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Fig. 2: Memory usage (GB) and inference speed (sec/slice) for DL-Subspace with varying block size 
and number of basis functions. For reference, memory usage of DL-ESPIRiT and MoDL is 1.6 GB. 

Average inference speed for DL-ESPIRiT and MoDL are 2.5 and 2.8 sec/slice respectively

• Inspired by Arvinte et al.6, the compact, low-rank representation can be 
solved for directly using a model-based alternating minimization algorithm:

• Subspace Model5: Dynamic MRI data 
can be represented as a product of 
two matrices containing spatial and 
temporal basis functions (L, R) 

• If the data is sufficiently low-rank, then 
t he da ta can be rep resen ted 
compactly using few basis functions

Motivation
Model-based deep learning approaches, such as unrolled neural networks1 
have demonstrated state-of-the-art performance for efficiently solving inverse 
problems2-4. However, the memory costs of training unrolled neural networks 
remains high, especially when the target data is high-dimensional. This often 
requires trade-offs in network depth to reduce model size, or spatiotemporal 
resolution to reduce data size.  

To this end, we propose DL-Subspace: a novel unrolled neural network 
architecture which reduces memory usage by solving for low-dimensional, 
compact representations of spatiotemporal imaging data. DL-Subspace is 
applied to reconstruction of accelerated dynamic magnetic resonance imaging 
(MRI) data, demonstrating up to 4X higher memory efficiency and 4X faster 
inference speeds while maintaining similar image quality metrics as state-of-
the-art unrolled networks.

Methods
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Results

minimize 
L,R

| |Y − 𝒜(LRH) | |2
F + | |Ψ(L) − L | |2

F + | |Φ(R) − R | |2
F

U (i+1) = arg min 
L

| |Y − 𝒜(L R(i)H) | |2
F + μl | |L(i) − L | |2

F

L(i+1) = Φ(U (i+1))

V (i+1) = arg min 
R

| |Y − 𝒜(L(i+1)RH) | |2
F + μr | |R(i) − R | |2

F

R(i+1) = Ψ(V (i+1))

• Basis denoisers ( ) are parameterized by 2-D and 1-D CNNs 
respectively, and learned by unrolling the update rule above to form the DL-
Subspace network architecture:

Ψ, Φ

{

X = LRH

DL-Subspace Update Rule:

Bi-linear Regularized Least Squares Objective:

• DL-Subspace is compared against MoDL3 and DL-ESPIRiT4 unrolled networks 
• All three networks are trained using a supervised L1 loss on multi-slice cardiac MRI data 

acquired from 21 healthy volunteers (17/3/1 split) + 1 pediatric patient for testing

Fig. 4: Reconstruction quality evaluated with respect to PSNR and SSIM for all three networks across 
a range of simulated scan time acceleration rates.

Fig. 5: Reconstructions of a retrospectively accelerated dataset from healthy volunteer. No 
significant difference is observed between DL-ESPIRiT, MoDL, and DL-Subspace images.

Fig. 6: Reconstructions of a prospectively accelerated dataset from pediatric patient. DL-
Subspace reconstruction depicts slightly better image quality due to enhanced denoising 

imposed by low-rank prior (blue arrow).

Fig. 1: DL-Subspace Network Architecture: Combines model-based unrolled networks with a 
subspace model to achieve memory efficient training and inference.

Fig. 3: Effect of number of basis functions (K) 
on image reconstruction quality in validation set

• DL-Subspace shows higher memory 
efficiency and faster inference speeds 
compared to DL-ESPIRiT and MoDL across 
a wide range of hyperparameters 

• Reconstruction quality is greatly impacted 
by choice of K 

• A balance between reconstruction quality 
and memory efficiency is achieved by 
choosing K=8, but note that the optimal K 
will vary based on dataset and task

Validation Loss (PSNR)

Conclusion
A novel DL-Subspace reconstruction framework is proposed, which uses a 
subspace model to curb memory requirements of training unrolled neural 
networks for spatiotemporal image reconstruction. Further validation is 
necessary to determine efficacy across a larger patient cohort


