Deep subspace learning for efficient reconstruction of spatiotemporal imaging data
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problems24. However, the memory costs of training unrolled neural networks s

« DL-Subspace is compared against MoDL?3 and DL-ESPIRiT# unrolled networks
* All three networks are trained using a supervised L1 loss on multi-slice cardiac MRI data
acquired from 21 healthy volunteers (17/3/1 split) + 1 pediatric patient for testing

remains high, especially when the target data is high-dimensional. This often
requires trade-offs in network depth to reduce model size, or spatiotemporal
resolution to reduce data size.

To this end, we propose DL-Subspace: a novel unrolled neural network Results
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0.6 ' Fig. 5: Reconstructions of a retrospectively accelerated dataset from healthy volunteer. No
“ “ significant difference is observed between DL-ESPIRIT, MoDL, and DL-Subspace images.
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temporal basis functions (L, R) : - and number of basis functions. For reference, memory usage of DL-ESPIRIT and MoDL is 1.6 GB. S
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Training Steps and memory efficiency is achieved by
- Basis denoisers (W, ®P) are parameterized by 2-D and 1-D CNNs Fig. 3: Effect of number of basis functions (K) choosing K=8, but note that the optimal K Fig. 6: Reconstructions of a prospectively accelerated dataset from pediatric patient. DL-
respectively, and learned by unrolling the update rule above to form the DL- on image reconstruction quality in validation set will vary based on dataset and task Subspace reconstruction depicts slightly better image quality due to enhanced denoising
Subspace network architecture: imposed by low-rank prior (blue arrow).
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