

Deep subspace learning for efficient reconstruction of spatiotemporal imaging data

Christopher M. Sandino¹, Frank Ong¹, Siddharth S. Iyer¹, Adam M. Bush², Shreyas S. Vasanawala³ ¹Electrical Engineering, Stanford University, Stanford, CA. ²Biomedical Engineering, University of Texas at Austin, Austin, TX. ³Radiology, Stanford University, Stanford, CA.

Motivation

Model-based deep learning approaches, such as unrolled neural networks¹ have demonstrated state-of-the-art performance for efficiently solving inverse problems²⁻⁴. However, the memory costs of training unrolled neural networks remains high, especially when the target data is high-dimensional. This often requires trade-offs in network depth to reduce model size, or spatiotemporal resolution to reduce data size.

To this end, we propose **DL-Subspace**: a novel unrolled neural network architecture which reduces memory usage by solving for low-dimensional, compact representations of spatiotemporal imaging data. DL-Subspace is applied to reconstruction of accelerated dynamic magnetic resonance imaging (MRI) data, demonstrating up to **4X higher memory efficiency** and **4X faster inference speeds** while maintaining similar image quality metrics as state-of-the-art unrolled networks.

Methods

- Subspace Model⁵: Dynamic MRI data can be represented as a product of two matrices containing spatial and temporal basis functions (L, R)
- If the data is sufficiently low-rank, then the data can be represented compactly using few basis functions

• Inspired by Arvinte et al.⁶, the compact, low-rank representation can be solved for directly using a model-based alternating minimization algorithm:

• Basis denoisers (Ψ, Φ) are parameterized by 2-D and 1-D CNNs respectively, and learned by unrolling the update rule above to form the DL-Subspace network architecture:

Fig. 1: DL-Subspace Network Architecture: Combines model-based unrolled networks with a subspace model to achieve memory efficient training and inference.

	# Unrolls	# CG Unrolls	# Learnable	Sub-Network	Kernel Size	# Input	# Hidden
			Parameters	Architecture		Features	Features
DL-ESPIRiT	10	N/A	8.5 million	2D+Time ResNet-5	3 x 3 x 3	2	88
NoDL	10	10	8.5 million	2D+Time ResNet-5	3 x 3 x 3	2	88
DL-Subspace	10	10	8.6 million	2D ResNet-5	3 x 3	24	128
				1D ResNet-5	3 x 1	24	128

DL-Subspace is compared against MoDL³ and DL-ESPIRiT⁴ unrolled networks
All three networks are trained using a supervised L1 loss on multi-slice cardiac MRI data acquired from 21 healthy volunteers (17/3/1 split) + 1 pediatric patient for testing

Fig. 2: Memory usage (GB) and inference speed (sec/slice) for DL-Subspace with varying block size and number of basis functions. For reference, memory usage of DL-ESPIRiT and MoDL is 1.6 GB. Average inference speed for DL-ESPIRiT and MoDL are 2.5 and 2.8 sec/slice respectively

Fig. 3: Effect of number of basis functions (K) on image reconstruction quality in validation set

- DL-Subspace shows higher memory efficiency and faster inference speeds compared to DL-ESPIRiT and MoDL across a wide range of hyperparameters
- Reconstruction quality is greatly impacted by choice of K
- A balance between reconstruction quality and memory efficiency is achieved by choosing K=8, but note that the optimal K will vary based on dataset and task

Fig. 4: Reconstruction quality evaluated with respect to PSNR and SSIM for all three networks across a range of simulated scan time acceleration rates.

Fig. 5: Reconstructions of a retrospectively accelerated dataset from healthy volunteer. No significant difference is observed between DL-ESPIRiT, MoDL, and DL-Subspace images.

Fig. 6: Reconstructions of a prospectively accelerated dataset from pediatric patient. DL-Subspace reconstruction depicts slightly better image quality due to enhanced denoising imposed by low-rank prior (blue arrow).

Conclusion

A novel DL-Subspace reconstruction framework is proposed, which uses a subspace model to curb memory requirements of training unrolled neural networks for spatiotemporal image reconstruction. Further validation is necessary to determine efficacy across a larger patient cohort

References

[1] Karol Gregor & Yann LeCun (2010). "Learning Fast Approximations of Sparse Coding." In: 27th International Conference on Machine Learning.
[2] Kerstin Hammernik, et al. (2018). "Learning a Variational Network for Reconstruction of Accelerated MRI Data." In: Magnetic Resonance in Medicine.
[3] Hemant K. Aggarwal, et al. (2019). "MoDL: Model-based Deep Learning Architecture for Inverse Problems." In: IEEE Transactions on Medical Imaging.
[4] Christopher Sandino, et al. (2021). "Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction." In: Magnetic Resonance in Medicine.

[5] Zhi-Pei Liang, et al. (2007). "Spatiotemporal Imaging with Partially Separable Functions." In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[6] Marius Arvinte, et al. (2021). "Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization." In: arXiv:2103.02087.