracklets. However, the overlapped
trajectories are only within [1, 163], decreasing the accuracy of
temporal boundary predictions. So as to the “sofa-beneath-child”
int Fig. 2(b).

In Fig. 3, we illustrate more classification results of our model.
Even though the number of queries of each pair is limited, the
number of accumulated detection results is sufficient for the whole
video.
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person-ride-bicycle [1, 163],  person-ride-bicycle [7, 210], bicycle-move_beneath-person [1, 163], person-sit_above-bicycle [1, 163], person-behind-person [55, 210]      VrdONE

person-ride-bicycle [0, 210],  person-ride-bicycle [0, 210], bicycle-move_beneath-person [0, 210], person-sit_above-bicycle [0, 210], person-behind-person [150, 210]      GT

(a)

adult-lean_on-sofa [1, 1002],  sofa-beneath-child [235, 920], adult-watch-child [539, 676], adult-above-sofa [7, 572],                                                                                    VrdONE

adult-lean_on-sofa [0, 1003],  sofa-beneath-child [0, 990], adult-watch-child [564, 693], adult-above-sofa [11, 989], child-speak_to-adult [425, 449]                                     GT

(b)

Figure 2: Additional qualitative results on Imagenet-VidVRD (above) and VidOR (below). The results are visualized in spa-
tiotemporal forms to include all elements of video relations. (E.g., subject class, object class, subject trajectory, object trajectory,
predicate class, predicate temporal boundary.) The numbers in the brackets are the start frames and end frames of current
relations.

1. cattle-walk_right-cattle

2. cattle-walk_right-cattle

3. cattle-walk_right-cattle

4. cattle-walk_front-cattle 

5. cattle-walk_behind-cattle

6. cattle-walk_front-cattle

7. cattle-stand_behind-cattle

8. cattle-stand_left-cattle

9. cattle-walk_right-cattle

10. cattle-stand_left-cattle

11. cattle-stand_left-cattle

1. adult-next_to-adult

2. adult-play(instr)-piano

3. adult-use-piano

4. adult-next_to-adult

5. piano-in_front_of-adult

6. ball-in_front_of-adult

7. adult-next_to-adult

8. ball-in_front_of-adult

9. piano-next_to-ball

10. adult-play(instr)-piano

11. adult-next_to-ball

12. adult-next_to-ball

1. adult-next_to-dog

2. dog-next_to-adult

3. dog-in_front_of-adult

4. adult-watch-dog

5. dog-in_front_of-adult

6. adult-in_front_of-adult

7. dog-in_front_of-dog

8. dog-towards-dog

9. dog-in_front_of-dog

Figure 3: Visualizations of the relation detection results in more details.
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